1
|
Wan J, Lin J, Zha T, Ciruela F, Jiang S, Wu Z, Fang X, Chen Q, Chen X. Temporomandibular disorders and mental health: shared etiologies and treatment approaches. J Headache Pain 2025; 26:52. [PMID: 40075300 PMCID: PMC11899861 DOI: 10.1186/s10194-025-01985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The biopsychosocial model suggests that temporomandibular disorders (TMDs) often coexist with mental health disorders, particularly depression and anxiety, affecting a significant portion of the global population. The interplay between TMDs and mental health disorders contributes to a complex comorbidity, perpetuating a cycle of mutual influence and reinforcement. This review investigates the neurobiological mechanisms and epidemiological evidence supporting the shared etiology of TMDs and mental health disorders, exploring potential shared vulnerabilities and bidirectional causal relationships. Shared vulnerabilities between TMDs and mental health disorders may stem from genetic and epigenetic predispositions, psychosocial factors, and behavioral aspects. Inflammatory cytokines, neurotransmitters, neurotrophins, and neuropeptides play pivotal roles in both peripheral and central sensitization as well as neuroinflammation. Brain imaging studies suggest that TMDs and mental health disorders exhibit overlapping brain regions indicative of reward processing deficits and anomalies within the triple network model. Future research efforts are crucial for developing a comprehensive understanding of the underlying mechanisms and confirming the reciprocal causal effects between TMDs and mental health disorders. This review provides valuable insights for oral healthcare professionals, stressing the importance of optimizing treatment strategies for individuals dealing with concurrent TMDs and mental health issues through a personalized, holistic, and multidisciplinary approach.
Collapse
Affiliation(s)
- Jiamin Wan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiu Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Tingfeng Zha
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, IDIBELL-Bellvitge Institute for Biomedical Research, Barcelona, Spain
| | - Shaokang Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xinyi Fang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Xiaoyan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Taketani A, Koshiyama S, Haruki T, Yonezawa S, Tahara J, Yamazaki M, Oshima Y, Wada A, Sato T, Koizumi K, Kitajima I, Saito S. Identification of the Cellular Tipping Point in the Inflammation Model of LPS-Induced RAW264.7 Macrophages Through Raman Spectroscopy and the Dynamical Network Biomarker Theory. Molecules 2025; 30:920. [PMID: 40005229 PMCID: PMC11858581 DOI: 10.3390/molecules30040920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Raman spectroscopy is a non-destructive spectroscopic technique that provides complex molecular information. It is used to examine the physiological and pathological responses of living cells, such as differentiation, malignancy, and inflammation. The responses of two cellular states, initial and full-blown inflammation, have mainly been investigated using a comparative analysis with Raman spectra. However, the tipping point of the inflammatory state transition remains unclear. Therefore, the present study attempted to identify the tipping point of inflammation using a cell model. We stimulated RAW264.7 mouse macrophages with lipopolysaccharide (LPS) and continuously collected Raman spectra every 2 h for 24 h from the initial and full-blown inflammation states. A Partial Least Squares analysis and Principal Component Analysis-Linear Discriminant Analysis predicted the tipping point as 14 h after the LPS stimulation. In addition, a Dynamical Network Biomarker (DNB) analysis, identifying the tipping point of a state transition in various phenomena, indicated that the tipping point was 14 h and identified tryptophan as a biomarker. The results of a multivariate analysis and DNB analysis show the cellular tipping point.
Collapse
Affiliation(s)
- Akinori Taketani
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan (S.Y.); (S.S.)
| | - Shota Koshiyama
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Takayuki Haruki
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan (S.Y.); (S.S.)
- Faculty of Sustainable Design, University of Toyama, Toyama 930-8555, Japan
| | - Shota Yonezawa
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan (S.Y.); (S.S.)
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Jun Tahara
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Moe Yamazaki
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Yusuke Oshima
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan (S.Y.); (S.S.)
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Akinori Wada
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-8555, Japan (T.S.)
| | - Tsutomu Sato
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-8555, Japan (T.S.)
| | - Keiichi Koizumi
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan (S.Y.); (S.S.)
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Isao Kitajima
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan (S.Y.); (S.S.)
| | - Shigeru Saito
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan (S.Y.); (S.S.)
| |
Collapse
|
3
|
Liu X, Shi X, Zhao H, Wang C. Exploring the molecular mechanisms of comorbidity of myocardial infarction and anxiety disorders by combining multiple data sets with in vivo experimental validation. Int Immunopharmacol 2025; 146:113852. [PMID: 39733641 DOI: 10.1016/j.intimp.2024.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The incidence of comorbidity between myocardial infarction (MI) and anxiety disorders is increasing. However, the biological association between them has not been fully understood. OBJECTIVE This study aims to investigate the molecular mechanisms of comorbidity between MI and anxiety disorders and to predict their key genes and potential therapeutic drugs. METHODS We searched Gene Expression Omnibus databases and performed differential analyses using the limma package to identify the functional enrichment of differential genes. Next, we constructed regulatory networks to investigate the relationship between hub genes and autophagy, ferroptosis, and immunity. Furthermore, we predicted transcription factors by R package, constructed a miRNA network, performed the single-cell analysis of key gene expression, and predicted drug targeting of differential genes using the Connectivity Map database. RESULTS The datasets for MI and anxiety disorders were analyzed for up and down-regulated differential genes, resulting in 35 intersecting differential genes. The top 10 feature genes from each dataset were intersected using Random Forest, resulting in the identification of three intersecting genes: STK17B, AKIRIN2, and WDR77. Validation of the above key genes was carried out by in vitro experiments. We examined the gene expression of STK17B, WDR77 and AKIRIN2 in the hippocampus and myocardial infarction border zone respectively by qPCR and WB, and the results confirmed that the above are the key genes for myocardial infarction and anxiety. There is a significant correlation between the comorbidity mechanism of myocardial infarction and anxiety disorders with ferroptosis and immunity. The construction of the miRNA network revealed that miR-205 and let-7 had higher average connectivity among the three hub genes. The single-cell analysis revealed significant expression of key genes in Endothelial cells, Cardiomyocytes, Macrophages, and Fibroblasts datasets. Cd274 showed a higher correlation with key genes in myocardial infarction and anxiety disorders. CONCLUSION Validation by multiple datasets and in vitro experiments showed that STK17B, AKIRIN2, and WDR77 are the key genes in the comorbidity of myocardial infarction and anxiety disorders, and ferroptosis and immunity are the key links in the comorbidity mechanism of myocardial infarction and anxiety disorders.
Collapse
Affiliation(s)
- Xiang Liu
- Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaojun Shi
- Beijing University of Chinese Medicine, Beijing, China
| | - Haibin Zhao
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wang
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
4
|
Osuch B, Misztal T, Pałatyńska K, Tomaszewska-Zaremba D. Implications of Kynurenine Pathway Metabolism for the Immune System, Hypothalamic-Pituitary-Adrenal Axis, and Neurotransmission in Alcohol Use Disorder. Int J Mol Sci 2024; 25:4845. [PMID: 38732064 PMCID: PMC11084367 DOI: 10.3390/ijms25094845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In recent years, there has been a marked increase in interest in the role of the kynurenine pathway (KP) in mechanisms associated with addictive behavior. Numerous reports implicate KP metabolism in influencing the immune system, hypothalamic-pituitary-adrenal (HPA) axis, and neurotransmission, which underlie the behavioral patterns characteristic of addiction. An in-depth analysis of the results of these new studies highlights interesting patterns of relationships, and approaching alcohol use disorder (AUD) from a broader neuroendocrine-immune system perspective may be crucial to better understanding this complex phenomenon. In this review, we provide an up-to-date summary of information indicating the relationship between AUD and the KP, both in terms of changes in the activity of this pathway and modulation of this pathway as a possible pharmacological approach for the treatment of AUD.
Collapse
Affiliation(s)
- Bartosz Osuch
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (T.M.); (K.P.); (D.T.-Z.)
| | | | | | | |
Collapse
|
5
|
Wang J, Wang Y, Zhu Y, Cui C, Feng T, Huang Q, Liu S, Wu Q. Peripheral inflammation triggering central anxiety through the hippocampal glutamate metabolized receptor 1. CNS Neurosci Ther 2024; 30:e14723. [PMID: 38676295 PMCID: PMC11053250 DOI: 10.1111/cns.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
AIMS This study aimed to investigate the relationship between ulcerative colitis (UC) and anxiety and explore its central mechanisms using colitis mice. METHODS Anxiety-like behavior was assessed in mice induced by 3% dextran sodium sulfate (DSS) using the elevated plus maze and open-field test. The spatial transcriptome of the hippocampus was analyzed to assess the distribution of excitatory and inhibitory synapses, and Toll-like receptor 4 (TLR4) inhibitor TAK-242 (10 mg/kg) and AAV virus interference were used to examine the role of peripheral inflammation and central molecules such as Glutamate Receptor Metabotropic 1 (GRM1) in mediating anxiety behavior in colitis mice. RESULTS DSS-induced colitis increased anxiety-like behaviors, which was reduced by TAK-242. Spatial transcriptome analysis of the hippocampus showed an excitatory-inhibitory imbalance mediated by glutamatergic synapses, and GRM1 in hippocampus was identified as a critical mediator of anxiety behavior in colitis mice via differential gene screening and AAV virus interference. CONCLUSION Our work suggests that the hippocampus plays an important role in brain anxiety caused by peripheral inflammation, and over-excitation of hippocampal glutamate synapses by GRM1 activation induces anxiety-like behavior in colitis mice. These findings provide new insights into the central mechanisms underlying anxiety in UC and may contribute to the development of novel therapeutic strategies for UC-associated anxiety.
Collapse
Affiliation(s)
- Jun‐Meng Wang
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Yue‐Mei Wang
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Yuan‐Bing Zhu
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Chan Cui
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Tong Feng
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Qin Huang
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Shu‐Qing Liu
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Qiao‐Feng Wu
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Acupuncture and Homeostasis RegulationChengdu University of Traditional Chinese MedicineChengduChina
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of EducationChengduChina
| |
Collapse
|
6
|
Wang XY, He SS, Zhou MM, Li XR, Wang CC, Zhao YC, Xue CH, Che HX. EPA and DHA Alleviated Chronic Dextran Sulfate Sodium Exposure-Induced Depressive-like Behaviors in Mice and Potential Mechanisms Involved. Mar Drugs 2024; 22:76. [PMID: 38393047 PMCID: PMC10890276 DOI: 10.3390/md22020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Patients with ulcerative colitis (UC) have higher rates of depression. However, the mechanism of depression development remains unclear. The improvements of EPA and DHA on dextran sulfate sodium (DSS)-induced UC have been verified. Therefore, the present study mainly focused on the effects of EPA and DHA on UC-induced depression in C57BL/6 mice and the possible mechanisms involved. A forced swimming test and tail suspension experiment showed that EPA and DHA significantly improved DSS-induced depressive-like behavior. Further analysis demonstrated that EPA and DHA could significantly suppress the inflammation response of the gut and brain by regulating the NLRP3/ASC signal pathway. Moreover, intestine and brain barriers were maintained by enhancing ZO-1 and occludin expression. In addition, EPA and DHA also increased the serotonin (5-HT) concentration and synaptic proteins. Interestingly, EPA and DHA treatments increased the proportion of dominant bacteria, alpha diversity, and beta diversity. In conclusion, oral administration of EPA and DHA alleviated UC-induced depressive-like behavior in mice by modulating the inflammation, maintaining the mucosal and brain barriers, suppressing neuronal damage and reverting microbiota changes.
Collapse
Affiliation(s)
- Xi-Yu Wang
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.-Y.W.); (S.-S.H.); (M.-M.Z.); (X.-R.L.)
| | - Shu-Sen He
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.-Y.W.); (S.-S.H.); (M.-M.Z.); (X.-R.L.)
| | - Miao-Miao Zhou
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.-Y.W.); (S.-S.H.); (M.-M.Z.); (X.-R.L.)
| | - Xiao-Ran Li
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.-Y.W.); (S.-S.H.); (M.-M.Z.); (X.-R.L.)
| | - Cheng-Cheng Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China; (C.-C.W.); (Y.-C.Z.)
| | - Ying-Cai Zhao
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China; (C.-C.W.); (Y.-C.Z.)
| | - Chang-Hu Xue
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China; (C.-C.W.); (Y.-C.Z.)
| | - Hong-Xia Che
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.-Y.W.); (S.-S.H.); (M.-M.Z.); (X.-R.L.)
| |
Collapse
|