1
|
Wu X, Su D, Xu J, Ge G, Zhang Y, Wu B, Hu K, Ren J, Yang H. Tricetin, a Dietary Flavonoid, Alleviates Neuroinflammation and Promotes Autophagy in Alzheimer's Disease by Regulating the PI3K/Akt/mTOR Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9677-9689. [PMID: 40223750 DOI: 10.1021/acs.jafc.5c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder among older adults, significantly impairs behavioral and cognitive functions, posing a severe threat to patients' health and quality of life. The Tricetin (TRN), a natural flavonoid found in wheat, pomegranate, and eucalyptus honey, has demonstrated anti-inflammatory, antitumor, and neuroprotective properties. However, its role in the context of AD has not been previously explored. This study investigated the antineuroinflammatory and autophagic protective effects of TRN in lipopolysaccharide (LPS)-induced BV2 cells and D-galactose/sodium nitrite/aluminum chloride (D-gal/NaNO2/AlCl3)-induced AD mice. The RNA sequencing examined the underlying mechanisms by which TRN ameliorates AD-related pathologies. Our research findings revealed that TRN significantly improved memory and mobility in AD mice, reduced Aβ deposition, and inhibited Tau protein phosphorylation. Furthermore, TRN regulated enzyme activities and reduced pathological markers associated with AD. Moreover, it modulated inflammatory mediators, inhibited the nuclear translocation of NF-κB in LPS-induced BV2 cells, and exerted anti-inflammatory and autophagic protective effects via the PI3K/Akt/mTOR signaling pathway. In conclusion, TRN demonstrated robust neuroprotective effects in vitro and in vivo AD models by regulating the PI3K/Akt/mTOR signaling pathway. These findings highlight its potential as a promising therapeutic agent for treating AD.
Collapse
Affiliation(s)
- Xinyuan Wu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Dan Su
- Department of Pharmacy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213164, China
| | - Jiaxin Xu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ge Ge
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yongzhen Zhang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bingjian Wu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Kun Hu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jie Ren
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hao Yang
- Department of Pharmacy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
2
|
Kazemi N, Khorasgani MR, Noorbakhshnia M, Razavi SM, Narimani T, Naghsh N. Protective effects of a lactobacilli mixture against Alzheimer's disease-like pathology triggered by Porphyromonas gingivalis. Sci Rep 2024; 14:27283. [PMID: 39516514 PMCID: PMC11549306 DOI: 10.1038/s41598-024-77853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is one of the pathogens involved in gingival inflammation, which may trigger neuroinflammatory diseases such as Alzheimer's disease (AD). This study aimed to investigate the protective (preventive and treatment) effects of a lactobacilli mixture combining Lactobacillus reuteri PTCC1655, Lactobacillus brevis CD0817, Lacticaseibacillus rhamnosus PTCC1637, and Lactobacillus plantarum PTCC1058 against P. gingivalis-induced gingival inflammation and AD-like pathology in rats. These probiotic strains exhibited cognitive enhancement effects, but this study proposed to assess their activity in a mixture. To propose a probable mechanism for P. gingivalis cognitive impairments, the TEs balance were analyzed in hippocampus and cortex tissues. Animals were divided into five groups: the control, lactobacilli, P. gingivalis, lactobacilli + P. gingivalis (prevention), and P. gingivalis + lactobacilli group (treatment) groups. The behavioral and histopathological changes were compared among them. Finally, The Trace elements (TEs) levels in the hippocampus and cortex tissues were analyzed. The palatal tissue sections of the P. gingivalis infected rats showed moderate inflammation with dense infiltration of inflammatory cells, a limited area of tissue edema, and vascular congestion. Additionally, passive avoidance learning and spatial memory were impaired. Histopathological tests revealed the presence of Aβ-positive cells in the P. gingivalis group. While the Aβ-positive cells decreased in the treatment group, their formation was inhibited in the preventive group. Administration of a mixture of lactobacilli (orally) effectively mitigated the gingival inflammation, Aβ production, and improved learning and memory functions. Moreover, Zn, Cu, and Mn levels in the hippocampus were dramatically elevated by P. gingivalis infection, whereas lactobacilli mixture mitigated these disruptive effects. The lactobacilli mixture significantly prevented the disruptive effects of P. gingivalis on gingival and brain tissues in rats. Therefore, new formulated combination of lactobacilli may be a good candidate for inhibiting the P. gingivalis infection and its subsequent cognitive effects. The current study aimed to evaluate the effects of a lactobacilli mixture to manage the disruptive effects of P. gingivalis infection on memory.
Collapse
Affiliation(s)
- Niloofar Kazemi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Rabbani Khorasgani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Maryam Noorbakhshnia
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Seyed Mohammad Razavi
- Department of Oral and Maxillofacial Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahmineh Narimani
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Naghsh
- Department of Periodontology, Torabinejad Dental Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Tsap MI, Yatsenko AS, Hegermann J, Beckmann B, Tsikas D, Shcherbata HR. Unraveling the link between neuropathy target esterase NTE/SWS, lysosomal storage diseases, inflammation, abnormal fatty acid metabolism, and leaky brain barrier. eLife 2024; 13:e98020. [PMID: 38660940 PMCID: PMC11090517 DOI: 10.7554/elife.98020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.
Collapse
Affiliation(s)
- Mariana I Tsap
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Bibiana Beckmann
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, United States
| |
Collapse
|
4
|
Rippee-Brooks MD, Wu W, Dong J, Pappolla M, Fang X, Bao X. Viral Infections, Are They a Trigger and Risk Factor of Alzheimer's Disease? Pathogens 2024; 13:240. [PMID: 38535583 PMCID: PMC10974111 DOI: 10.3390/pathogens13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Alzheimer's Disease (AD), a progressive and debilitating condition, is reported to be the most common type of dementia, with at least 55 million people believed to be currently affected. Many causation hypotheses of AD exist, yet the intriguing link between viral infection and its possible contribution to the known etiology of AD has become an attractive focal point of research for the field and a challenging study task. In this review, we will explore the historical perspective and milestones that led the field to investigate the viral connection to AD. Specifically, several viruses such as Herpes Simplex Virus 1 (HSV-1), Zika virus (ZIKV), and severe cute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with several others mentioned, include the various viruses presently considered within the field. We delve into the strong evidence implicating these viruses in the development of AD such as the lytic replication and axonal transport of HSV-1, the various mechanisms of ZIKV neurotropism through the human protein Musashi-1 (MSI1), and the spread of SARS-CoV-2 through the transfer of the virus through the BBB endothelial cells to glial cells and then to neurons via transsynaptic transfer. We will also explore beyond these mere associations by carefully analyzing the potential mechanisms by which these viruses may contribute to AD pathology. This includes but is not limited to direct neuronal infections, the dysregulation of immune responses, and the impact on protein processing (Aβ42 and hyperphosphorylated tau). Controversies and challenges of the virus-AD relationship emerge as we tease out these potential mechanisms. Looking forward, we emphasize future directions, such as distinct questions and proposed experimentations to explore, that the field should take to tackle the remaining unanswered questions and the glaring research gaps that persist. Overall, this review aims to provide a comprehensive survey of the past, present, and future of the potential link between viral infections and their association with AD development while encouraging further discussion.
Collapse
Affiliation(s)
- Meagan D. Rippee-Brooks
- Microbiology and Immunology Graduate Program, Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jianli Dong
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Miguel Pappolla
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Xiang Fang
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Xiaoyong Bao
- Microbiology and Immunology Graduate Program, Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77550, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA
- The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77550, USA
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
5
|
Prosswimmer T, Heng A, Daggett V. Mechanistic insights into the role of amyloid-β in innate immunity. Sci Rep 2024; 14:5376. [PMID: 38438446 PMCID: PMC10912764 DOI: 10.1038/s41598-024-55423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Colocalization of microbial pathogens and the β-amyloid peptide (Aβ) in the brain of Alzheimer's disease (AD) patients suggests that microbial infection may play a role in sporadic AD. Aβ exhibits antimicrobial activity against numerous pathogens, supporting a potential role for Aβ in the innate immune response. While mammalian amyloid is associated with disease, many bacteria form amyloid fibrils to fortify the biofilm that protects the cells from the surrounding environment. In the microbial AD hypothesis, Aβ aggregates in response to infection to combat the pathogen. We hypothesize that this occurs through toxic Aβ oligomers that contain α-sheet structure and form prior to fibrillization. De novo designed α-sheet peptides specifically bind to the α-sheet structure present in the oligomers of both bacterial and mammalian amyloidogenic proteins to neutralize toxicity and inhibit aggregation. Here, we measure the effect of E. coli on Aβ, including upregulation, aggregation, and toxicity. Additionally, we determined the effect of Aβ structure on E. coli amyloid fibrils, or curli comprised of the CsgA protein, and biofilm formation. We found that curli formation by E. coli increased Aβ oligomer production, and Aβ oligomers inhibited curli biogenesis and reduced biofilm cell density. Further, curli and biofilm inhibition by Aβ oligomers increased E. coli susceptibility to gentamicin. Toxic oligomers of Aβ and CsgA interact via α-sheet interactions, neutralizing their toxicity. These results suggest that exposure to toxic oligomers formed by microbial pathogens triggers Aβ oligomer upregulation and aggregation to combat infection via selective interactions between α-sheet oligomers to neutralize toxicity of both species with subsequent inhibition of fibrillization.
Collapse
Affiliation(s)
- Tatum Prosswimmer
- Molecular Engineering Program, University of Washington, Seattle, WA, 98195-5610, USA
| | - Anthony Heng
- Department of Neuroscience, University of Washington, Seattle, WA, 98195-5610, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-5610, USA
| | - Valerie Daggett
- Molecular Engineering Program, University of Washington, Seattle, WA, 98195-5610, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-5610, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195-5610, USA.
| |
Collapse
|
6
|
Whitson HE, Banks WA, Diaz MM, Frost B, Kellis M, Lathe R, Schmader KE, Spudich SS, Tanzi R, Garden G. New approaches for understanding the potential role of microbes in Alzheimer's disease. Brain Behav Immun Health 2024; 36:100743. [PMID: 38435720 PMCID: PMC10906156 DOI: 10.1016/j.bbih.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) involves a complex pathological process that evolves over years, and its etiology is understood as a classic example of gene-environment interaction. The notion that exposure to microbial organisms may play some role in AD pathology has been proposed and debated for decades. New evidence from model organisms and -omic studies, as well as epidemiological data from the recent COVID-19 pandemic and widespread use of vaccines, offers new insights into the "germ hypothesis" of AD. To review new evidence and identify key research questions, the Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium and workshop: "New Approaches for Understanding the Potential Role of Microbes in Alzheimer's disease." Discussion centered around the antimicrobial protection hypothesis of amyloid accumulation, and other mechanisms by which microbes could influence AD pathology including immune cell activation, changes in blood-brain barrier, or direct neurotoxicity. This summary of proceedings reviews the content presented in the symposium and provides a summary of major topics and key questions discussed in the workshop.
Collapse
Affiliation(s)
- Heather E. Whitson
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Busse Bldg Rm 3502, Durham, NC, 27710, USA
- Durham VA Medical Center, Geriatric Research Education and Clinical Center, 508 Fulton Street, Durham, NC, 27705, USA
| | - William A. Banks
- Veterans Affairs Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
| | - Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill, 170 Manning Dr, CB 7025, Chapel Hill, NC, 27599, USA
| | - Bess Frost
- Barshop Institute for Longevity & Aging Studies, 4939 Charles Katz Rm 1041, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St., Cambridge, MA, 02139, USA
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh BioQuarter, Little France, Edinburgh, EH16 4SB, UK
| | - Kenneth E. Schmader
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Busse Bldg Rm 3502, Durham, NC, 27710, USA
- Durham VA Medical Center, Geriatric Research Education and Clinical Center, 508 Fulton Street, Durham, NC, 27705, USA
| | - Serena S. Spudich
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300, New Haven, CT, 06510, USA
| | - Rudolph Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, 114 16th Street, Charlestown, MA, 02129, USA
| | - Gwenn Garden
- University of North Carolina - Dept of Neurology, 170 Manning Drive, Campus Box 7025, Chapel Hill, NC, 27599-7025, USA
| |
Collapse
|
7
|
Kazmierska-Grebowska P, Jankowski MM, MacIver MB. Missing Puzzle Pieces in Dementia Research: HCN Channels and Theta Oscillations. Aging Dis 2024; 15:22-42. [PMID: 37450922 PMCID: PMC10796085 DOI: 10.14336/ad.2023.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Increasing evidence indicates a role of hyperpolarization activated cation (HCN) channels in controlling the resting membrane potential, pacemaker activity, memory formation, sleep, and arousal. Their disfunction may be associated with the development of epilepsy and age-related memory decline. Neuronal hyperexcitability involved in epileptogenesis and EEG desynchronization occur in the course of dementia in human Alzheimer's Disease (AD) and animal models, nevertheless the underlying ionic and cellular mechanisms of these effects are not well understood. Some suggest that theta rhythms involved in memory formation could be used as a marker of memory disturbances in the course of neurogenerative diseases, including AD. This review focusses on the interplay between hyperpolarization HCN channels, theta oscillations, memory formation and their role(s) in dementias, including AD. While individually, each of these factors have been linked to each other with strong supportive evidence, we hope here to expand this linkage to a more inclusive picture. Thus, HCN channels could provide a molecular target for developing new therapeutic agents for preventing and/or treating dementia.
Collapse
Affiliation(s)
| | - Maciej M. Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, Poland.Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| | - M. Bruce MacIver
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of of Medicine, Stanford University, CA, USA.
| |
Collapse
|
8
|
Parker DC, Whitson HE, Smith PJ, Kraus VB, Huebner JL, North R, Kraus WE, Cohen HJ, Huffman KM. Anti-CMV IgG Seropositivity is Associated with Plasma Biomarker Evidence of Amyloid-β Accumulation. J Alzheimers Dis 2024; 98:593-600. [PMID: 38393897 PMCID: PMC10960581 DOI: 10.3233/jad-230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Some human studies have identified infection with cytomegalovirus (CMV), a member of the alpha herpesvirus family, as a risk factor for Alzheimer's disease and related dementias (ADRD). To our knowledge, no studies have evaluated associations of CMV seropositivity with plasma biomarkers of ADRD risk in middle-aged adults. Objective In participants recruited for an exercise study, we evaluated cross-sectional associations of CMV seropositivity with: Aβ42/Aβ40 ratio, a low ratio suggestive of central nervous system Aβ accumulation; glial fibrillary acidic protein (GFAP), a measure of neuroinflammation; and neurofilament light (NfL), a measure of neurodegeneration. Methods Anti-CMV IgG was quantified by ELISA. Plasma ADRD biomarkers were quantified using the ultrasensitive SIMOA assay. We used linear regression to evaluate associations of CMV seropositivity with the ADRD biomarkers, adjusting for age, sex, and race (n = 303; Age = 55.7±9.2 years). For ADRD biomarkers significantly associated with CMV seropositivity, we evaluated continuous associations of anti-CMV IgG levels with the ADRD biomarkers, excluding CMV seronegative participants. Results 53% of participants were CMV seropositive. CMV seropositivity was associated with a lesser Aβ42/Aβ40 ratio (β=-3.02e-03 95% CI [-5.97e-03, -7.18e-05]; p = 0.045). In CMV seropositive participants, greater anti-CMV IgG levels were associated with a lesser Aβ42/Aβ40 ratio (β=-4.85e-05 95% CI[-8.45e-05, -1.25e-05]; p = 0.009). CMV seropositivity was not associated with plasma GFAP or NfL in adjusted analyses. Conclusions CMV seropositivity was associated with a lesser plasma Aβ42/Aβ40 ratio. This association may be direct and causally related to CMV neuro-cytotoxicity or may be indirect and mediated by inflammatory factors resulting from CMV infection burden and/or the immune response.
Collapse
Affiliation(s)
- Daniel C. Parker
- Duke University School of Medicine, Division of Geriatrics, Durham, NC, USA
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
| | - Heather E. Whitson
- Duke University School of Medicine, Division of Geriatrics, Durham, NC, USA
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
- Durham VA Geriatrics Research Education and Clinical Center (GRECC), Durham, NC USA
| | - Patrick J. Smith
- University of North Carolina, Chapel Hill, Department of Psychiatry, Chapel Hill, NC, USA
| | - Virginia B. Kraus
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Claude D. Pepper Older Americans Independence Center, Duke University School of Medicine, Durham, NC, USA
- Duke University School of Medicine, Division of Rheumatology and Immunology, Durham, NC, USA
| | - Janet L. Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Claude D. Pepper Older Americans Independence Center, Duke University School of Medicine, Durham, NC, USA
| | - Rebecca North
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
| | - William E. Kraus
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Claude D. Pepper Older Americans Independence Center, Duke University School of Medicine, Durham, NC, USA
- Duke University School of Medicine, Division of Cardiology, Durham, NC, USA
| | - Harvey Jay Cohen
- Duke University School of Medicine, Division of Geriatrics, Durham, NC, USA
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
- Claude D. Pepper Older Americans Independence Center, Duke University School of Medicine, Durham, NC, USA
| | - Kim M. Huffman
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Duke University School of Medicine, Division of Rheumatology and Immunology, Durham, NC, USA
| |
Collapse
|
9
|
Sun J, Ince MN, Abraham C, Barrett T, Brenner LA, Cong Y, Dashti R, Dudeja PK, Elliott D, Griffith TS, Heeger PS, Hoisington A, Irani K, Kim TK, Kapur N, Leventhal J, Mohamadzadeh M, Mutlu E, Newberry R, Peled JU, Rubinstein I, Sengsayadeth S, Tan CS, Tan XD, Tkaczyk E, Wertheim J, Zhang ZJ. Modulating microbiome-immune axis in the deployment-related chronic diseases of Veterans: report of an expert meeting. Gut Microbes 2023; 15:2267180. [PMID: 37842912 PMCID: PMC10580853 DOI: 10.1080/19490976.2023.2267180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
The present report summarizes the United States Department of Veterans Affairs (VA) field-based meeting titled "Modulating microbiome-immune axis in the deployment-related chronic diseases of Veterans." Our Veteran patient population experiences a high incidence of service-related chronic physical and mental health problems, such as infection, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), various forms of hematological and non-hematological malignancies, neurologic conditions, end-stage organ failure, requiring transplantation, and posttraumatic stress disorder (PTSD). We report the views of a group of scientists who focus on the current state of scientific knowledge elucidating the mechanisms underlying the aforementioned disorders, novel therapeutic targets, and development of new approaches for clinical intervention. In conclusion, we dovetailed on four research areas of interest: 1) microbiome interaction with immune cells after hematopoietic cell and/or solid organ transplantation, graft-versus-host disease (GVHD) and graft rejection, 2) intestinal inflammation and its modification in IBD and cancer, 3) microbiome-neuron-immunity interplay in mental and physical health, and 4) microbiome-micronutrient-immune interactions during homeostasis and infectious diseases. At this VA field-based meeting, we proposed to explore a multi-disciplinary, multi-institutional, collaborative strategy to initiate a roadmap, specifically focusing on host microbiome-immune interactions among those with service-related chronic diseases to potentially identify novel and translatable therapeutic targets.
Collapse
Affiliation(s)
- Jun Sun
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - M. Nedim Ince
- Iowa City Veterans Affairs Medical Center, Lowa city, IA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Terrence Barrett
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
- Medicine, University of Kentucky, Lexington, KY, USA
| | - Lisa A. Brenner
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center, Aurora, CO, USA
- Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Yingzi Cong
- Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Reza Dashti
- Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Pradeep K. Dudeja
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - David Elliott
- Iowa City Veterans Affairs Medical Center, Lowa city, IA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Thomas S. Griffith
- Minneapolis VA Medical Center, Minneapolis, MN, USA
- Urology, University of Minnesota, Minneapolis, MN, USA
| | - Peter S. Heeger
- Medicine/Nephrology, Cedars-Sinai Medical Center in Los Angeles, Los Angeles, CA, USA
| | - Andrew Hoisington
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center, Aurora, CO, USA
- Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Kaikobad Irani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Tae Kon Kim
- Tennessee Valley Healthcare System-Nashville VA, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, USA
| | - Neeraj Kapur
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
- Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Mansour Mohamadzadeh
- Microbiology, University of Texas Health Science Center at San Antonio, USA, TX, San Antonio
| | - Ece Mutlu
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Rodney Newberry
- Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Jonathan U. Peled
- Adult Bone Marrow Transplantation Service Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Israel Rubinstein
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Salyka Sengsayadeth
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
- Iowa City Veterans Affairs Medical Center, Lowa city, IA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- Medicine, Yale University, New Haven, CT, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
- Medicine, University of Kentucky, Lexington, KY, USA
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center, Aurora, CO, USA
- Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Medicine, Stony Brook University, Stony Brook, NY, USA
- Minneapolis VA Medical Center, Minneapolis, MN, USA
- Urology, University of Minnesota, Minneapolis, MN, USA
- Medicine/Nephrology, Cedars-Sinai Medical Center in Los Angeles, Los Angeles, CA, USA
- Tennessee Valley Healthcare System-Nashville VA, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, USA
- Surgery, Northwestern University, Evanston, IL, USA
- Microbiology, University of Texas Health Science Center at San Antonio, USA, TX, San Antonio
- Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Adult Bone Marrow Transplantation Service Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Surgery, University of Arizona, Tucson, AZ, USA
- Tucson VA Medical Center, Tucson, AZ, USA
| | - Chen Sabrina Tan
- Iowa City Veterans Affairs Medical Center, Lowa city, IA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiao-Di Tan
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Eric Tkaczyk
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Jason Wertheim
- Surgery, University of Arizona, Tucson, AZ, USA
- Tucson VA Medical Center, Tucson, AZ, USA
| | | |
Collapse
|
10
|
Rego S, Sanchez G, Da Mesquita S. Current views on meningeal lymphatics and immunity in aging and Alzheimer's disease. Mol Neurodegener 2023; 18:55. [PMID: 37580702 PMCID: PMC10424377 DOI: 10.1186/s13024-023-00645-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
Alzheimer's disease (AD) is an aging-related form of dementia associated with the accumulation of pathological aggregates of amyloid beta and neurofibrillary tangles in the brain. These phenomena are accompanied by exacerbated inflammation and marked neuronal loss, which altogether contribute to accelerated cognitive decline. The multifactorial nature of AD, allied to our still limited knowledge of its etiology and pathophysiology, have lessened our capacity to develop effective treatments for AD patients. Over the last few decades, genome wide association studies and biomarker development, alongside mechanistic experiments involving animal models, have identified different immune components that play key roles in the modulation of brain pathology in AD, affecting its progression and severity. As we will relay in this review, much of the recent efforts have been directed to better understanding the role of brain innate immunity, and particularly of microglia. However, and despite the lack of diversity within brain resident immune cells, the brain border tissues, especially the meninges, harbour a considerable number of different types and subtypes of adaptive and innate immune cells. Alongside microglia, which have taken the centre stage as important players in AD research, there is new and exciting evidence pointing to adaptive immune cells, namely T and B cells found in the brain and its meninges, as important modulators of neuroinflammation and neuronal (dys)function in AD. Importantly, a genuine and functional lymphatic vascular network is present around the brain in the outermost meningeal layer, the dura. The meningeal lymphatics are directly connected to the peripheral lymphatic system in different mammalian species, including humans, and play a crucial role in preserving a "healthy" immune surveillance of the CNS, by shaping immune responses, not only locally at the meninges, but also at the level of the brain tissue. In this review, we will provide a comprehensive view on our current knowledge about the meningeal lymphatic vasculature, emphasizing its described roles in modulating CNS fluid and macromolecule drainage, meningeal and brain immunity, as well as glial and neuronal function in aging and in AD.
Collapse
Affiliation(s)
- Shanon Rego
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guadalupe Sanchez
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
11
|
Hansen N, Juhl AL, Grenzer IM, Teegen B, Wiltfang J, Fitzner D. Cerebrospinal fluid biomarkers in psychiatric autoimmune encephalitis: a retrospective cohort study. Front Psychiatry 2023; 14:1165153. [PMID: 37363167 PMCID: PMC10287966 DOI: 10.3389/fpsyt.2023.1165153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Background Psychiatric autoimmune encephalitis (pAE) is a growing field of interest in diagnosis and therapy in psychiatric hospitals and institutions. This study investigates the relevant extent to which there are potential biomarkers in cerebrospinal fluid (CSF) that can differentiate against a cohort with neurodegenerative disease. Methods We included in this study a total of 27 patients with possible and definite psychiatric autoimmune encephalitis and compared with a cohort with CSF-based AD (n = 27) different biomarkers in CSF such as lactate, cell count, % lymphocytes, % monocytes, total protein content, albumin, immunoglobulins G (IgG), M (IgM) and A (IgA), CSF/serum albumin ratio, CSF/serum IgG ratio, CSF/serum IgA ratio, intrathecal IgG synthesis, blood-brain barrier disruption, specific antibody synthesis for measles, rubella, herpes simplex virus, varicella zoster virus, Ebstein-Barr virus and cytomegalovirus, total tau protein (t-tau), phosphorylated tau protein 181 (p-tau181), amyloid beta 42 (Aß42), amyloid beta 40 (Aß40) and the amyloid beta 42/ amyloid beta 40 (Aß42/40) ratio. Results The p-tau 181 was elevated above cut-off values in both possible pAE and AD. However, in definitive pAE, p-tau181 levels were not elevated. When elevated p-tau181 levels in possible AE were compared with those in AD, we found relevant differences, such as a relative increase in p-tau181 in AD patients. Elevated p-tau181 levels were detected in possible psychiatric AEs with IgLON5, glycine, recoverin, titin, and nonspecific neuropil antibodies in serum and IgLON5, titin, Yo, and nonspecific neuropil autoantibodies in CSF. In addition, we detected elevated levels of p-tau181 and IgLON5 autoantibodies in serum and CSF, and Yo autoantibodies in CSF in patients with definitive pAE. Interestingly, we observed a higher CSF/serum IgM ratio in possible and definitive pAE than in AD patients. Conclusion Our results suggest that neuroaxonal brain damage may occur in specific psychiatric AEs associated with IgLON5, glycine, recoverin, and titin autoantibodies. Further research should focus on the CSF/serum IgM ratio as an early marker of autoantibody production in pAE compared to AD as a potential biomarker for differential diagnosis.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Aaron Levin Juhl
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Insa Maria Grenzer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Bianca Teegen
- Clinical Immunological Laboratory Prof. Stöcker, Groß Grönau, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Dirk Fitzner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Rakuša E, Fink A, Tamgüney G, Heneka MT, Doblhammer G. Sporadic Use of Antibiotics in Older Adults and the Risk of Dementia: A Nested Case-Control Study Based on German Health Claims Data. J Alzheimers Dis 2023:JAD221153. [PMID: 37182873 DOI: 10.3233/jad-221153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Antibiotics for systemic use may increase the risk of neurodegeneration, yet antibiotic therapy may be able to halt or mitigate an episode of neurodegenerative decline. OBJECTIVE To investigate the association of sporadic use of antibiotics and subsequent dementia risk (including Alzheimer's disease). METHODS We used data from the largest public health insurance fund in Germany, the Allgemeine Ortskrankenkasse (AOK). Each of the 35,072 dementia cases aged 60 years and older with a new dementia diagnosis during the observation period from 2006 to 2018 was matched with two control-patients by age, sex, and time since 2006. We ran conditional logistic regression models for dementia risk in terms of odds ratios (OR) as a function of antibiotic use for the entire antibiotic group and for each antibiotic subgroup. We controlled for comorbidities, need for long-term care, hospitalizations, and nursing home placement. RESULTS Antibiotic use was positively associated with dementia (OR = 1.18, 95% confidence interval (95% CI):1.14-1.22), which became negative after adjustment for comorbidities, at least one diagnosis of bacterial infection or disease, and covariates (OR = 0.93, 95% CI:0.90-0.96). Subgroups of antibiotics were also negatively associated with dementia after controlling for covariates: tetracyclines (OR = 0.94, 95% CI:0.90-0.98), beta-lactam antibacterials, penicillins (OR = 0.93, 95% CI:0.90-0.97), other beta-lactam antibacterials (OR = 0.92, 95% CI:0.88-0.95), macrolides, lincosamides, and streptogramins (OR = 0.88, 95% CI:0.85-0.92), and quinolone antibacterials (OR = 0.96, 95% CI:0.92-0.99). CONCLUSION Our results suggest that there was a decreased likelihood of dementia for preceding antibiotic use. The benefits of antibiotics in reducing inflammation and thus the risk of dementia need to be carefully weighed against the increase in antibiotic resistance.
Collapse
Affiliation(s)
- Elena Rakuša
- German Center for Neurodegenerative Diseases, Demographic Studies, Bonn, Germany
| | - Anne Fink
- German Center for Neurodegenerative Diseases, Demographic Studies, Bonn, Germany
| | - Gültekin Tamgüney
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Gabriele Doblhammer
- German Center for Neurodegenerative Diseases, Demographic Studies, Bonn, Germany
- University Rostock, Institute for Sociology and Demography, Rostock, Germany
| |
Collapse
|
13
|
Anwer DM, Gubinelli F, Kurt YA, Sarauskyte L, Jacobs F, Venuti C, Sandoval IM, Yang Y, Stancati J, Mazzocchi M, Brandi E, O’Keeffe G, Steece-Collier K, Li JY, Deierborg T, Manfredsson FP, Davidsson M, Heuer A. A comparison of machine learning approaches for the quantification of microglial cells in the brain of mice, rats and non-human primates. PLoS One 2023; 18:e0284480. [PMID: 37126506 PMCID: PMC10150977 DOI: 10.1371/journal.pone.0284480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research.
Collapse
Affiliation(s)
- Danish M. Anwer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Francesco Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Yunus A. Kurt
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Livija Sarauskyte
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Febe Jacobs
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Chiara Venuti
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Ivette M. Sandoval
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Yiyi Yang
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Jennifer Stancati
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Martina Mazzocchi
- Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
| | - Edoardo Brandi
- Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Gerard O’Keeffe
- Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
| | - Kathy Steece-Collier
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Jia-Yi Li
- Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Fredric P. Manfredsson
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Marcus Davidsson
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| |
Collapse
|
14
|
Oriá RB, Freitas RS, Roque CR, Nascimento JCR, Silva AP, Malva JO, Guerrant RL, Vitek MP. ApoE Mimetic Peptides to Improve the Vicious Cycle of Malnutrition and Enteric Infections by Targeting the Intestinal and Blood-Brain Barriers. Pharmaceutics 2023; 15:pharmaceutics15041086. [PMID: 37111572 PMCID: PMC10141726 DOI: 10.3390/pharmaceutics15041086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein E (apoE) mimetic peptides are engineered fragments of the native apoE protein’s LDL-receptor binding site that improve the outcomes following a brain injury and intestinal inflammation in a variety of models. The vicious cycle of enteric infections and malnutrition is closely related to environmental-driven enteric dysfunction early in life, and such chronic inflammatory conditions may blunt the developmental trajectories of children with worrisome and often irreversible physical and cognitive faltering. This window of time for microbiota maturation and brain plasticity is key to protecting cognitive domains, brain health, and achieving optimal/full developmental potential. This review summarizes the potential role of promising apoE mimetic peptides to improve the function of the gut-brain axis, including targeting the blood-brain barrier in children afflicted with malnutrition and enteric infections.
Collapse
Affiliation(s)
- Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Correspondence: ; Tel.: +55-85-3366-8239
| | - Raul S. Freitas
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - Cássia R. Roque
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - José Carlos R. Nascimento
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Institute of Health Sciences, Medicine, University of International Integration of Afro-Brazilian Lusofonia, Redenção 62790-970, Brazil
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João O. Malva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Michael P. Vitek
- Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
15
|
Arias C, Sepúlveda P, Castillo RL, Salazar LA. Relationship between Hypoxic and Immune Pathways Activation in the Progression of Neuroinflammation: Role of HIF-1α and Th17 Cells. Int J Mol Sci 2023; 24:ijms24043073. [PMID: 36834484 PMCID: PMC9964721 DOI: 10.3390/ijms24043073] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 02/09/2023] Open
Abstract
Neuroinflammation is a common event in degenerative diseases of the central and peripheral nervous system, triggered by alterations in the immune system or inflammatory cascade. The pathophysiology of these disorders is multifactorial, whereby the therapy available has low clinical efficacy. This review propounds the relationship between the deregulation of T helper cells and hypoxia, mainly Th17 and HIF-1α molecular pathways, events that are involved in the occurrence of the neuroinflammation. The clinical expression of neuroinflammation is included in prevalent pathologies such as multiple sclerosis, Guillain-Barré syndrome, and Alzheimer's disease, among others. In addition, therapeutic targets are analyzed in relation to the pathways that induced neuroinflammation.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 7500922, Chile
| | - Paulina Sepúlveda
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence:
| |
Collapse
|
16
|
Chepisheva MK. Spatial orientation, postural control and the vestibular system in healthy elderly and Alzheimer's dementia. PeerJ 2023; 11:e15040. [PMID: 37151287 PMCID: PMC10162042 DOI: 10.7717/peerj.15040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2023] [Indexed: 05/09/2023] Open
Abstract
Background While extensive research has been advancing our understanding of the spatial and postural decline in healthy elderly (HE) and Alzheimer's disease (AD), much less is known about how the vestibular system contributes to the spatial and postural processing in these two populations. This is especially relevant during turning movements in the dark, such as while walking in our garden or at home at night, where the vestibular signal becomes central. As the prevention of falls and disorientation are of serious concern for the medical service, more vestibular-driven knowledge is necessary to decrease the burden for HE and AD patients with vestibular disabilities. Overview of the article The review briefly presents the current "non-vestibular based" knowledge (i.e. knowledge based on research that does not mention the "vestibular system" as a contributor or does not investigate its effects) about spatial navigation and postural control during normal healthy ageing and AD pathology. Then, it concentrates on the critical sense of the vestibular system and explores the current expertise about the aspects of spatial orientation and postural control from a vestibular system point of view. The norm is set by first looking at how healthy elderly change with age with respect to their vestibular-guided navigation and balance, followed by the AD patients and the difficulties they experience in maintaining their balance or during navigation. Conclusion Vestibular spatial and vestibular postural deficits present a considerable disadvantage and are felt not only on a physical but also on a psychological level by all those affected. Still, there is a clear need for more (central) vestibular-driven spatial and postural knowledge in healthy and pathological ageing, which can better facilitate our understanding of the aetiology of these dysfunctions. A possible change can start with the more frequent implementation of the "vestibular system examination/rehabilitation/therapy" in the clinic, which can then lead to an improvement of future prognostication and disease outcome for the patients.
Collapse
|
17
|
Ukraintseva S, Duan M, Simanek AM, Holmes R, Bagley O, Rajendrakumar AL, Yashkin AP, Akushevich I, Tropsha A, Whitson H, Yashin A, Arbeev K. Vaccination Against Pneumonia May Provide Genotype-Specific Protection Against Alzheimer's Disease. J Alzheimers Dis 2023; 96:499-505. [PMID: 37807778 PMCID: PMC10657669 DOI: 10.3233/jad-230088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/10/2023]
Abstract
Vaccine repurposing that considers individual genotype may aid personalized prevention of Alzheimer's disease (AD). In this retrospective cohort study, we used Cardiovascular Health Study data to estimate associations of pneumococcal polysaccharide vaccine and flu shots received between ages 65-75 with AD onset at age 75 or older, taking into account rs6859 polymorphism in NECTIN2 gene (AD risk factor). Pneumococcal vaccine, and total count of vaccinations against pneumonia and flu, were associated with lower odds of AD in carriers of rs6859 A allele, but not in non-carriers. We conclude that pneumococcal polysaccharide vaccine is a promising candidate for genotype-tailored AD prevention.
Collapse
Affiliation(s)
- Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Matt Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Amanda M. Simanek
- Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Rachel Holmes
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Aravind L. Rajendrakumar
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Arseniy P. Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Alexander Tropsha
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heather Whitson
- Center for Aging and Human Development, Duke University Medical Center, Durham, NC, USA
| | - Anatoliy Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Konstantin Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|