1
|
Baker M, Wang H, Rowley SD, Cai L, Pecora AL, Skarbnik A, Vesole DH, Adler-Brecher B, Kim D, Donato ML. Comparative Outcomes after Haploidentical or Unrelated Donor Bone Marrow or Blood Stem Cell Transplantation in Adult Patients with Hematological Malignancies. Biol Blood Marrow Transplant 2016; 22:2047-2055. [DOI: 10.1016/j.bbmt.2016.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/08/2016] [Indexed: 02/04/2023]
|
2
|
Generation of memory T cells for adoptive transfer using clinical-grade anti-CD62L magnetic beads. Bone Marrow Transplant 2015; 50:1358-64. [DOI: 10.1038/bmt.2015.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 01/04/2023]
|
3
|
Mizrahi K, Yaniv I, Ash S, Stein J, Askenasy N. Apoptotic signaling through Fas and TNF receptors ameliorates GVHD in mobilized peripheral blood grafts. Bone Marrow Transplant 2014; 49:640-8. [DOI: 10.1038/bmt.2014.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 11/09/2022]
|
4
|
Tsirigotis P, Or R, Resnick IB, Shapira MY. Immunotherapeutic approaches to improve graft-versus-tumor effect and reduce graft-versus-host disease. Immunotherapy 2012; 4:407-24. [PMID: 22512635 DOI: 10.2217/imt.12.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The therapeutic efficacy of allogeneic stem cell transplantation is mainly based on the alloreactive immune response of the graft against the host. However, the graft-versus-host process can be viewed as a double-edged sword since it is responsible for both the beneficial graft-versus-tumor effect and the deleterious graft-versus-host disease. During the last two decades, intensive research has been focused on the development of novel immunotherapeutic methods aimed to dissociate graft-versus-host disease from graft-versus-tumor effect. A brief description of these efforts is discussed in this review.
Collapse
Affiliation(s)
- Panagiotis Tsirigotis
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | |
Collapse
|
5
|
The humanized anti-HLA-DR moAb, IMMU-114, depletes APCs and reduces alloreactive T cells: implications for preventing GVHD. Bone Marrow Transplant 2011; 47:967-80. [PMID: 22020022 DOI: 10.1038/bmt.2011.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In contrast to the conventional immunosuppressive agents and nonselective T-cell-depleting antibodies, selective depletion of donor alloreactive T cells and/or host APCs, particularly DCs, represents a novel approach that can effectively control GVHD with less or no impairment of T-cell-mediated antiviral and GVL immunity. Here we report that IMMU-114, a humanized anti-human leukocyte antigen-DR (HLA-DR) moAb, efficiently depleted human PBMCs of all APCs, including B cells, monocytes, myeloid DC type-1 (mDC1), mDC2 and plasmacytoid DCs (pDCs). Early and late apoptosis of mDC1, mDC2 and pDCs, and late apoptosis of all APC subsets, were increased by IMMU-114 treatment. Although IMMU-114 had little, if any, effect on the survival and apoptosis of non-B lymphocytes (>80% of which are T cells and ∼1-2% of T cells express HLA-DR), it selectively inhibited the proliferation of purified HLA-DR(+) T cells rather than HLA-DR(-) T cells. As a consequence, IMMU-114 treatment resulted in suppressed T-cell proliferation and reduced CD25(+) alloreactive T cells in allogeneic MLRs. Given the critical roles of APCs and alloreactive T cells in the pathogenesis of GVHD, these results suggest that IMMU-114 may have therapeutic potential against GVHD.
Collapse
|
6
|
Blanco B, Sánchez-Abarca LI, Caballero-Velázquez T, Santamaría C, Inogés S, Pérez-Simón JA. Depletion of alloreactive T-cells in vitro using the proteasome inhibitor bortezomib preserves the immune response against pathogens. Leuk Res 2011; 35:1412-5. [PMID: 21658766 DOI: 10.1016/j.leukres.2011.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/09/2011] [Accepted: 05/15/2011] [Indexed: 12/22/2022]
Abstract
Current graft-versus-host disease (GVHD) inhibition approaches lead to abrogation of pathogen-specific T-cell responses. We propose an approach to inhibit GVHD without hampering immunity against pathogens: in vitro depletion of alloreactive T cells with the preoteasome inhibitor bortezomib. We show that PBMCs stimulated with allogeneic cells and treated with bortezomib greatly reduce their ability to produce IFN-γ when re-stimulated with the same allogeneic cells, but mainly preserve their ability to respond to citomegalovirus stimulation. Unlike in vivo administration of immunosuppressive drugs or other strategies of allodepletion, in vitro allodepletion with bortezomib maintains pathogen-specific T cells, representing a promising alternative for GVHD prophylaxis.
Collapse
Affiliation(s)
- Belén Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca and Centro de Investigación del Cáncer/IBMCC (CIC/CSIC) Salamanca, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Davies JK. Costimulatory blockade with monoclonal antibodies to induce alloanergy in donor lymphocytes. Int J Hematol 2011; 93:594-601. [DOI: 10.1007/s12185-011-0819-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/17/2011] [Accepted: 03/10/2011] [Indexed: 01/21/2023]
|
8
|
Davies JK, Nadler LM, Guinan EC. Expansion of allospecific regulatory T cells after anergized, mismatched bone marrow transplantation. Sci Transl Med 2010; 1:1ra3. [PMID: 20368155 DOI: 10.1126/scitranslmed.3000153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transplantation of hematopoietic stem cells from healthy donors can cure patients with many diseases. Donor T cells can protect against recurrence of infection and disease, but some of these (alloreactive) T cells recognize patient tissues as foreign, causing graft-versus-host disease. Removing T cells from donor grafts before transplantation reduces graft-versus-host disease but increases infection and disease recurrence. Inactivation of alloreactive T cells by inducing tolerance to patient cells (anergization) before transplantation preserves beneficial donor T cell effects while reducing graft-versus-host disease. We show that this approach also results in expansion of regulatory T cells that specifically suppress alloreactive donor T cell responses in the recipient. In addition to reducing graft-versus-host disease, antigen-specific regulatory T cells generated with this strategy could suppress unwanted T cell responses that cause rejection of solid organ transplants and tissue damage in autoimmune disorders.
Collapse
Affiliation(s)
- Jeffrey K Davies
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| | | | | |
Collapse
|
9
|
Obaculactone suppresses Th1 effector cell function through down-regulation of T-bet and prolongs skin graft survival in mice. Biochem Pharmacol 2010; 80:218-25. [DOI: 10.1016/j.bcp.2010.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/22/2010] [Accepted: 03/24/2010] [Indexed: 11/20/2022]
|
10
|
Leen AM, Tripic T, Rooney CM. Challenges of T cell therapies for virus-associated diseases after hematopoietic stem cell transplantation. Expert Opin Biol Ther 2010; 10:337-51. [PMID: 20132056 DOI: 10.1517/14712590903456003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE OF THE FIELD Hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many hematological malignancies and genetic disorders. The majority of patients do not have a human leukocyte antigen (HLA) identical sibling donor, and alternative stem cell sources include HLA-matched or mismatched unrelated donors and haploidentical related donors. However, alternative donor HSCT are associated with three major complications i) graft rejection; ii) graft-versus-host disease (GvHD); and iii) delayed immune reconstitution leading to viral infections and relapse. AREAS COVERED IN THIS REVIEW Graft rejection and the risk of GvHD can be significantly reduced by using intensive conditioning regimens, including in vivo T cell depletion as well as ex vivo T cell depletion of the graft. However, the benefits of removing alloreactive T cells from the graft are offset by the concomitant removal of T cells with anti-viral or anti-tumor activity as well as the profound delay in endogenous T cell recovery post-transplant. Thus, opportunistic infections, many of which are not amenable to conventional small-molecule therapeutics, are frequent in these patients and are associated with significant morbidity and high mortality rates. This review discusses current cell therapies to prevent or treat viral infections/reactivations post-transplant. WHAT THE READER WILL GAIN The reader will gain an understanding of the current state of cell therapy to prevent and treat viral infections post-HSCT, and will be introduced to preclinical studies designed to develop and validate new manufacturing procedures intended to improve therapeutic efficacy and reduce associated toxicities. TAKE HOME MESSAGE Reconstitution of HSCT recipients with antigen-specific T cells, produced either by allodepletion or in vitro reactivation, can offer an effective strategy to provide both immediate and long-term protection without harmful alloreactivity.
Collapse
Affiliation(s)
- Ann M Leen
- The Methodist Hospital, Texas Children's Hospital, Center for Cell and Gene Therapy, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| | | | | |
Collapse
|
11
|
Preservation of Immune Repertoire by Selective Depletion of Haploidentical Grafts. Biol Blood Marrow Transplant 2010; 16:S68-74. [DOI: 10.1016/j.bbmt.2009.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Khaled Y, Reddy P, Krijanovski O. Emerging drugs for acute graft-versus-host disease. Expert Opin Emerg Drugs 2009; 14:219-32. [PMID: 19519285 DOI: 10.1517/14728210903018891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The number of allogeneic hematopoietic cell transplantations (HCT) continues to increase. More than 15,000 allogeneic transplantations are performed annually. The graft-versus-leukemia/tumor effect during allogeneic HCT effectively eradicates many hematological malignancies. The development of novel strategies that use donor leukocyte infusions, nonmyeloablative conditioning and umbilical cord blood transplantation have helped expand the indications for allogeneic HCT over the past several years, especially among older patients. Yet the major complication of allogeneic HCT, graft-versus-host disease, remains lethal and limits wider application of allogeneic HCT. In this article, we review current practice and recent advances made in prevention and treatment of graft-versus-host disease.
Collapse
Affiliation(s)
- Yasser Khaled
- The University of Michigan, 1500 East Medical Center Drive, SPC 5942, 6310 Comprehensive Cancer Center, Ann Arbor, MI 48109-0942, USA
| | | | | |
Collapse
|
13
|
Induction of alloanergy in human donor T cells without loss of pathogen or tumor immunity. Transplantation 2008; 86:854-64. [PMID: 18813111 DOI: 10.1097/tp.0b013e3181861b6c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Human leukocyte antigen (HLA)-mismatched allogeneic hematopoietic stem cell transplantation (HSCT) is limited by acute graft-versus-host disease (aGvHD). Nonselective T-cell depletion effectively prevents severe aGvHD but profoundly impairs donor-derived immune reconstitution, increasing infection and disease relapse. The strategy of induction of alloantigen-specific hyporesponsiveness ("alloanergization") in donor bone marrow by allostimulation with costimulatory blockade before haploidentical transplantation has demonstrated early promise in reducing severe aGvHD. However, the differential effect of alloanergization on CD4+ and CD8+ donor T-cell subsets and the degree to which beneficial pathogen- and tumor-immune responses are retained have not been extensively examined. METHODS We used an in vitro model of alloanergization by allostimulation of human donor T cells with irradiated unrelated recipient peripheral blood mononuclear cells and costimulatory blockade with humanized monoclonal anti-B7.1 and B7.2 antibodies. Residual alloresponses were assessed by proliferation (thymidine uptake, carboxyfluorescein diacetate succinimidyl ester dye dilution) and cytotoxicity assays. Retention of human herpes virus and tumor-associated antigen (TAA)-specific immunity was measured with HLA-class I-restricted pentamers, intracellular cytokine secretion, and CD107a assay using 5-color flow cytometry. RESULTS Alloanergization of HLA-mismatched donor T cells efficiently and selectively abrogated recipient-specific alloproliferation in both CD4+ and CD8+ cells while preserving functional CD4+ and CD8+ immune responses to clinically important human herpes viruses and to the TAA WT1. CONCLUSIONS Retention of pathogen- and TAA-specific immunity after alloanergization demonstrates that this methodology, which is simple to apply, has potential to improve immune reconstitution while limiting alloreactivity after HLA-mismatched hematopoietic stem cell transplantation, and deserves additional evaluation in further human clinical trials.
Collapse
|
14
|
Hematopoietic SCT from partially HLA-mismatched (HLA-haploidentical) related donors. Bone Marrow Transplant 2008; 42:365-77. [PMID: 18679375 DOI: 10.1038/bmt.2008.215] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hematopoietic SCT from a partially HLA-mismatched (HLA-haploidentical) first-degree relative offers the benefits of rapid and near universal donor availability but also the risks that result from traversing the HLA barrier; namely, graft failure, severe GVHD and prolonged immunodeficiency. Improvements over the last 10 years in conditioning regimens, graft engineering and pharmacological immunoprophylaxis of GVHD have substantially reduced the morbidity and mortality of HLA-haploidentical SCT. Highly immunosuppressive but nonmyeloablative conditioning extends the availability of HLA-haploidentical SCT to elderly hematologic malignancy patients lacking HLA-matched donors and permits recovery of autologous hematopoiesis in the event of graft failure. Current regimens for HLA-haploidentical SCT are associated with a 2-year non-relapse mortality of 20+/-5%, relapse of 35+/-15% and overall survival of 50+/-20%. Major developmental areas include harnessing natural killer cell alloreactivity to reduce the risk of disease relapse and improving immune reconstitution by delayed infusions of lymphocytes selectively depleted of alloreactive cells. Hematologic malignancy patients who lack suitably matched related or unrelated donors can now be treated with HLA-haploidentical related donor or unrelated umbilical cord blood SCT. Future clinical trials will assess the relative risks and benefits of these two graft sources.
Collapse
|
15
|
Outcome of alloanergized haploidentical bone marrow transplantation after ex vivo costimulatory blockade: results of 2 phase 1 studies. Blood 2008; 112:2232-41. [PMID: 18617635 DOI: 10.1182/blood-2008-03-143636] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We report the outcomes of 24 patients with high-risk hematologic malignancies or bone marrow failure (BMF) who received haploidentical bone marrow transplantation (BMT) after ex vivo induction of alloantigen-specific anergy in donor T cells by allostimulation in the presence of costimulatory blockade. Ninety-five percent of evaluable patients engrafted and achieved full donor chimerism. Despite receiving a median T-cell dose of 29 x10(6)/kg, only 5 of 21 evaluable patients developed grade C (n = 4) or D (n = 1) acute graft-versus-host disease (GVHD), with only one attributable death. Twelve patients died from treatment-related mortality (TRM). Patients reconstituted T-cell subsets and immunoglobulin levels rapidly with evidence of in vivo expansion of pathogen-specific T cells in the early posttransplantation period. Five patients reactivated cytomegalovirus (CMV), only one of whom required extended antiviral treatment. No deaths were attributable to CMV or other viral infections. Only 1 of 12 evaluable patients developed chronic GVHD. Eight patients survive disease-free with normal performance scores (median follow-up, 7 years). Thus, despite significant early TRM, ex vivo alloanergization can support administration of large numbers of haploidentical donor T cells, resulting in rapid immune reconstitution with very few viral infections. Surviving patients have excellent performance status and a low rate of chronic GVHD.
Collapse
|
16
|
Overlap between in vitro donor antihost and in vivo posttransplantation TCR Vbeta use: a new paradigm for designer allogeneic blood and marrow transplantation. Blood 2008; 112:3517-25. [PMID: 18541718 DOI: 10.1182/blood-2008-03-145391] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following allogeneic blood and marrow transplantation (BMT), mature donor T cells can enhance engraftment, counteract opportunistic infections, and mount graft-versus-tumor (GVT) responses, but at the risk of developing graft-versus-host disease (GVHD). With the aim of separating the beneficial effects of donor T cells from GVHD, one approach would be to selectively deplete subsets of alloreactive T cells in the hematopoietic cell inoculum. In this regard, TCR Vbeta repertoire analysis by CDR3-size spectratyping can be a powerful tool for the characterization of alloreactive T-cell responses. We investigated the potential of this spectratype approach by comparing the donor T-cell alloresponses generated in vitro against patient peripheral blood lymphocytes (PBLs) with those detected in vivo posttransplantation. The results indicated that for most Vbeta families that exhibited alloreactive CDR3-size skewing, there was a robust overlap between the in vitro antipatient and in vivo spectratype histograms. Thus, in vitro spectratype analysis may be useful for determining the alloreactive T-cell response involved in GVHD development and, thereby, could serve to guide select Vbeta family depletion for designer transplants to improve outcomes.
Collapse
|
17
|
Hartwig UF, Nonn M, Khan S, Link I, Huber C, Herr W. Depletion of Alloreactive Donor T Lymphocytes by CD95-Mediated Activation-Induced Cell Death Retains Antileukemic, Antiviral, and Immunoregulatory T Cell Immunity. Biol Blood Marrow Transplant 2008; 14:99-109. [DOI: 10.1016/j.bbmt.2007.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 10/02/2007] [Indexed: 11/28/2022]
|
18
|
Holler E. Risk assessment in haematopoietic stem cell transplantation: GvHD prevention and treatment. Best Pract Res Clin Haematol 2007; 20:281-94. [PMID: 17448962 DOI: 10.1016/j.beha.2006.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graft-versus-host disease (GvHD) is the major cause of transplant-related mortality and morbidity. As it is closely related to the major therapeutic principle, graft-versus-leukaemia (GvL) effect, risk assessment has to balance both risks depending on the pre-transplant status. This is clearly demonstrated when comparing the two major strategies for prevention of GvHD. While the majority of approaches aiming at T-cell depletion show efficacy in reducing acute and chronic GvHD and transplant-related mortality, T-cell depletion also affects graft-versus-leukaemia effects and thus results in a higher relapse rate. Thus, standard prophylaxis relying on calcineurin inhibitors frequently results in at least equivalent or even superior long-term disease-free survival, and the risk of relapse has to be considered when selecting regimens for prevention of GvHD. In addition to this general dilemma, drug-specific side-effects and risks have to be considered when selecting regimens for GvHD prevention and treatment.
Collapse
Affiliation(s)
- Ernst Holler
- Department of Haematology/Oncology, University of Regensburg, Medical Centre, Franz-Josef Strauss Allee 11, 93042 Regensburg, Germany.
| |
Collapse
|
19
|
Sathe A, Ortega SB, Mundy DI, Collins RH, Karandikar NJ. In vitro methotrexate as a practical approach to selective allodepletion. Biol Blood Marrow Transplant 2007; 13:644-54. [PMID: 17531774 DOI: 10.1016/j.bbmt.2007.01.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 01/21/2007] [Indexed: 01/24/2023]
Abstract
Graft-versus-host disease (GVHD) is a major cause of transplant-related morbidity and mortality in recipients of allogeneic hematopoietic stem cell transplantation. As GVHD is mediated predominantly by alloreactive donor T cells, selective allodepletion from the graft may alleviate GVHD, whereas potentially maintaining other advantages conferred by donor T cells, such as graft survival, antiviral immunity, and graft-versus-leukemia effect. In this study, we evaluated the ability of methotrexate, a clinically approved antimetabolite drug, to deplete alloreactive T cells in HLA-mismatched mixed lymphocyte reactions (MLR). We observed that methotrexate could inhibit the proliferation of alloreactive T cells in primary in vitro MLR. On reexposure of methotrexate-treated cells to the same allostimulus, a significant reduction in the alloreactive immune response was observed, whereas responses to third-party allostimuli and viral antigens were preserved. Thus, our results provide preclinical evidence that in vitro methotrexate treatment results in specific allodepletion and may be used as an effective agent for preventing GVHD.
Collapse
Affiliation(s)
- Atul Sathe
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9072, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Allogeneic stem cell transplantation (SCT) remains the definitive immunotherapy for malignancy. However, morbidity and mortality due to graft-vs.-host disease (GVHD) remains the major barrier to its advancement. Emerging experimental data highlights the immuno-modulatory roles of diverse cell populations in GVHD, including regulatory T cells, natural killer (NK) cells, NK T cells, gammadelta T cells, and antigen presenting cells (APC). Knowledge of the pathophysiology of GVHD has driven the investigation of new rational strategies to both prevent severe GVHD and treat steroid-refractory GVHD. Novel cytokine inhibitors, immune-suppressant agents known to preserve or even promote regulatory T-cell function and the depletion of specific alloreactive T-cell sub-populations all promise significant advances in the near future. As our knowledge and therapeutic options expand, the ability to limit GVHD whilst preserving anti-microbial and tumour responses becomes a realistic prospect.
Collapse
Affiliation(s)
- Edward S Morris
- Department of Haematology, Royal Hallamshire Hospital, Sheffield, UK
| | | |
Collapse
|
21
|
Scheinberg P, Price DA, Ambrozak DR, Barrett AJ, Douek DC. Alloreactive T cell clonotype recruitment in a mixed lymphocyte reaction: Implications for graft engineering. Exp Hematol 2006; 34:788-95. [PMID: 16728284 DOI: 10.1016/j.exphem.2006.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/22/2006] [Accepted: 03/02/2006] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The selective elimination of alloreactive T cells from donor stem cell grafts prior to hematopoietic stem cell transplantation (HSCT) is an important goal in the prevention of graft-vs-host disease (GVHD). However, in HLA-identical donor-recipient pairs, it has proven difficult to identify alloreactive T cells using in vitro systems pretransplant due, in part, to their low frequency and a lack of methodological standardization. To better understand the alloresponse between HLA-identical related pairs, we characterized the alloreactive T cells generated in a mixed lymphocyte reaction (MLR) assay system. METHODS HSCT donor peripheral blood mononuclear cells (responder) were labeled with carboxyfluorescein diacetate, succinimidyl ester (CFSE) dye and cocultured with irradiated HSCT recipient cells (stimulator) in a one-way MLR. Alloreactive T cells were sorted by upregulation of activation markers (CD25 in most cases) and the responding clonotypes were defined by sequencing the complementarity region 3 (CDR3) of the T cell receptor beta-chain. RESULTS We show that the recruitment of alloreactive CD4(+) T cells is highly variable. Oligoclonal CD4(+) T-cell expansions in repeated MLRs performed in the same donor-recipient pair showed inconsistent recruitment of clonotypes. The recruitment of alloreactive CD8(+) T cells was more consistent in repeated assays, with the same clonotypes identified in the same donor-recipient pair performed under different conditions. CONCLUSION Taken together, our data show that even in culture conditions constrained to eliminate background proliferation, stochastic events and low precursor frequencies preclude reproducible elicitation of immunodominant T cell clonotypes with the potential to cause GVHD.
Collapse
Affiliation(s)
- Phillip Scheinberg
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD 20892-1202, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Adoptive T-cell therapy has definite clinical benefit in relapsed leukaemia after allogeneic transplant and in Epstein-Barr virus-associated post-transplant lymphoproliferative disease. However, the majority of tumour targets are weakly immunogenic self-antigens and success has been limited in part by inadequate persistence and expansion of transferred T cells and by tumour-evasion strategies. Adoptive immunotherapy presents the opportunity to activate, expand and genetically modify T cells outside the tolerising environment of the host and a number of strategies to optimize the cellular product, including gene modification and modulation of the host environment, in particular by lymphodepletion, have been developed.
Collapse
Affiliation(s)
- Siok-Keen Tey
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, 77030, USA
| | | | | |
Collapse
|
23
|
Amrolia PJ, Muccioli-Casadei G, Huls H, Adams S, Durett A, Gee A, Yvon E, Weiss H, Cobbold M, Gaspar HB, Rooney C, Kuehnle I, Ghetie V, Schindler J, Krance R, Heslop HE, Veys P, Vitetta E, Brenner MK. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood 2006; 108:1797-808. [PMID: 16741253 PMCID: PMC1895537 DOI: 10.1182/blood-2006-02-001909] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Poor T lymphocyte reconstitution limits the use of haploidentical stem cell transplantation (SCT) because it results in a high mortality from viral infections. One approach to overcome this problem is to infuse donor T cells from which alloreactive lymphocytes have been selectively depleted, but the immunologic benefit of this approach is unknown. We have used an anti-CD25 immunotoxin to deplete alloreactive lymphocytes and have compared immune reconstitution after allodepleted donor T cells were infused at 2 dose levels into recipients of T-cell-depleted haploidentical SCT. Eight patients were treated at 10(4) cells/kg/dose, and 8 patients received 10(5) cells/kg/dose. Patients receiving 10(5) cells/kg/dose showed significantly improved T-cell recovery at 3, 4, and 5 months after SCT compared with those receiving 10(4) cells/kg/dose (P < .05). Accelerated T-cell recovery occurred as a result of expansion of the effector memory (CD45RA(-)CCR-7(-)) population (P < .05), suggesting that protective T-cell responses are likely to be long lived. T-cell-receptor signal joint excision circles (TRECs) were not detected in reconstituting T cells in dose-level 2 patients, indicating they are likely to be derived from the infused allodepleted cells. Spectratyping of the T cells at 4 months demonstrated a polyclonal Vbeta repertoire. Using tetramer and enzyme-linked immunospot (ELISPOT) assays, we have observed cytomegalovirus (CMV)- and Epstein-Barr virus (EBV)-specific responses in 4 of 6 evaluable patients at dose level 2 as early as 2 to 4 months after transplantation, whereas such responses were not observed until 6 to 12 months in dose-level 1 patients. The incidence of significant acute (2 of 16) and chronic graft-versus-host disease (GVHD; 2 of 15) was low. These data demonstrate that allodepleted donor T cells can be safely used to improve T-cell recovery after haploidentical SCT and may broaden the applicability of this approach.
Collapse
Affiliation(s)
- Persis J Amrolia
- Department of Bone Marrow Transplantation, Great Ormond St Childrens Hospital, London WC1N 3JH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hartwig UF, Nonn M, Khan S, Meyer RG, Huber C, Herr W. Depletion of alloreactive T cells via CD69: implications on antiviral, antileukemic and immunoregulatory T lymphocytes. Bone Marrow Transplant 2006; 37:297-305. [PMID: 16327814 DOI: 10.1038/sj.bmt.1705238] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Selective depletion of alloreactive T cells from stem-cell allografts should abrogate graft-versus-host disease while preserving beneficial T cell specificities to facilitate engraftment and immune reconstitution. We therefore explored a refined immunomagnetic separation strategy to effectively deplete alloreactive donor lymphocytes expressing the activation antigen CD69 upon stimulation, and examined the retainment of antiviral, antileukemic, and immunoregulatory T cells. In addition to the CD69high T cell fraction, our studies retrieved two T cell subsets based on residual CD69 expression. Whereas, truly CD69(neg) cells were devoid of detectable alloresponses to original stimulators, CD69-low (CD69low)-expressing T cells elicited significant residual alloreactivity upon restimulation. In interferon-gamma enzyme linked immunospot assays, anti-cytomegalovirus and anti-Epstein-Barr virus responses were preserved at significant numbers among CD69neg T lymphocytes. Accordingly, T cells recognizing the leukemia-associated Wilm's tumor-1 antigen were still detectable in the CD69neg subset. However, antiviral and antileukemic specificities were also consistently found within CD69low T cells, suggesting that memory-type donor T cells were partially captured due to residual CD69 expression. Finally, CD4+CD25+ Foxp3+ immunoregulatory T cells did not upregulate CD69 upon allogeneic stimulation. Our data suggest that CD69-mediated removal of alloreactivity can result in efficient allodepletion, but may partially affect the persistence of antiviral and antileukemic donor memory specificities captured among CD69low-expressing lymphocytes.
Collapse
Affiliation(s)
- U F Hartwig
- Department of Medicine III--Hematology and Oncology, Johannes Gutenberg-University School of Medicine, Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Blanco B, Pérez-Simón JA, Sánchez-Abarca LI, Carvajal-Vergara X, Mateos J, Vidriales B, López-Holgado N, Maiso P, Alberca M, Villarón E, Schenkein D, Pandiella A, San Miguel J. Bortezomib induces selective depletion of alloreactive T lymphocytes and decreases the production of Th1 cytokines. Blood 2006; 107:3575-83. [PMID: 16282346 DOI: 10.1182/blood-2005-05-2118] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We explored the ability of the proteasome inhibitor bortezomib, which prevents nuclear factor kappaB (NF-kappaB) activation, to block T-cell activation, proliferation, and survival within alloreactive compared with resting T cells. For this purpose, T cells were stimulated with PHA, alphaCD3/alphaCD28, or allogeneic dendritic cells or through mixed lymphocyte cultures. NF-kappaB expression increased in activated T lymphocytes compared with resting T cells. Of interest, the higher the NF-kappaB expression, the more intense the proliferative blockade induced by bortezomib. Moreover, after mixed lymphocyte reaction (MLR) cultures, alloreactive T cells were 2 logs more sensitive to bortezomib-induced apoptosis than the resting T-cell counterpart. This effect was due to a selective induction of apoptosis among activated T cells that was related to caspase activation and cleavage of the antiapoptotic bcl-2 protein and was partially abolished by the addition of the pancaspase inhibitor Z-VAD-FMK. In addition, after secondary MLR, the number of activated T cells was significantly reduced among T lymphocytes previously cultured with bortezomib when cells from the same donor were used as stimulating cells. By contrast, when third-party donor cells were used as stimulating cells, no significant differences were observed between T lymphocytes previously exposed or not to the drug, indicating a highly specific depletion of T lymphocytes alloreactive against primary donor antigens. The addition of bortezomib decreased not only the proliferation and viability of activated T lymphocytes but also the levels of IFNgamma and IL-2, which were significantly decreased among activated T cells cultured with bortezomib at doses ranging from 10 to 100 nM. In conclusion, at concentrations reached in the clinical setting, bortezomib induces selective apoptosis and decreases Th1 response among alloreactive T lymphocytes while it barely affects unstimulated T cells. These results establish the basis for the clinical use of bortezomib in the management of graft-versus-host disease (GVHD).
Collapse
Affiliation(s)
- Belén Blanco
- Servicio de Hematología y CIC Salamanca, Paseo de San Vicente, 58-182, 37007, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fowler DH. Shared biology of GVHD and GVT effects: Potential methods of separation. Crit Rev Oncol Hematol 2006; 57:225-44. [PMID: 16207532 DOI: 10.1016/j.critrevonc.2005.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 06/30/2005] [Accepted: 07/15/2005] [Indexed: 01/14/2023] Open
Abstract
The difficult separation of clinical graft-versus-tumor (GVT) effects from graft-versus-host disease (GVHD) reflects their shared biology. Experimental approaches to mediate GVT effects while limiting GVHD include: (1) allograft T cell depletion followed by immune enhancement; (2) modulation of T cell dose or T cell subset composition; (3) donor lymphocyte infusion; (4) reduced-intensity host preparation; (5) modulation of Th1/Th2 and Tc1/Tc2 cell balance; (6) cytokine therapy or neutralization; (7) T regulatory cell therapy; (8) co-stimulatory pathway modulation; (9) chemokine pathway modulation; (10) induction of antigen-specific T cells; (11) alloreactive NK cell therapy; and (12) targeted pharmaceutical inhibition of proteosome, mammalian target of rapamycin, and histone deacetylase pathways. Clearly, a multitude of approaches exist that hold promise for separating GVT effects from GVHD. Future success in this endeavor will require a strong commitment towards translational research and continued advances in cell, vaccine, cytokine, monoclonal antibody, and targeted molecular therapy.
Collapse
Affiliation(s)
- Daniel H Fowler
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, CRC, 3-East Laboratories, 3-3330, Bethesda, MD 20892-MSC 1203, USA.
| |
Collapse
|
27
|
Solomon SR, Mielke S, Savani BN, Montero A, Wisch L, Childs R, Hensel N, Schindler J, Ghetie V, Leitman SF, Mai T, Carter CS, Kurlander R, Read EJ, Vitetta ES, Barrett AJ. Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation. Blood 2005; 106:1123-9. [PMID: 15817673 PMCID: PMC1895160 DOI: 10.1182/blood-2005-01-0393] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have selectively depleted host-reactive donor T cells from peripheral blood stem cell (PBSC) transplant allografts ex vivo using an anti-CD25 immunotoxin. We report a clinical trial to decrease graft-versus-host disease (GVHD) in elderly patients receiving selectively depleted PBSC transplants from HLA-identical sibling donors. Sixteen patients (median age, 65 years [range, 51-73 years]), with advanced hematologic malignancies underwent transplantation following reduced-intensity conditioning with fludarabine and either cyclophosphamide (n = 5), melphalan (n = 5), or busulfan (n = 6). Cyclosporine was used as sole GVHD prophylaxis. The allograft contained a median of 4.5 x 10(6) CD34 cells/kg (range, 3.4-7.3 x 10(6) CD34 cells/kg) and 1.0 x 10(8)/kg (range, 0.2-1.5 x 10(8)/kg) selectively depleted T cells. Fifteen patients achieved sustained engraftment. The helper T-lymphocyte precursor (HTLp) frequency assay demonstrated successful (mean, 5-fold) depletion of host-reactive donor T cells, with conservation of third-party response in 9 of 11 cases tested. Actuarial rates of acute GVHD were 46% +/- 13% for grades II to IV and 12% +/- 8% for grades III to IV. These results suggest that allodepletion of donor cells ex vivo is clinically feasible in older patients and may reduce the rate of severe acute GVHD. Further studies with selectively depleted transplants to evaluate graft-versus-leukemia (GVL) and survival are warranted.
Collapse
Affiliation(s)
- Scott R Solomon
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, NHLBI, NIH Bldg 10, Hatfield CRC, Rm 3-5320, 10 Center Dr, MSC 1202, Bethesda, MD 20892-1202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|