1
|
Sen'kova AV, Savin IA, Odarenko KV, Salomatina OV, Salakhutdinov NF, Zenkova MA, Markov AV. Protective effect of soloxolone derivatives in carrageenan- and LPS-driven acute inflammation: Pharmacological profiling and their effects on key inflammation-related processes. Biomed Pharmacother 2023; 159:114231. [PMID: 36640672 DOI: 10.1016/j.biopha.2023.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
The anti-inflammatory potential of three cyanoenone-containing triterpenoids, including soloxolone methyl (SM), soloxolone (S) and its novel derivative bearing at the C-30 amidoxime moiety (SAO), was studied in murine models of acute inflammation. It was found that the compounds effectively suppressed the development of carrageenan-induced paw edema and peritonitis as well as lipopolysaccharide (LPS)-driven acute lung injury (ALI) with therapeutic outcomes comparable with that of the reference drugs indomethacin and dexamethasone. Non-immunogenic carrageenan-stimulated inflammation was more sensitive to the transformation of C-30 of SM compared with immunogenic LPS-induced inflammation: the anti-inflammatory properties of the studied compounds against carrageenan-induced paw edema and peritonitis decreased in the order of SAO > S > > SM, whereas the efficiency of these triterpenoids against LPS-driven ALI was similar (SAO ≈ S ≈ SM). Further studies demonstrated that soloxolone derivatives significantly inhibited a range of immune-related processes, including granulocyte influx and the expression of key pro-inflammatory cytokines and chemokines in the inflamed sites as well as the functional activity of macrophages. Moreover, SM was found to prevent inflammation-associated apoptosis of A549 pneumocytes and effectively inhibited the protease activity of thrombin (IC50 = 10.3 µM) tightly associated with rodent inflammatome. Taken together, our findings demonstrate that soloxolone derivatives can be considered as novel promising anti-inflammatory drug candidates with multi-targeted mechanism of action.
Collapse
Affiliation(s)
- Aleksandra V Sen'kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev avenue, 8, 630090 Novosibirsk, Russia.
| | - Innokenty A Savin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev avenue, 9, 630090 Novosibirsk, Russia.
| | - Kirill V Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev avenue, 8, 630090 Novosibirsk, Russia.
| | - Oksana V Salomatina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev avenue, 9, 630090 Novosibirsk, Russia.
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev avenue, 9, 630090 Novosibirsk, Russia.
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev avenue, 8, 630090 Novosibirsk, Russia.
| | - Andrey V Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev avenue, 8, 630090 Novosibirsk, Russia.
| |
Collapse
|
2
|
Casares L, Moreno R, Ali KX, Higgins M, Dayalan Naidu S, Neill G, Cassin L, Kiib AE, Svenningsen EB, Minassi A, Honda T, Poulsen TB, Wiel C, Sayin VI, Dinkova-Kostova AT, Olagnier D, de la Vega L. The synthetic triterpenoids CDDO-TFEA and CDDO-Me, but not CDDO, promote nuclear exclusion of BACH1 impairing its activity. Redox Biol 2022; 51:102291. [PMID: 35313207 PMCID: PMC8938334 DOI: 10.1016/j.redox.2022.102291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
The transcription factor BACH1 is a potential therapeutic target for a variety of chronic conditions linked to oxidative stress and inflammation, as well as cancer metastasis. However, only a few BACH1 degraders/inhibitors have been described. BACH1 is a transcriptional repressor of heme oxygenase 1 (HMOX1), which is positively regulated by transcription factor NRF2 and is highly inducible by derivatives of the synthetic oleanane triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO). Most of the therapeutic activities of these compounds are due to their anti-inflammatory and antioxidant properties, which are widely attributed to their ability to activate NRF2. However, with such a broad range of action, these compounds have other molecular targets that have not been fully identified and could also be of importance for their therapeutic profile. Herein we identified BACH1 as a target of two CDDO-derivatives (CDDO-Me and CDDO-TFEA), but not of CDDO. While both CDDO and CDDO-derivatives activate NRF2 similarly, only CDDO-Me and CDDO-TFEA inhibit BACH1, which explains the much higher potency of these CDDO-derivatives as HMOX1 inducers compared with unmodified CDDO. Notably, we demonstrate that CDDO-Me and CDDO-TFEA inhibit BACH1 via a novel mechanism that reduces BACH1 nuclear levels while accumulating its cytoplasmic form. In an in vitro model, both CDDO-derivatives impaired lung cancer cell invasion in a BACH1-dependent and NRF2-independent manner, while CDDO was inactive. Altogether, our study identifies CDDO-Me and CDDO-TFEA as dual KEAP1/BACH1 inhibitors, providing a rationale for further therapeutic uses of these drugs.
Collapse
Affiliation(s)
- Laura Casares
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Rita Moreno
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Kevin X Ali
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Graham Neill
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Lena Cassin
- Department of Biomedicine, Health, Aarhus University, 8000, Denmark
| | | | | | - Alberto Minassi
- Department of Drug Science, University of Piemonte Orientale, Novara, Italy
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | | | - Clotilde Wiel
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - David Olagnier
- Department of Biomedicine, Health, Aarhus University, 8000, Denmark
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK.
| |
Collapse
|
3
|
A unique tolerizing dendritic cell phenotype induced by the synthetic triterpenoid CDDO-DFPA (RTA-408) is protective against EAE. Sci Rep 2017; 7:9886. [PMID: 28851867 PMCID: PMC5575165 DOI: 10.1038/s41598-017-06907-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
Tolerogenic dendritic cells (DCs) have emerged as relevant clinical targets for the treatment of multiple sclerosis and other autoimmune disorders. However, the pathways essential for conferring the tolerizing DC phenotype and optimal methods for their induction remain an intense area of research. Triterpenoids are a class of small molecules with potent immunomodulatory activity linked to activation of Nrf2 target genes, and can also suppress the manifestations of experimental autoimmune encephalomyelitis (EAE). Here we demonstrate that DCs are a principal target of the immune modulating activity of triterpenoids in the context of EAE. Exposure of DCs to the new class of triterpenoid CDDO-DFPA (RTA-408) results in the induction of HO-1, TGF-β, and IL-10, as well as the repression of NF-κB, EDN-1 and pro-inflammatory cytokines IL-6, IL-12, and TNFα. CDDO-DFPA exposed DCs retained expression of surface ligands and capacity for antigen uptake but were impaired to induce Th1 and Th17 cells. TGF-β was identified as the factor mediating suppression of T cell proliferation by CDDO-DFPA pretreated DCs, which failed to passively induce EAE. These findings demonstrate the potential therapeutic utility of CDDO-DFPA in the treatment and prevention of autoimmune disorders, and its capacity to induce tolerance via modulation of the DC phenotype.
Collapse
|
4
|
Liby KT, Sporn MB. Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol Rev 2012; 64:972-1003. [PMID: 22966038 PMCID: PMC3462991 DOI: 10.1124/pr.111.004846] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We review the rationale for the use of synthetic oleanane triterpenoids (SOs) for prevention and treatment of disease, as well as extensive biological data on this topic resulting from both cell culture and in vivo studies. Emphasis is placed on understanding mechanisms of action. SOs are noncytotoxic drugs with an excellent safety profile. Several hundred SOs have now been synthesized and in vitro have been shown to: 1) suppress inflammation and oxidative stress and therefore be cytoprotective, especially at low nanomolar doses, 2) induce differentiation, and 3) block cell proliferation and induce apoptosis at higher micromolar doses. Animal data on the use of SOs in neurodegenerative diseases and in diseases of the eye, lung, cardiovascular system, liver, gastrointestinal tract, and kidney, as well as in cancer and in metabolic and inflammatory/autoimmune disorders, are reviewed. The importance of the cytoprotective Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1/nuclear factor (erythroid-derived 2)-like 2/antioxidant response element (Keap1/Nrf2/ARE) pathway as a mechanism of action is explained, but interactions with peroxisome proliferator-activated receptor γ (PARPγ), inhibitor of nuclear factor-κB kinase complex (IKK), janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT), human epidermal growth factor receptor 2 (HER2)/ErbB2/neu, phosphatase and tensin homolog (PTEN), the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, mammalian target of rapamycin (mTOR), and the thiol proteome are also described. In these interactions, Michael addition of SOs to reactive cysteine residues in specific molecular targets triggers biological activity. Ultimately, SOs are multifunctional drugs that regulate the activity of entire networks. Recent progress in the earliest clinical trials with 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) methyl ester (bardoxolone methyl) is also summarized.
Collapse
Affiliation(s)
- Karen T Liby
- Departments of Medicine and Pharmacology, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | |
Collapse
|
5
|
Ames E, Harouna S, Meyer C, Welniak LA, Murphy WJ. The triterpenoid CDDO-Me promotes hematopoietic progenitor expansion and myelopoiesis in mice. Biol Blood Marrow Transplant 2011; 18:396-405. [PMID: 22100978 DOI: 10.1016/j.bbmt.2011.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
The synthetic triterpenoid CDDO-Me has been shown to directly inhibit the growth of myeloid leukemias and lends itself to a wide array of therapeutic indications, including inflammatory conditions, because of its inhibition of NF-κB. We have previously demonstrated protection from acute graft-versus-host disease after CDDO-Me administration in an allogeneic bone marrow transplantation model. In the current study, we observed that CDDO-Me promoted myelopoiesis in both naive and transplanted mice. This effect was dose dependent, as high doses of CDDO-Me inhibited myeloid growth in vitro. All lineages (granulocyte macrophage colony-forming unit, BFU-E) were promoted by CDDO-Me. We then compared the effects with granulocyte colony-stimulating factor, a known inducer of myeloid expansion and mobilization from the bone marrow. Whereas both drugs induced terminal myeloid expansion in the spleen, peripheral blood, and bone marrow, granulocyte colony-stimulating factor only induced granulocyte macrophage colony-forming unit precursors in the spleen, while CDDO-Me increased these precursors in the spleen and bone marrow. After sublethal total-body irradiation, mice pretreated with CDDO-Me further displayed an accelerated recovery of myeloid progenitors and total nucleated cells in the spleen. A similar expansion of myeloid and myeloid progenitors was noted with CDDO-Me treatment after syngeneic bone marrow transplantation. Combined, these data suggest that CDDO-Me may be of use posttransplantation to accelerate myeloid recovery in addition to the prevention of graft-versus-host disease.
Collapse
Affiliation(s)
- Erik Ames
- Department of Dermatology, University of California, Davis, Sacramento, California 95817, USA
| | | | | | | | | |
Collapse
|
6
|
Sporn MB, Liby KT, Yore MM, Fu L, Lopchuk JM, Gribble GW. New synthetic triterpenoids: potent agents for prevention and treatment of tissue injury caused by inflammatory and oxidative stress. JOURNAL OF NATURAL PRODUCTS 2011; 74:537-45. [PMID: 21309592 PMCID: PMC3064114 DOI: 10.1021/np100826q] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We review the original rationale for the development and the chemistry of a series of new synthetic oleanane triterpenoids (SO), based on oleanolic acid (1) as a starting material. Many of the new compounds that have been made, such as 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid ("CDDO", 8), are highly potent (activities found at levels below 1 nM) anti-inflammatory agents, as measured by their ability to block the cellular synthesis of the enzyme inducible nitric oxide synthase (iNOS) in activated macrophages. Details of the organic synthesis of new SO and their chemical mechanisms of biological activity are reviewed, as is formation of biotin conjugates for investigation of protein targets. Finally, we give a brief summary of important biological activities of SO in many organ systems in numerous animal models. Clinical investigation of a new SO (methyl 2-cyano-3,12-dioxooleana-1,9(11)dien-28-oate, "CDDO-Me", bardoxolone methyl, 13) is currently in progress.
Collapse
Affiliation(s)
- Michael B. Sporn
- Departments of Pharmacology and Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755, United States
- Tel: (603) 650-6557. Fax: (603) 650-1129. E-mail: . Tel: (603) 646-3118. E-mail:
| | - Karen T. Liby
- Departments of Pharmacology and Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755, United States
| | - Mark M. Yore
- Departments of Pharmacology and Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755, United States
| | - Liangfeng Fu
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Justin M. Lopchuk
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Gordon W. Gribble
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
- Tel: (603) 650-6557. Fax: (603) 650-1129. E-mail: . Tel: (603) 646-3118. E-mail:
| |
Collapse
|
7
|
Li M, Sun K, Redelman D, Welniak LA, Murphy WJ. The triterpenoid CDDO-Me delays murine acute graft-versus-host disease with the preservation of graft-versus-tumor effects after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 2010; 16:739-50. [PMID: 20338256 PMCID: PMC2866806 DOI: 10.1016/j.bbmt.2010.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 01/26/2010] [Indexed: 01/03/2023]
Abstract
The occurrence of acute graft-versus-host disease (aGVHD) and tumor relapse represent the two major obstacles impeding the efficacy of allogeneic bone marrow transplantation (BMT) in cancer. We have previously shown that the synthetic triterpenoid 2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid (CDDO) can inhibit murine early aGVHD, but antitumor effects were not assessed. In the current study, we found that a new derivative of CDDO, CDDO-Me, had an increased ability to inhibit allogeneic T cell responses and induce cell death of alloreactive T cells in vitro. Administration of CDDO-Me to mice following allogeneic BMT resulted in significant and increased protection from lethal aGVHD compared to CDDO. This correlated with reduced TNF-alpha production, reduced donor T cell proliferation, and decreased adhesion molecule (alpha(4)beta(7) integrin) expression on the donor T cells. CDDO-Me was also superior to CDDO in inhibiting leukemia growth in vitro. When CDDO-Me was administered following an allogeneic BMT to leukemia-bearing mice, significant increases in survival were observed. These findings suggest that CDDO-Me is superior to CDDO in delaying aGVHD, while preserving or possibly even augmenting GVT effects.
Collapse
Affiliation(s)
- Minghui Li
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Kai Sun
- Department of Dermatology, University of California at Davis, Sacramento, CA 95817, USA
| | - Doug Redelman
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Lisbeth A. Welniak
- Department of Dermatology, University of California at Davis, Sacramento, CA 95817, USA
| | - William J. Murphy
- Department of Dermatology, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
8
|
Auletta JJ, Cooke KR, Solchaga LA, Deans RJ, van't Hof W. Regenerative stromal cell therapy in allogeneic hematopoietic stem cell transplantation: current impact and future directions. Biol Blood Marrow Transplant 2009; 16:891-906. [PMID: 20018250 DOI: 10.1016/j.bbmt.2009.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 12/03/2009] [Indexed: 02/07/2023]
Abstract
Regenerative stromal cell therapy (RSCT) has the potential to become a novel therapy for preventing and treating acute graft-versus-host disease (GVHD) in the allogeneic hematopoietic stem cell transplant (HSCT) recipient. However, enthusiasm for using RSCT in allogeneic HSCT has been tempered by limited clinical data and poorly defined in vivo mechanisms of action. As a result, the full clinical potential of RSCT in supporting hematopoietic reconstitution and as treatment for GVHD remains to be determined. This manuscript reviews the immunomodulatory activity of regenerative stromal cells in preclinical models of allogeneic HSCT, and emphasizes an emerging literature suggesting that microenvironment influences RSC activation and function. Understanding this key finding may ultimately define the proper niche for RSCT in allogeneic HSCT. In particular, mechanistic studies are needed to delineate the in vivo effects of RSCT in response to inflammation and injury associated with allogeneic HSCT, and to define the relevant sites of RSC interaction with immune cells in the transplant recipient. Furthermore, development of in vivo imaging technology to correlate biodistribution patterns, desired RSC effect, and clinical outcome will be crucial to establishing dose-response effects and minimal biologic dose thresholds needed to advance translational treatment strategies for complications like GVHD.
Collapse
|
9
|
Gao X, Deeb D, Danyluk A, Media J, Liu Y, Dulchavsky SA, Gautam SC. Immunomodulatory activity of synthetic triterpenoids: inhibition of lymphocyte proliferation, cell-mediated cytotoxicity, and cytokine gene expression through suppression of NF-kappaB. Immunopharmacol Immunotoxicol 2008; 30:581-600. [PMID: 18608528 DOI: 10.1080/08923970802135559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synthetic oleanane triterpenoids (CDDO, CDDO-Im and CDDO-Me) are potent anti-inflammatory agents, but have not been investigated for effects on T cell-mediated immune responses. Here we demonstrate that CDDOs have profound immunosuppressive effects on T cell proliferation, development of IL-2 activated LAK cells and cytotoxic T lymphocytes (CTLs), and expression of cytokines at concentrations of 1.25 microM to 0.078 microM. Treatment with CDDO-Me also inhibited the generation of allo-reactive T cell responses in vivo. The suppression of these cell-mediated immune responses by CDDO-Me was associated with the inhibition of NF-kappaB transcription factor.
Collapse
Affiliation(s)
- Xiaohua Gao
- Division of Surgical Research, Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Li M, Sun K, Welniak LA, Murphy WJ. Immunomodulation and pharmacological strategies in the treatment of graft-versus-host disease. Expert Opin Pharmacother 2008; 9:2305-16. [PMID: 18710355 PMCID: PMC2658813 DOI: 10.1517/14656566.9.13.2305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation offers great promise for the treatment of a variety of diseases including malignancies and other diseases of hematopoietic origin. However, morbidity and mortality due to graft-versus-host disease (GVHD) remain a major barrier to its application. OBJECTIVE This review will provide an overview of the pathophysiology of GVHD and discuss the recent advances in GVHD management in both preclinical and clinical studies. METHODS An extensive literature search on PubMed from 1995 to 2008 was performed. RESULTS/CONCLUSION There has been much progress in our understanding of GVHD and finding new means to control acute GVHD. While these approaches hold promise, as yet none has been able to replace the standard methods we may use routinely to decrease the incidence of the condition.
Collapse
Affiliation(s)
- Minghui Li
- University of Nevada, University of Nevada School of Medicine, Department of Microbiology and Immunology, Mail Stop 199, Reno, NV 89557, USA
| | | | | | | |
Collapse
|