1
|
O’Neal J, Mavers M, Jayasinghe RG, DiPersio JF. Traversing the bench to bedside journey for iNKT cell therapies. Front Immunol 2024; 15:1436968. [PMID: 39170618 PMCID: PMC11335525 DOI: 10.3389/fimmu.2024.1436968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are immune cells that harness properties of both the innate and adaptive immune system and exert multiple functions critical for the control of various diseases. Prevention of graft-versus-host disease (GVHD) by iNKT cells has been demonstrated in mouse models and in correlative human studies in which high iNKT cell content in the donor graft is associated with reduced GVHD in the setting of allogeneic hematopoietic stem cell transplants. This suggests that approaches to increase the number of iNKT cells in the setting of an allogeneic transplant may reduce GVHD. iNKT cells can also induce cytolysis of tumor cells, and murine experiments demonstrate that activating iNKT cells in vivo or treating mice with ex vivo expanded iNKT cells can reduce tumor burden. More recently, research has focused on testing anti-tumor efficacy of iNKT cells genetically modified to express a chimeric antigen receptor (CAR) protein (CAR-iNKT) cells to enhance iNKT cell tumor killing. Further, several of these approaches are now being tested in clinical trials, with strong safety signals demonstrated, though efficacy remains to be established following these early phase clinical trials. Here we review the progress in the field relating to role of iNKT cells in GVHD prevention and anti- cancer efficacy. Although the iNKT field is progressing at an exciting rate, there is much to learn regarding iNKT cell subset immunophenotype and functional relationships, optimal ex vivo expansion approaches, ideal treatment protocols, need for cytokine support, and rejection risk of iNKT cells in the allogeneic setting.
Collapse
Affiliation(s)
- Julie O’Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
| | - Melissa Mavers
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Reyka G. Jayasinghe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
2
|
Sligar C, Reilly E, Cuthbertson P, Vine KL, Bird KM, Elhage A, Alexander SI, Sluyter R, Watson D. Graft-versus-leukaemia immunity is retained following treatment with post-transplant cyclophosphamide alone or combined with tocilizumab in humanised mice. Clin Transl Immunology 2024; 13:e1497. [PMID: 38495918 PMCID: PMC10941522 DOI: 10.1002/cti2.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Objectives Donor haematopoietic stem cell transplantation treats leukaemia by inducing graft-versus-leukaemia (GVL) immunity. However, this benefit is often mitigated by graft-versus-host disease (GVHD), which is reduced by post-transplant cyclophosphamide (PTCy) alone or combined with tocilizumab (TOC) in humanised mice. This study established a preclinical humanised mouse model of GVL and investigated whether PTCy alone or combined with TOC impacts GVL immunity. Methods NOD-scid-IL2Rγnull mice were injected with 2 × 107 human peripheral blood mononuclear cells (hPBMCs) on day 0 and with 1 × 106 THP-1 acute myeloid leukaemia cells on day 14. In subsequent experiments, mice were also injected with PTCy (33 mg kg-1) or Dulbecco's phosphate buffered saline (PBS) on days 3 and 4, alone or combined with TOC or control antibody (25 mg kg-1) twice weekly for 28 days. Clinical signs of disease were monitored until day 42. Results Mice with hPBMCs from three different donors and THP-1 cells showed similar survival, clinical score and weight loss. hCD33+ leukaemia cells were minimal in mice reconstituted with hPBMCs from two donors but present in mice with hPBMCs from a third donor, suggesting donor-specific GVL responses. hPBMC-injected mice treated with PTCy alone or combined with TOC (PTCy + TOC) demonstrated prolonged survival compared to control mice. PTCy alone and PTCy + TOC-treated mice with hPBMCs showed minimal hepatic hCD33+ leukaemia cells, indicating sustained GVL immunity. Further, the combination of PTCy + TOC reduced histological damage in the lung and liver. Conclusion Collectively, this research demonstrates that PTCy alone or combined with TOC impairs GVHD without compromising GVL immunity.
Collapse
Affiliation(s)
- Chloe Sligar
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | - Ellie Reilly
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | - Peter Cuthbertson
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | - Kara L Vine
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | - Katrina M Bird
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | - Amal Elhage
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | | | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| |
Collapse
|
3
|
Dogliotti I, Levis M, Martin A, Bartoncini S, Felicetti F, Cavallin C, Maffini E, Cerrano M, Bruno B, Ricardi U, Giaccone L. Maintain Efficacy and Spare Toxicity: Traditional and New Radiation-Based Conditioning Regimens in Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2024; 16:865. [PMID: 38473227 DOI: 10.3390/cancers16050865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Novelty in total body irradiation (TBI) as part of pre-transplant conditioning regimens lacked until recently, despite the developments in the field of allogeneic stem cell transplants. Long-term toxicities have been one of the major concerns associated with TBI in this setting, although the impact of TBI is not so easy to discriminate from that of chemotherapy, especially in the adult population. More recently, lower-intensity TBI and different approaches to irradiation (namely, total marrow irradiation, TMI, and total marrow and lymphoid irradiation, TMLI) were implemented to keep the benefits of irradiation and limit potential harm. TMI/TMLI is an alternative to TBI that delivers more selective irradiation, with healthy tissues being better spared and the control of the radiation dose delivery. In this review, we discussed the potential radiation-associated long-term toxicities and their management, summarized the evidence regarding the current indications of traditional TBI, and focused on the technological advances in radiotherapy that have resulted in the development of TMLI. Finally, considering the most recent published trials, we postulate how the role of radiotherapy in the setting of allografting might change in the future.
Collapse
Affiliation(s)
- Irene Dogliotti
- Allogeneic Transplant and Cellular Therapy Unit, Division of Hematology, Department of Oncology, University Hospital A.O.U. "Città della Salute e della Scienza di Torino", University of Torino, 10126 Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Mario Levis
- Department of Oncology, University of Turin, 10126 Torino, Italy
| | - Aurora Martin
- Allogeneic Transplant and Cellular Therapy Unit, Division of Hematology, Department of Oncology, University Hospital A.O.U. "Città della Salute e della Scienza di Torino", University of Torino, 10126 Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Sara Bartoncini
- Department of Oncology, University of Turin, 10126 Torino, Italy
| | - Francesco Felicetti
- Division of Oncological Endocrinology, Department of Oncology, University Hospital A.O.U. "Città della Salute e della Scienza di Torino", 10126 Torino, Italy
| | - Chiara Cavallin
- Department of Oncology, University of Turin, 10126 Torino, Italy
| | - Enrico Maffini
- Hematology Institute "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Cerrano
- Division of Hematology, University Hospital A.O.U. "Città della Salute e della Scienza di Torino", 10126 Torino, Italy
| | - Benedetto Bruno
- Allogeneic Transplant and Cellular Therapy Unit, Division of Hematology, Department of Oncology, University Hospital A.O.U. "Città della Salute e della Scienza di Torino", University of Torino, 10126 Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Umberto Ricardi
- Department of Oncology, University of Turin, 10126 Torino, Italy
| | - Luisa Giaccone
- Allogeneic Transplant and Cellular Therapy Unit, Division of Hematology, Department of Oncology, University Hospital A.O.U. "Città della Salute e della Scienza di Torino", University of Torino, 10126 Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| |
Collapse
|
4
|
Outcomes of adults with lymphoma treated with nonmyeloablative TLI-ATG and radiation boost to high risk or residual disease before allogeneic hematopoietic cell transplant. Bone Marrow Transplant 2022; 57:106-112. [PMID: 34671121 DOI: 10.1038/s41409-021-01495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023]
Abstract
We evaluated the impact on survival of antithymocyte globulin conditioning (TLI-ATG) with radiation (RT) boost to high risk or residual disease before allogeneic hematopoietic cell transplant (allo-HCT) for adults with lymphoma (excluding mycosis fungoides and low-grade NHL other than SLL/CLL). Of 251 evaluable patients, 36 received an RT boost within 3 months of allo-HCT at our institution from 2001 to 2016. At the time of TLI-ATG, patients who received boost vs no boost had a lower rate of CR (11% vs 47%, p = 0.0003), higher rates of bulky disease (22% vs 4%, p < 0.0001), extranodal disease (39% vs 5%, p < 0.0001), and positive PET (75% vs 28%, p < 0.00001). In the boost group, the median (range) largest axial lesion diameter was 5.2 cm (1.8-22.3). Median follow-up was 50.2 months (range: 1-196). There was no significant difference in OS, time to recurrence, or time to graft failure with vs without boost. A trend toward higher percent donor CD3+ chimerism was seen with vs without boost (p = 0.0819). The worst boost-related toxicity was grade 2 dermatitis. RT boost may help successfully mitigate the risk of high risk or clinically evident residual disease in adults with lymphoma undergoing allo-HCT.
Collapse
|
5
|
Nonmyeloablative TLI-ATG conditioning for allogeneic transplantation: mature follow-up from a large single-center cohort. Blood Adv 2020; 3:2454-2464. [PMID: 31427277 DOI: 10.1182/bloodadvances.2019000297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/30/2019] [Indexed: 12/21/2022] Open
Abstract
Nonmyeloablative total lymphoid irradiation and antithymocyte globulin (TLI-ATG) conditioning is protective against graft-versus-host disease (GVHD), while retaining graft-versus-tumor activity across various hematologic malignancies. We report our comprehensive experience using TLI-ATG conditioning in 612 patients with hematologic malignancies who underwent allogeneic transplantation at Stanford University from 2001 to 2016. All patients received granulocyte colony-stimulating factor-mobilized peripheral blood grafts and cyclosporine and mycophenolate mofetil for GVHD prophylaxis. The median age was 60 years (range, 21-78), with a median follow-up of 6.0 years (range, 1.0-16.4). Common diagnoses included acute myeloid leukemia (AML; n = 193), myelodysplastic syndrome (MDS; n = 94), chronic lymphocytic leukemia (CLL; n = 80), non-Hodgkin lymphoma (NHL; n = 175), and Hodgkin lymphoma (HL; n = 35). Thirty-four percent of patients had a comorbidity index ≥3, 30% had a high to very high disease risk index, and 56% received unrelated donor grafts, including 15% with HLA-mismatched donors. Ninety-eight percent underwent transplant in the outpatient setting, and 57% were never hospitalized from days 0 through 100. The 1-year rates of nonrelapse mortality (NRM), grade II-IV acute GVHD, and extensive chronic GVHD were 9%, 14%, and 22%, respectively. The 4-year estimates for overall and progression-free survival were 42% and 32% for AML, 30% and 21% for MDS, 67% and 43% for CLL, 68% and 45% for NHL, and 78% and 49% for HL. Mixed chimerism correlated with the risk of relapse. TLI-ATG conditioning was well tolerated, with low rates of GVHD and NRM. Durable remissions were observed across hematologic malignancies, with particularly favorable outcomes for heavily pretreated lymphomas. Several efforts are underway to augment donor chimerism and reduce relapse rates while maintaining the favorable safety and tolerability profile of this regimen.
Collapse
|
6
|
Hamers AAJ, Joshi SK, Pillai AB. Innate Immune Determinants of Graft-Versus-Host Disease and Bidirectional Immune Tolerance in Allogeneic Transplantation. ACTA ACUST UNITED AC 2019; 3. [PMID: 33511333 PMCID: PMC7839993 DOI: 10.21926/obm.transplant.1901044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The success of tissue transplantation from a healthy donor to a diseased individual (allo-transplantation) is regulated by the immune systems of both donor and recipient. Developing a state of specific non-reactivity between donor and recipient, while maintaining the salutary effects of immune function in the recipient, is called “immune (transplantation) tolerance”. In the classic early post-transplant period, minimizing bidirectional donor ←→ recipient reactivity requires the administration of immunosuppressive drugs, which have deleterious side effects (severe immunodeficiency, opportunistic infections, and neoplasia, in addition to drug-specific reactions and organ toxicities). Inducing immune tolerance directly through donor and recipient immune cells, particularly via subsets of immune regulatory cells, has helped to significantly reduce side effects associated with multiple immunosuppressive drugs after allo-transplantation. The innate and adaptive arms of the immune system are both implicated in inducing immune tolerance. In the present article, we will review innate immune subset manipulations and their potential applications in hematopoietic stem cell transplantation (HSCT) to cure malignant and non-malignant hematological disorders by inducing long-lasting donor ←→ recipient (bidirectional) immune tolerance and reduced graft-versus-host disease (GVHD). These innate immunotherapeutic strategies to promote long-term immune allo-transplant tolerance include myeloid-derived suppressor cells (MDSCs), regulatory macrophages, tolerogenic dendritic cells (tDCs), Natural Killer (NK) cells, invariant Natural Killer T (iNKT) cells, gamma delta T (γδ-T) cells and mesenchymal stromal cells (MSCs).
Collapse
Affiliation(s)
- Anouk A J Hamers
- Department of Pediatrics, Division of Hematology / Oncology and Bone Marrow Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology / Oncology and Bone Marrow Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Asha B Pillai
- Department of Pediatrics, Division of Hematology / Oncology and Bone Marrow Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Ciammella P, Luminari S, Arcaini L, Filippi AR. Renewed interest for low‐dose radiation therapy in follicular lymphomas: From biology to clinical applications. Hematol Oncol 2018; 36:723-732. [DOI: 10.1002/hon.2538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Stefano Luminari
- HaematologySanta Maria Nuova Hospital, IRCCS Reggio Emilia Italy
| | - Luca Arcaini
- Hematology UnitFondazione IRCCS Policlinico S. Matteo and University of Pavia Pavia Italy
| | | |
Collapse
|
8
|
Mavers M, Maas-Bauer K, Negrin RS. Invariant Natural Killer T Cells As Suppressors of Graft-versus-Host Disease in Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2017; 8:900. [PMID: 28824628 PMCID: PMC5534641 DOI: 10.3389/fimmu.2017.00900] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022] Open
Abstract
Invariant natural killer T (iNKT) cells serve as a bridge between innate and adaptive immunity and have been shown to play an important role in immune regulation, defense against pathogens, and cancer immunity. Recent data also suggest that this compartment of the immune system plays a significant role in reducing graft-versus-host disease (GVHD) in the setting of allogeneic hematopoietic stem cell transplantation. Murine studies have shown that boosting iNKT numbers through certain conditioning regimens or adoptive transfer leads to suppression of acute or chronic GVHD. Preclinical work reveals that iNKT cells exert their suppressive function by expanding regulatory T cells in vivo, though the exact mechanism by which this occurs has yet to be fully elucidated. Human studies have demonstrated that a higher number of iNKT cells in the graft or in the peripheral blood of the recipient post-transplantation are associated with a reduction in GVHD risk, importantly without a loss of graft-versus-tumor effect. In two separate analyses of many immune cell subsets in allogeneic grafts, iNKT cell dose was the only parameter associated with a significant improvement in GVHD or in GVHD-free progression-free survival. Failure to reconstitute iNKT cells following allogeneic transplantation has also been associated with an increased risk of relapse. These data demonstrate that iNKT cells hold promise for future clinical application in the prevention of GVHD in allogeneic stem cell transplantation and warrant further study of the immunoregulatory functions of iNKT cells in this setting.
Collapse
Affiliation(s)
- Melissa Mavers
- Divisions of Hematology/Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Kristina Maas-Bauer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
NK Cell and CD4+FoxP3+ Regulatory T Cell Based Therapies for Hematopoietic Stem Cell Engraftment. Stem Cells Int 2016; 2016:9025835. [PMID: 26880996 PMCID: PMC4736409 DOI: 10.1155/2016/9025835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a powerful therapy to treat multiple hematological diseases. The intensive conditioning regimens used to allow for donor hematopoietic stem cell (HSC) engraftment are often associated with severe toxicity, delayed immune reconstitution, life-threatening infections, and thus higher relapse rates. Additionally, due to the high incidence of graft versus host disease (GvHD), HCT protocols have evolved to prevent such disease that has a detrimental impact on antitumor and antiviral responses. Here, we analyzed the role of host T and natural killer (NK) cells in the rejection of donor HSC engraftment as well as the impact of donor regulatory T cells (Treg) and NK cells on HSC engraftment. We review some of the current strategies that utilize NK or Treg to improve allogeneic HCT therapy in order to accomplish better HSC engraftment and immune reconstitution and achieve a lower incidence of cancer relapse, opportunistic infections, and GvHD.
Collapse
|
10
|
Pan Y, Leveson-Gower DB, de Almeida PE, Pierini A, Baker J, Florek M, Nishikii H, Kim BS, Ke R, Wu JC, Negrin RS. Engraftment of embryonic stem cells and differentiated progeny by host conditioning with total lymphoid irradiation and regulatory T cells. Cell Rep 2015; 10:1793-802. [PMID: 25801020 DOI: 10.1016/j.celrep.2015.02.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 01/15/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022] Open
Abstract
Embryonic stem cells (ESCs) hold promise for the treatment of many medical conditions; however, their utility is limited by immune rejection. The objective of our study is to establish tolerance or promote engraftment of transplanted ESCs as well as mature cell populations derived from ESCs. Luciferase (luc(+))-expressing ESCs were utilized to monitor the survival of the ESCs and differentiated progeny in living recipients. Allogeneic recipients conditioned with fractioned total lymphoid irradiation (TLI) and anti-thymocyte serum (ATS) or TLI plus regulatory T cells (T(reg)) promoted engraftment of ESC allografts after transplantation. Following these treatments, the engraftment of transplanted terminally differentiated endothelial cells derived from ESCs was also significantly enhanced. Our findings provide clinically translatable strategies of inducing tolerance to adoptively transferred ESCs for cell replacement therapy of medical disorders.
Collapse
|
11
|
Pierini A, Schneidawind D, Nishikii H, Negrin RS. Regulatory T Cell Immunotherapy in Immune-Mediated Diseases. CURRENT STEM CELL REPORTS 2015; 1:177-186. [PMID: 26779417 DOI: 10.1007/s40778-015-0025-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Broad clinical interest rapidly followed the recent discovery of different subpopulations of T cells that have immune regulatory properties and a number of studies have been conducted aiming to dissect the translational potential of these promising cells. In this review we will focus on forkhead box P3 (FoxP3) positive regulatory T cells, T regulatory type 1 cells and invariant natural killer T cells (iNKT). We will analyze their ability to correct immune dysregulation in animal models of immune mediated diseases and we will examine the first clinical approaches where these cells have been directly or indirectly employed. We will discuss successes, challenges and limitations that rose in the road to the clinical use of regulatory T cells.
Collapse
Affiliation(s)
- Antonio Pierini
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA; Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Dominik Schneidawind
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine II, Eberhard Karls University, Tübingen, Germany
| | - Hidekazu Nishikii
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA; Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Robert S Negrin
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
Nakasone H, Remberger M, Tian L, Brodin P, Sahaf B, Wu F, Mattsson J, Lowsky R, Negrin R, Miklos DB, Meyer E. Risks and benefits of sex-mismatched hematopoietic cell transplantation differ according to conditioning strategy. Haematologica 2015; 100:1477-85. [PMID: 26250581 DOI: 10.3324/haematol.2015.125294] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/06/2015] [Indexed: 12/24/2022] Open
Abstract
Sex-mismatched hematopoietic cell transplantation is linked to increased graft-versus-host disease and mortality in myeloablative conditioning. Here we evaluated outcomes of 1,041 adult transplant recipients at two centers between 2006 and 2013 and investigated how the effect of sex-mismatching differed in myeloablative, reduced-intensity, and non-myeloablative total lymphoid irradiation with anti-thymocyte globulin conditioning. Among patients who underwent myeloablative conditioning, male recipients with female donors had increased chronic graft-versus-host disease (hazard ratio 1.83, P<0.01), increased non-relapse mortality (hazard ratio 1.84, P=0.022) and inferior overall survival (hazard ratio 1.59, P=0.018). In contrast, among patients who received reduced-intensity conditioning, male recipients with female donors had increased acute graft-versus-host disease (hazard ratio 1.96, P<0.01) but no difference in non-relapse mortality or overall survival. Among the patients who underwent total lymphoid irradiation with anti-thymocyte globulin, male recipients with female donors showed no increase in graft-versus-host disease or non-relapse mortality. Notably, only in the cohort receiving total lymphoid irradiation with anti-thymocyte globulin were male recipients with female donors significantly associated with reduced relapse (hazard ratio 0.64, P<0.01), and allo-antibody responses against H-Y antigens were predictive of reduced relapse. In the cohort given total lymphoid irradiation with anti-thymocyte globulin, the graft-versus-leukemia effect resulted in superior overall survival in recipients of sex-mismatched grafts (HR 0.69, P=0.037). In addition, only in the cohort treated with total lymphoid irradiation with anti-thymocyte globulin were female recipients with male donors associated with reduced relapse (hazard ratio 0.59, P<0.01) and superior survival (hazard ratio 0.61, P=0.014) compared with sex-matched pairs. We conclude that the risks and benefits of sex-mismatched transplants appear to differ according to conditioning strategy and this could affect donor selection.
Collapse
Affiliation(s)
- Hideki Nakasone
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Mats Remberger
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Lu Tian
- Department of Health Research and Policy, Stanford University School of Medicine, CA, USA
| | - Petter Brodin
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden Science for Life Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bita Sahaf
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Fang Wu
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonas Mattsson
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Robert Lowsky
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Negrin
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - David B Miklos
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Everett Meyer
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Hautmann AH, Wolff D, Hilgendorf I, Fehn U, Edinger M, Hoffmann P, Herr W, Kölbl O, Holler B, Sporrer D, Holler E, Hautmann MG. Total nodal irradiation in patients with severe treatment-refractory chronic graft-versus-host disease after allogeneic stem cell transplantation: Response rates and immunomodulatory effects. Radiother Oncol 2015; 116:287-93. [PMID: 26255761 DOI: 10.1016/j.radonc.2015.07.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/13/2015] [Accepted: 07/26/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE The use of total nodal irradiation (TNI) has been reported as an immunomodulatory therapy for different diseases including chronic graft-versus-host disease (cGVHD). MATERIAL AND METHODS We retrospectively analyzed 13 patients with treatment-refractory cGVHD receiving TNI with 1×1Gy from 2001 to 2014. In 10 of 13 patients immunomodulatory effects of TNI were measured. RESULTS At time of TNI all patients had severe cGVHD (involving the skin: n=12), fascia (n=6), oral mucosa (n=8), eye (n=8), and lung (n=5). Nine of 13 patients had corticosteroid-refractory cGVHD. In 7 of 13 patients (54%) a partial response (PR) could be achieved. In 3 patients (23%) cGVHD manifestations remained stable, 2 patients progressed. One patient was not evaluable due to follow-up <1 month. At 3 months after TNI, best responses could be achieved in skin, and oral involvement including steroid sparing activity. TNI was well tolerated with adverse effects limited to reversible thrombocytopenia and neutropenia. Immunomodulatory effects on peripheral blood cells could be demonstrated including an increase of CD4+ T cells in the group of responders. CONCLUSIONS TNI represents an effective immunomodulating therapy in treatment-refractory cGVHD.
Collapse
Affiliation(s)
- Anke H Hautmann
- Department of Internal Medicine III (Hematology and Oncology), University Medical Center of Regensburg, Germany.
| | - Daniel Wolff
- Department of Internal Medicine III (Hematology and Oncology), University Medical Center of Regensburg, Germany
| | - Inken Hilgendorf
- Department of Internal Medicine (Hematology and Oncology), University Hospital of Rostock, Germany
| | - Ute Fehn
- Department of Internal Medicine III (Hematology and Oncology), University Medical Center of Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III (Hematology and Oncology), University Medical Center of Regensburg, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III (Hematology and Oncology), University Medical Center of Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III (Hematology and Oncology), University Medical Center of Regensburg, Germany
| | - Oliver Kölbl
- Department of Radiotherapy, University Medical Center of Regensburg, Germany
| | - Barbara Holler
- Department of Internal Medicine III (Hematology and Oncology), University Medical Center of Regensburg, Germany
| | - Daniela Sporrer
- Department of Internal Medicine III (Hematology and Oncology), University Medical Center of Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III (Hematology and Oncology), University Medical Center of Regensburg, Germany
| | - Matthias G Hautmann
- Department of Radiotherapy, University Medical Center of Regensburg, Germany
| |
Collapse
|
14
|
Allogeneic hematopoietic cell transplantation after failed autologous transplant for lymphoma using TLI and anti-thymocyte globulin conditioning. Bone Marrow Transplant 2015; 50:1286-92. [PMID: 26146806 PMCID: PMC4699844 DOI: 10.1038/bmt.2015.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/27/2015] [Accepted: 05/20/2015] [Indexed: 12/22/2022]
Abstract
We describe 47 patients with lymphoma and failed prior autologous hematopoietic cell transplantation (HCT) who received TLI-ATG conditioning followed by allogeneic HCT. Thirty-two patients had non-Hodgkin lymphoma (NHL; diffuse large B cell lymphoma [n=19], T-cell NHL [n=6], mantle cell lymphoma [n= 4], or other B-cell subtypes [n=3]), and 15 had Hodgkin lymphoma. The median follow-up was 4.9 (range, 2.1–11.9) years. The cumulative incidence of grade II–IV acute GVHD at day +100 was 12%, and the cumulative incidence of extensive chronic GVHD at 1 year was 36%. The 3-year cumulative incidences of overall survival, progression-free survival (PFS), and non-relapse mortality (NRM) were 81%, 44%, and 7%, respectively. Fifteen patients died (relapse, n=10; NRM, n=5). Among the 25 patients with relapse after allogeneic HCT, 11 (44%) achieved durable (>1 year) complete remissions following donor lymphocyte infusion or chemoradiotherapy. The majority of surviving patients (75%; n=24) were able to discontinue all immunosuppression. For patients with relapsed lymphoma after autologous HCT, allogeneic HCT using TLI-ATG conditioning is a well-tolerated, predominantly outpatient therapy with low NRM (7% at 3 years), a low incidence of GVHD, durable disease control, and excellent overall survival (81% at 3 years).
Collapse
|
15
|
Hannon M, Beguin Y, Ehx G, Servais S, Seidel L, Graux C, Maertens J, Kerre T, Daulne C, de Bock M, Fillet M, Ory A, Willems E, Gothot A, Humblet-Baron S, Baron F. Immune Recovery after Allogeneic Hematopoietic Stem Cell Transplantation Following Flu-TBI versus TLI-ATG Conditioning. Clin Cancer Res 2015; 21:3131-9. [PMID: 25779951 DOI: 10.1158/1078-0432.ccr-14-3374] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/06/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE A conditioning regimen for allogeneic hematopoietic cell transplantation (HCT) combining total lymphoid irradiation (TLI) plus anti-thymocyte globulin (ATG) has been developed to induce graft-versus-tumor effects without graft-versus-host disease (GVHD). EXPERIMENTAL DESIGN We compared immune recovery in 53 patients included in a phase II randomized study comparing nonmyeloablative HCT following either fludarabine plus 2 Gy total body irradiation (TBI arm, n = 28) or 8 Gy TLI plus ATG (TLI arm, n = 25). RESULTS In comparison with TBI patients, TLI patients had a similarly low 6-month incidence of grade II-IV acute GVHD, a lower incidence of moderate/severe chronic GVHD (P = 0.02), a higher incidence of CMV reactivation (P < 0.001), and a higher incidence of relapse (P = 0.01). While recovery of total CD8(+) T cells was similar in the two groups, with median CD8(+) T-cell counts reaching the normal values 40 to 60 days after allo-HCT, TLI patients had lower percentages of naïve CD8 T cells. Median CD4(+) T-cell counts did not reach the lower limit of normal values the first year after allo-HCT in the two groups. Furthermore, CD4(+) T-cell counts were significantly lower in TLI than in TBI patients the first 6 months after transplantation. Interestingly, while median absolute regulatory T-cell (Treg) counts were comparable in TBI and TLI patients, Treg/naïve CD4(+) T-cell ratios were significantly higher in TLI than in TBI patients the 2 first years after transplantation. CONCLUSIONS Immune recovery differs substantially between these two conditioning regimens, possibly explaining the different clinical outcomes observed (NCT00603954).
Collapse
Affiliation(s)
- Muriel Hannon
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.
| | - Yves Beguin
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium. Department of Clinical Hematology, CHU of Liège, Liège, Belgium
| | - Grégory Ehx
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Sophie Servais
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium. Department of Clinical Hematology, CHU of Liège, Liège, Belgium
| | - Laurence Seidel
- Department of statistics, SIME, CHU of Liège, Liège, Belgium
| | - Carlos Graux
- Mont-Godine University Hospital (UCL), Yvoir, Belgium
| | | | | | - Coline Daulne
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Muriel de Bock
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Marianne Fillet
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Aurélie Ory
- Department of Clinical Hematology, CHU of Liège, Liège, Belgium
| | - Evelyne Willems
- Department of Clinical Hematology, CHU of Liège, Liège, Belgium
| | - André Gothot
- Department of Laboratory Medicine, University of Liège, Liège, Belgium
| | - Stéphanie Humblet-Baron
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Frédéric Baron
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium. Department of Clinical Hematology, CHU of Liège, Liège, Belgium
| |
Collapse
|
16
|
Allogeneic HY antibodies detected 3 months after female-to-male HCT predict chronic GVHD and nonrelapse mortality in humans. Blood 2015; 125:3193-201. [PMID: 25766725 DOI: 10.1182/blood-2014-11-613323] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/04/2015] [Indexed: 12/13/2022] Open
Abstract
Allogeneic antibodies against minor histocompatibility antigens encoded on the Y chromosome (HY-Abs) develop after hematopoietic cell transplant (HCT) of male recipients with female donors (F→M). However, the temporal association between HY-Ab development and chronic graft-versus-host disease (cGVHD) has yet to be elucidated. We studied 136 adult F→M HCT patients, with plasma prospectively collected through 3 years posttransplant, and measured immunoglobulin G against 6 H-Y antigens. Multiple HY-Abs were frequently detected beginning at 3 months posttransplant: 78 (57%) of F→M patients were seropositive for at least 1 of the 6 HY-Abs, and 3-month seropositivity for each HY-Ab was associated with a persistent seropositive response throughout the posttransplant follow-up period (P < .001 in each). There were no associations between pretransplant features and 3-month overall HY-Ab development. Detection of multiple HY-Abs at 3 months (represented by HY score) was significantly associated with an increased risk of cGVHD (P < .0001) and nonrelapse mortality (P < .01). Compared to clinical factors alone, the addition of HY score to clinical factors improved the predictive potential of cGVHD (P < .01). Monitoring HY-Ab development thus stratifies cGVHD risk in F→M HCT patients and may support preemptive prophylaxis therapy for cGVHD beginning at 3 months posttransplant.
Collapse
|
17
|
Baron F, Zachée P, Maertens J, Kerre T, Ory A, Seidel L, Graux C, Lewalle P, Van Gelder M, Theunissen K, Willems E, Emonds MP, De Becker A, Beguin Y. Non-myeloablative allogeneic hematopoietic cell transplantation following fludarabine plus 2 Gy TBI or ATG plus 8 Gy TLI: a phase II randomized study from the Belgian Hematological Society. J Hematol Oncol 2015; 8:4. [PMID: 25652604 PMCID: PMC4332717 DOI: 10.1186/s13045-014-0098-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/20/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Few studies thus far have compared head-to-head different non-myelooablative conditioning regimens for allogeneic hematopoietic cell transplantation (allo-HCT). METHODS Here, we report the results of a phase II multicenter randomized study comparing non-myeloablative allo-HCT from HLA-identical siblings (n = 54) or from 10/10 HLA-matched unrelated donors (n = 40) with either fludarabine plus 2 Gy total body irradiation (Flu-TBI arm; n = 49) or 8 Gy TLI + anti-thymocyte globulin (TLI-ATG arm; n = 45) conditioning. RESULTS The 180-day cumulative incidences of grade II-IV acute GVHD (primary endpoint) were 12.2% versus 8.9% in Flu-TBI and TLI-ATG patients, respectively (P = 0.5). Two-year cumulative incidences of moderate/severe chronic GVHD were 40.8% versus 17.8% in Flu-TBI and TLI-ATG patients, respectively (P = 0.017). Five Flu-TBI patients and 10 TLI-ATG patients received pre-emptive DLI for low donor chimerism levels, while 1 Flu-TBI patient and 5 TLI-ATG patients (including 2 patients given prior pre-emptive DLIs) received a second HCT for poor graft function, graft rejection, or disease progression. Four-year cumulative incidences of relapse/progression were 22% and 50% in Flu-TBI and TLI-ATG patients, respectively (P = 0.017). Four-year cumulative incidences of nonrelapse mortality were 24% and 13% in Flu-TBI and TLI-ATG patients, respectively (P = 0.5). Finally, 4-year overall (OS) and progression-free survivals (PFS) were 53% and 54%, respectively, in the Flu-TBI arm, versus 54% (P = 0.9) and 37% (P = 0.12), respectively, in the TLI-ATG arm. CONCLUSIONS In comparison to patients included in the Flu-TBI arm, patients included in the TLI-ATG arm had lower incidence of chronic GVHD, higher incidence of relapse and similar OS. TRIAL REGISTRATION The study was registered on ClinicalTrial.gov ( NCT00603954 ) and EUDRACT (2010-024297-19) .
Collapse
Affiliation(s)
- Frédéric Baron
- Department of Hematology, University of Liège, and CHU of Liège, Sart-Tilman, 4000, Liège, Belgium.
| | | | | | | | - Aurélie Ory
- Department of Hematology, University of Liège, and CHU of Liège, Sart-Tilman, 4000, Liège, Belgium.
| | - Laurence Seidel
- Department of Statistics, University of Liège, and CHU of Liège, Liège, Belgium.
| | - Carlos Graux
- Mont-Godine University Hospital (UCL), Yvoir, Belgium.
| | | | | | | | - Evelyne Willems
- Department of Hematology, University of Liège, and CHU of Liège, Sart-Tilman, 4000, Liège, Belgium.
| | | | - Ann De Becker
- Universitair Ziekenhuis Brussel (UZ Brussels), Brussels, Belgium.
| | - Yves Beguin
- Department of Hematology, University of Liège, and CHU of Liège, Sart-Tilman, 4000, Liège, Belgium.
| |
Collapse
|
18
|
Abstract
Although organ and bone marrow transplantations are life-saving procedures for patients with terminal diseases, the requirement for the lifelong use of immunosuppressive drugs to prevent organ graft rejection and the development of graft versus host disease (GVHD) remain important problems. Experimental approaches to solve these problems, first in preclinical models and then in clinical studies, developed at Stanford during the past 40 years are summarized in this article. The approaches use fractionated radiation of the lymphoid tissues, a procedure initially developed to treat Hodgkin's disease, to alter the immune system such that tolerance to organ transplants can be achieved and GVHD can be prevented after the establishment of chimerism. In both instances, the desired goal was achieved when the balance of immune cells was changed to favor regulatory innate and adaptive immune cells that suppress the conventional immune cells that ordinarily promote inflammation and tissue injury.
Collapse
|
19
|
Benjamin J, Chhabra S, Kohrt HE, Lavori P, Laport GG, Arai S, Johnston L, Miklos DB, Shizuru JA, Weng WK, Negrin RS, Lowsky R. Total lymphoid irradiation-antithymocyte globulin conditioning and allogeneic transplantation for patients with myelodysplastic syndromes and myeloproliferative neoplasms. Biol Blood Marrow Transplant 2014; 20:837-43. [PMID: 24607552 PMCID: PMC4389687 DOI: 10.1016/j.bbmt.2014.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo HCT) is the only curative therapy for the myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN), but treatment toxicity has been a barrier to its more widespread use. The nonmyeloablative regimen of total lymphoid irradiation (TLI) and antithymocyte globulin (ATG) permits the establishment of donor hematopoiesis necessary for the graft-versus-malignancy effect and is protective against acute graft-versus-host disease (aGVHD), but it has minimal direct cytotoxicity against myeloid diseases. We explored the use of TLI-ATG conditioning to treat 61 patients with allo HCT for MDS (n = 32), therapy-related myeloid neoplasms (n = 15), MPN (n = 9), and chronic myelomonocytic leukemia (n = 5). The median age of all patients was 63 years (range, 50 to 73). The cumulative incidence of aGVHD grades II to IV was 14% (95% confidence interval [CI], 4% to 23%) and for grades III to IV, 4% (95% CI, 0 to 9%), and it did not differ between patients who received allografts from related or unrelated donors. The cumulative incidence of nonrelapse mortality (NRM) at 100 days, 12 months, and 36 months was 0%, 7%, and 11%. Overall survival and progression-free survival were 41% (95% CI, 29% to 53%) and 35% (95% CI, 23% to 48%), respectively. The safety and tolerability of TLI-ATG, as exemplified by its low NRM, provides a foundation for further risk-adapted or prophylactic interventions to prevent disease progression.
Collapse
Affiliation(s)
- Jonathan Benjamin
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Saurabh Chhabra
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | | | - Philip Lavori
- Department of Health Research and Policy, Stanford University, Stanford, California
| | - Ginna G Laport
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Sally Arai
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Laura Johnston
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - David B Miklos
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Judith A Shizuru
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Wen-Kai Weng
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Robert Lowsky
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California.
| |
Collapse
|
20
|
Regulatory T cells and natural killer T cells for modulation of GVHD following allogeneic hematopoietic cell transplantation. Blood 2013; 122:3116-21. [PMID: 24068494 DOI: 10.1182/blood-2013-08-453126] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alloreactivity of donor lymphocytes leads to graft-versus-host disease (GVHD) contributing to significant morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Within the past decade, significant progress has been made in elucidating the mechanisms underlying the immunologic dysregulation characteristic of GVHD. The recent discoveries of different cell subpopulations with immune regulatory function has led to a number of studies aimed at understanding their role in allogeneic HCT and possible application for the prevention and treatment of GVHD and a host of other immune-mediated diseases. Preclinical animal modeling has helped define the potential roles of distinct populations of regulatory cells that have progressed to clinical translation with promising early results.
Collapse
|
21
|
Incidence and Pattern of Graft-versus-Host Disease in Patients Undergoing Allogeneic Transplantation after Nonmyeloablative Conditioning with Total Lymphoid Irradiation and Antithymocyte Globulin. BONE MARROW RESEARCH 2013; 2013:414959. [PMID: 23691325 PMCID: PMC3652129 DOI: 10.1155/2013/414959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/29/2013] [Accepted: 03/30/2013] [Indexed: 11/18/2022]
Abstract
Nonmyeloablative (NMA) conditioning with total lymphoid irradiation and antithymocyte globulin (TLI/ATG) has been shown to protect against acute graft-versus-host disease (GVHD). We report here our institutional experience with allogeneic transplantation following NMA conditioning with TLI/ATG (n = 21). GVHD prophylaxis consisted of a combination of a calcineurin inhibitor and mycophenolate mofetil. Median patient age was 59 years. The median followup of surviving patients is 545 days. One patient experienced primary graft rejection. The median time to neutrophil engraftment was 18 days and platelet engraftment was 9.5 days. The cumulative incidence (CI) of grade II–IV acute GVHD at day +100 was 28.6% and 38.1% at day +180. The CI for grade III-IV acute GVHD was 28.6% at day +180. CI of chronic GVHD was 45.2% at 1 year. The CI of disease relapse was 9.5% at 1 year. The rate of nonrelapse mortality (NRM) was 0% at day +100 and only 9.5% at 1 year. The overall and progression free survival at 1 year was 81% and 80.4%, respectively. Our limited, retrospective data show encouraging relapse and NRM rates with TLI/ATG-based NMA conditioning, but with higher than previously reported rates of acute and chronic GVHD, underscoring the need for novel strategies designed to effectively prevent GVHD.
Collapse
|
22
|
Abstract
INTRODUCTION Allogeneic hematopoietic cell transplantation (HCT) is a curative treatment for many malignant and non-malignant hematologic disorders. However, graft-vs.-host disease (GVHD) remains a major complication of allogeneic HCT and limits the success of this approach. AREAS COVERED This paper reviews recent developments in the prevention of acute and chronic GVHD. In the setting of acute GVHD prevention, recent trials of T-cell depletion using Fresenius-ATG are reviewed, as well as studies testing total lymphoid irradiation, mesenchymal stromal cells, rituximab, statins, sirolimus and other investigational agents. In the setting of chronic GVHD, results with Fresenius-ATG are reviewed, as well as B-cell depletion with rituximab, and the potential role of the B-cell regulatory cytokine BAFF in chronic GVHD is also discussed. Finally, the emerging role of resident skin and gut bacterial flora-the so-called microbiome-in the pathogenesis of GVHD is covered. EXPERT OPINION Current methods of acute GVHD prevention are highly successful, and a number of investigational approaches promise to further reduce the risk of this complication. By contrast, chronic GVHD is more poorly understood and more difficult to prevent. Future studies are required to delineate the roles of these approaches and to abrogate GVHD without sacrificing the beneficial immunologic graft-vs.-tumor effect.
Collapse
Affiliation(s)
- Andrew R Rezvani
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., D1-100, Seattle, WA 98109, USA.
| | | |
Collapse
|