1
|
Lv M, Yan CH, Ma R, He Y, Zhang YY, Wang ZD, Chen YH, Han W, Kong J, Han TT, Liu J, Zheng H, Mo XD, Sun YQ, Wang Y, Xu LP, Zhang XH, Huang XJ. Mega-dose decitabine conditioning and prophylactic donor lymphocyte infusion for patients with relapsed/refractory AML with active disease at the time of allogeneic haematopoietic cell transplantation: A multicenter prospective phase II study. Br J Haematol 2024; 205:1910-1920. [PMID: 39334557 DOI: 10.1111/bjh.19781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
Patients with relapsed/refractory acute myeloid leukaemia (R/R AML), especially those who failed in novel target agents are related to dismal survival. We developed a multi-institutional, single-arm, prospective phase II trial, to investigate intensified conditioning with 'Mega-Dose' decitabine (MegaDAC) following allogeneic haematopoietic cell transplantation (allo-HCT) for R/R AML. From 2019 to 2023, 70 heavily treated R/R AML patients in active disease were consecutively enrolled. Significantly, every patient (n = 18) harbouring specific mutations exhibited no response to their best available target agents (BATs). Moreover, 74.3% of the enrolled patients did not reach remission following venetoclax-based regimens. All patients underwent intravenous decitabine (400 mg/m2) along with busulfan and cyclophosphamide. Median follow-up was 26 months (8-65) after HCT. All engrafted patients achieved MRD negativity post-HCT, with a median 3.3-log reduction in recurrent genetic abnormalities. The regimen was well tolerated, without irreversible grades III-IV toxicity peri-engraftment. The estimated 2-year CIR was 29.6% (18.4%-41.7%) and the est-2-year NRM was 15.5% (7.8%-25.5%). The est-2-year LFS, OS, and GRFS were 55.0% (43.5%-69.4%), 58.6% (47.0%-73.0%), and 42.9% (31.9%-57.6%), respectively. Multivariate analysis showed that pre-HCT drug exposures had no significant impact on primary outcomes. MegaDAC is highlighted as an effective and safe option for R/R AML in the new era of targeted therapies.
Collapse
Affiliation(s)
- Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Qinghe Hospital, Beijing, China
| | - Rui Ma
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Ludaopei Hematology Hospital, Beijing, China
| | - Yun He
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Ludaopei Hematology Hospital, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhi-Dong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Qinghe Hospital, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Ludaopei Hematology Hospital, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Qinghe Hospital, Beijing, China
| | - Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Qinghe Hospital, Beijing, China
| | - Jing Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hao Zheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Qinghe Hospital, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Ludaopei Hematology Hospital, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Qinghe Hospital, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Qinghe Hospital, Beijing, China
- Beijing Ludaopei Hematology Hospital, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Notarantonio AB, Robin M, D'Aveni M. Current challenges in conditioning regimens for MDS transplantation. Blood Rev 2024; 67:101223. [PMID: 39089962 DOI: 10.1016/j.blre.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Myelodysplastic syndrome (MDS) is a very heterogeneous clonal disorder. Patients with "higher-risk" MDS, defined by specific recurrent genetic abnormalities, have a poor prognosis because of a high risk of progression to secondary acute myeloid leukemia with low chemosensitivity. Allogeneic hematopoietic stem cell transplantation remains the only treatment that offers durable disease control because the donor immune system allows graft-versus-MDS effects. In terms of preparation steps before transplantation, targeting the malignant clone by increasing the conditioning regimen intensity is still a matter of intense debate. MDS is mainly diagnosed in older patients, and high toxicity related to common myeloablative conditioning regimens has been reported. Efforts to include new drugs in the conditioning regimen to achieve the best malignant clone control without increasing toxicity have been made over the past 20 years. We summarized these retrospective and prospective studies and evaluated the limitations of the available evidence to delineate the ideal conditioning regimen.
Collapse
Affiliation(s)
- A B Notarantonio
- Hematology Department, University Hospital of Nancy, France; CNRS 7365, IMoPA, University of Lorraine, F-54000, France
| | - M Robin
- Hematology Department, Saint-Louis Hospital, APHP, Paris, France
| | - M D'Aveni
- Hematology Department, University Hospital of Nancy, France; CNRS 7365, IMoPA, University of Lorraine, F-54000, France.
| |
Collapse
|
3
|
Guo W, Zhang H, Wang M, Zheng Y, Cao Y, Zhang X, Zhai W, Zhang R, Yang D, Wei J, He Y, Ma Q, Xia Y, Pang A, Feng S, Han M, Jiang E. WT1 gene mutations impact post-transplant relapse in myelodysplastic syndrome with excess blasts 2 patients. Ann Hematol 2024; 103:2827-2836. [PMID: 38969929 DOI: 10.1007/s00277-024-05870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Wilms tumor 1 (WT1) gene mutations are infrequent in myelodysplastic syndrome (MDS), but MDS with WT1 mutations (WT1mut) is considered high risk for acute myeloid leukemia (AML) transformation. The influence of WT1 mutations in patients with MDS after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is unclear. We performed a retrospective analysis of 136 MDS with excess blasts 2 (MDS-EB2) patients with available WT1 status who underwent their first allo-HSCT between 2017 and 2022 in our center. There were 20 (20/136, 15%) cases in the WT1mut group and 116 (116/136, 85%) cases in the WT1 wild-type (WT1wt) group. WT1mut patients had a higher 2-year cumulative incidence of relapse (CIR) than WT1wt cases (26.2% vs. 9.4%, p = 0.037) after allo-HSCT. Multivariate analysis of relapse showed that WT1 mutations (HR, 6.0; p = 0.002), TP53 mutations (HR, 4.2; p = 0.021), and ≥ 5% blasts in bone marrow (BM) at transplantation (HR, 6.6; p = 0.004) were independent risk factors for relapse. Patients were stratified into three groups according to the risk factors. Two-year CIR differed significantly in high-, intermediate-, and low-risk groups (31.8%, 11.6%, and 0%, respectively). Hence, WT1 mutations may be related to post-transplant relapse in patients with MDS-EB2, which warrants further study.
Collapse
Affiliation(s)
- Wenwen Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Haixiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yawei Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoyu Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yonghui Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
4
|
Lübbert M, Wijermans PW, Kicinski M, Chantepie S, Van der Velden WJFM, Noppeney R, Griškevičius L, Neubauer A, Crysandt M, Vrhovac R, Luppi M, Fuhrmann S, Audisio E, Candoni A, Legrand O, Foà R, Gaidano G, van Lammeren-Venema D, Posthuma EFM, Hoogendoorn M, Giraut A, Stevens-Kroef M, Jansen JH, de Graaf AO, Efficace F, Ammatuna E, Vilque JP, Wäsch R, Becker H, Blijlevens N, Dührsen U, Baron F, Suciu S, Amadori S, Venditti A, Huls G. 10-day decitabine versus 3 + 7 chemotherapy followed by allografting in older patients with acute myeloid leukaemia: an open-label, randomised, controlled, phase 3 trial. Lancet Haematol 2023; 10:e879-e889. [PMID: 37914482 DOI: 10.1016/s2352-3026(23)00273-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Many older patients with acute myeloid leukaemia die or cannot undergo allogeneic haematopoietic stem-cell transplantation (HSCT) due to toxicity caused by intensive chemotherapy. We hypothesised that replacing intensive chemotherapy with decitabine monotherapy could improve outcomes. METHODS This open-label, randomised, controlled, phase 3 trial was conducted at 54 hospitals in nine European countries. Patients aged 60 years and older who were newly diagnosed with acute myeloid leukaemia and had not yet been treated were enrolled if they had an Eastern Cooperative Oncology Group performance status of 2 or less and were eligible for intensive chemotherapy. Patients were randomly assigned (1:1) to receive decitabine or standard chemotherapy (known as 3 + 7). For the decitabine group, decitabine (20 mg/m2) was administered for the first 10 days in the first 28-day cycle, followed by 28-day cycles consisting of 5 days or 10 days of decitabine. For the 3 + 7 group, daunorubicin (60 mg/m2) was administered over the first 3 days and cytarabine (200 mg/m2) over the first 7 days, followed by 1-3 additional chemotherapy cycles. Allogeneic HSCT was strongly encouraged. Overall survival in the intention-to-treat population was the primary endpoint. Safety was assessed in all patients who received the allocated treatment. This trial is registered at ClinicalTrials.gov, NCT02172872, and is closed to new participants. FINDINGS Between Dec 1, 2014, and Aug 20, 2019, 606 patients were randomly assigned to the decitabine (n=303) or 3 + 7 (n=303) group. Following an interim analysis which showed futility, the IDMC recommended on May 22, 2019, that the study continued as planned considering the risks and benefits for the patients participating in the study. The cutoff date for the final analysis presented here was June 30, 2021. At a median follow-up of 4·0 years (IQR 2·9-4·8), 4-year overall survival was 26% (95% CI 21-32) in the decitabine group versus 30% (24-35) in the 3 + 7 group (hazard ratio for death 1·04 [95% CI 0·86-1·26]; p=0·68). Rates of on-protocol allogeneic HSCT were similar between groups (122 [40%] of 303 patients for decitabine and 118 [39%] of 303 patients for 3+7). Rates of grade 3-5 adverse events were 254 (84%) of 302 patients in the decitabine group and 279 (94%) of 298 patients in the 3 + 7 group. The rates of grade 3-5 infections (41% [125 of 302] vs 53% [158 of 298]), oral mucositis (2% [seven of 302] vs 10% [31 of 298]) and diarrhoea (1% [three of 302] vs 8% [24 of 298]) were lower in the decitabine group than in the 3 + 7 group. Treatment-related deaths were reported for 12% (35 of 302) of patients in the decitabine group and 14% (41 of 298) in the 3 + 7 group. INTERPRETATION 10-day decitabine did not improve overall survival but showed a better safety profile compared with 3 + 7 chemotherapy in older patients with acute myeloid leukaemia eligible for intensive chemotherapy. Decitabine could be considered a better-tolerated and sufficiently efficacious alternative to 3 + 7 induction in fit older patients with acute myeloid leukaemia without favourable genetics. FUNDING Janssen Pharmaceuticals.
Collapse
Affiliation(s)
- Michael Lübbert
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.
| | - Pierre W Wijermans
- Department of Hematology, Haga Teaching Hospital, The Hague, Netherlands
| | - Michal Kicinski
- The European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Sylvain Chantepie
- Department of Hematology, Centre Hospitalo-Universitaire de Caen, Caen, France
| | | | - Richard Noppeney
- Klinik für Hämatologie und Stammzelltransplantation, University Hospital Essen, Essen, Germany
| | - Laimonas Griškevičius
- Department of Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius University, Vilnius, Lithuania
| | - Andreas Neubauer
- Department of Internal Medicine, Hematology, Oncology and Immunology, Philipps University Marburg and University Hospital Gießen and Marburg, Campus Marburg, Marburg, Germany
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostasiology and Stem Cell Transplantation, Medical Clinic IV, University Hospital RWTH Aachen, Aachen, Germany
| | - Radovan Vrhovac
- Department of Haematology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mario Luppi
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, University of Modena and Reggio Emilia, Azienda Ospedaliera Universitaria, Modena, Italy
| | - Stephan Fuhrmann
- Department of Hematology and Oncology, Helios Hospital Berlin-Buch, Kiel, Germany
| | - Ernesta Audisio
- Department of Haematology, Azienda Ospedaliera Città della Salute e della Scienza di Torino-Ospedale Molinette, Torino, Italy
| | - Anna Candoni
- Clinica Ematologica Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Olivier Legrand
- Service d'Hématologie Clinique et de Thérapie cellulaire, Hôpital Saint Antoine, APHP, Paris, France
| | - Robin Foà
- Ematologia, Dipartimento di Medicina Traslazionale e di Precisione, Sapienza Università di Roma, Rome, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | | | | | - Mels Hoogendoorn
- Department of Hematology, Medical Center Leeuwarden, Leeuwarden, Netherlands
| | - Anne Giraut
- The European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Marian Stevens-Kroef
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joop H Jansen
- Laboratory Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Aniek O de Graaf
- Laboratory Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabio Efficace
- Italian Group for Adult Hematologic Diseases (GIMEMA), Data Center and Health Outcomes Research Unit, Rome, Italy
| | | | - Jean-Pierre Vilque
- Department of Hematology, Centre Hospitalo-Universitaire de Caen, Caen, France
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Heiko Becker
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | | | - Ulrich Dührsen
- Klinik für Hämatologie und Stammzelltransplantation, University Hospital Essen, Essen, Germany
| | - Frédéric Baron
- GIGA-I3 and Centre Hospitalier Universitaire, University of Liège, Liège, Belgium
| | - Stefan Suciu
- The European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Sergio Amadori
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Gerwin Huls
- University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
5
|
Harada K. Pre-emptive and prophylactic donor lymphocyte infusion following allogeneic stem cell transplantation. Int J Hematol 2023:10.1007/s12185-023-03595-x. [PMID: 37014602 DOI: 10.1007/s12185-023-03595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Donor lymphocyte infusion (DLI) is an allogenic immunotherapy used after allogeneic hematopoietic stem cell transplantation. DLI takes advantage of the graft-versus-tumor effect induced by the infused CD3 + T cells, but may induce graft-versus-host disease. To date, DLI has been attempted to prevent hematological relapse after allogeneic hematopoietic stem cell transplantation in patients with mixed chimerism and molecular relapse (pre-emptive DLI), and as maintenance therapy in patients with high-risk hematological malignancies (prophylactic DLI). DLI response and efficacy depend on patient, disease, and DLI factors. This review discusses the efficacy and risks of DLI, with a focus on pre-emptive and prophylactic use.
Collapse
Affiliation(s)
- Kaito Harada
- Department of Hematology and Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1143, Japan.
| |
Collapse
|
6
|
Neuendorff NR, Gagelmann N, Singhal S, Meckstroth S, Thibaud V, Zhao Y, Mir N, Shih YY, Amaro DMC, Roy M, Lombardo J, Gjærde LK, Loh KP. Hypomethylating agent-based therapies in older adults with acute myeloid leukemia - A joint review by the Young International Society of Geriatric Oncology and European Society for Blood and Marrow Transplantation Trainee Committee. J Geriatr Oncol 2023; 14:101406. [PMID: 36435726 PMCID: PMC10106360 DOI: 10.1016/j.jgo.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/23/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Acute myeloid leukemia (AML) is associated with poor outcomes in older adults. A major goal of treatment is to balance quality of life and functional independence with disease control. With the approval of new, more tolerable regimens, more older adults are able to receive AML-directed therapy. Among these options are hypomethylating agents (HMAs), specifically azacitidine and decitabine. HMAs have become an integral part of AML therapy over the last two decades. These agents are used either as monotherapy or nowadays more commonly in combination with other agents such as the Bcl-2 inhibitor venetoclax. Biological AML characteristics, such as molecular and cytogenetic risk factors, play crucial roles in guiding treatment decisions. In patients with high-risk AML, HMAs are increasingly used rather than intensive chemotherapy, although further trials based on a risk-adapted approach using patient- and disease-related factors are needed. Here, we review trials and evidence for the use of HMA monotherapy and combination therapy in the management of older adults with AML. Furthermore, we discuss the use of HMAs and HMA combination therapies in AML, mechanisms of action, their incorporation into hematopoietic stem cell transplantation strategies, and their use in patients with comorbidities and reduced organ function.
Collapse
Affiliation(s)
- Nina Rosa Neuendorff
- Clinic for Hematology and Stem-Cell Transplantation, University Hospital Essen, Hufelandstrasse 55, D-45147 Essen, Germany.
| | - Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Surbhi Singhal
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shelby Meckstroth
- Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Vincent Thibaud
- Department of Hematology, Hôpital Saint-Vincent, Université Catholique de Lille, 59000 Lille, France
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Nabiel Mir
- Section of Geriatrics and Palliative Medicine, The University of Chicago Medical Center, Chicago, USA
| | - Yung-Yu Shih
- Department of Hematology and Oncology, Clinic Favoriten Vienna, Austria
| | - Danielle M C Amaro
- Department of Oncology and Hematology, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Mukul Roy
- Department of Radiation Oncology, Jaslok Hospital, Mumbai, India
| | - Joseph Lombardo
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Lars Klingen Gjærde
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kah Poh Loh
- Division of Hematology/Oncology, Department of Medicine, James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
7
|
Wang H, Wang Q, Qi J, Li X, Chu T, Qiu H, Fu C, Tang X, Ruan C, Wu D, Han Y. Appropriate pre-transplant strategy for patients with myelodysplastic syndromes receiving allogeneic haematopoietic stem cell transplantation after myeloablative conditioning. Front Immunol 2023; 14:1146619. [PMID: 36926344 PMCID: PMC10011085 DOI: 10.3389/fimmu.2023.1146619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Purpose Appropriate pre-transplant strategies in patients with myelodysplastic syndromes (MDS) remain challenging. We sought to assess the effect of different pre-transplant therapies and transplantation interval times on patient prognosis. Methods We retrospectively analysed clinical data for 371 consecutive MDS patients after myeloablative transplantation between 2007 and 2019. Results The median age of the patients was 38 years (range, 12-64 years). A total of 114 patients (31%) received supportive care (SC), 108 (29%) hypomethylating agents (HMAs), and 149 (40%) chemotherapy-based therapy before transplantation. In patients who received HMA or SC, there was no significant difference in overall survival (OS; P=0.151) or relapse-free survival (RFS; P=0.330), except that HMA-treated patients had a lower rate of non-relapse mortality (5-year NRM: 18% vs. 32%, P=0.035). However, compared with patients who received HMA, those who received chemotherapy-based therapy had a lower 5-year OS rate (56% vs. 69%, P=0.020) and a slightly higher 5-year NRM rate (28% vs. 18%, P=0.067). Compared to the delayed transplant group (transplant interval ≥6 months), the early transplant group (transplant interval <6 months) had a superior 5-year OS (66% vs. 51%, P=0.001) and a lower 5-year cumulative incidence of NRM (22% vs. 36%, P=0.001). Conclusion The findings of the study indicate that receiving an appropriate pre-transplant strategy (SC/HMA + <6 months) significantly improves OS and decreases NRM in MDS patients after myeloablative transplantation.
Collapse
Affiliation(s)
- Hong Wang
- National Clinical Research Centre for Haematologic Diseases, Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Qingyuan Wang
- National Clinical Research Centre for Haematologic Diseases, Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jiaqian Qi
- National Clinical Research Centre for Haematologic Diseases, Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xueqian Li
- National Clinical Research Centre for Haematologic Diseases, Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China
| | - Tiantian Chu
- National Clinical Research Centre for Haematologic Diseases, Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Huiying Qiu
- National Clinical Research Centre for Haematologic Diseases, Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Chengcheng Fu
- National Clinical Research Centre for Haematologic Diseases, Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Centre for Haematologic Diseases, Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Changgeng Ruan
- National Clinical Research Centre for Haematologic Diseases, Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Centre for Haematologic Diseases, Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yue Han
- National Clinical Research Centre for Haematologic Diseases, Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Yang G, Wang X, Huang S, Huang R, Wei J, Wang X, Zhang X. Generalist in allogeneic hematopoietic stem cell transplantation for MDS or AML: Epigenetic therapy. Front Immunol 2022; 13:1034438. [PMID: 36268012 PMCID: PMC9577610 DOI: 10.3389/fimmu.2022.1034438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative treatment for patients with myeloid malignancies such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, relapse and graft-versus-host disease (GvHD) still affect the survival of patients who receive allo-HSCT, and more appropriate therapeutic strategies should be applied at all stages of transplantation to prevent these adverse events. The use of epigenetics agents, such as hypomethylating agents (HMAs), has been explored to decrease the risk of relapse by epigenetic modulation, which is especially effective among AML patients with poor mutations in epigenetic regulators. Furthermore, epigenetic agents have also been regarded as prophylactic methods for GvHD management without abrogating graft versus leukemia (GvL) effects. Therefore, the combination of epigenetic therapy and HSCT may optimize the transplantation process and prevent treatment failure. Existing studies have investigated the feasibility and effectiveness of using HMAs in the pretransplant, transplant and posttransplant stages among MDS and AML patients. This review examines the application of HMAs as a bridge treatment to reduce the tumor burden and the determine appropriate dose during allo-HSCT. Within this review, we also examine the efficacy and safety of HMAs alone or HMA-based strategies in posttransplant settings for MDS and AML. Finally, we provide an overview of other epigenetic candidates, which have been discussed in the nontransplant setting.
Collapse
Affiliation(s)
- Guancui Yang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiang Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiqin Huang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Xi Zhang, ; Xiaoqi Wang,
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Xi Zhang, ; Xiaoqi Wang,
| |
Collapse
|
9
|
Li X, Wang W, Zhang X, Wu Y. Azacitidine and donor lymphocyte infusion for patients with relapsed acute myeloid leukemia and myelodysplastic syndromes after allogeneic hematopoietic stem cell transplantation: A meta-analysis. Front Oncol 2022; 12:949534. [PMID: 35992868 PMCID: PMC9389555 DOI: 10.3389/fonc.2022.949534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Background For patients with relapsed acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) after allogeneic hematopoietic stem cell transplantation (allo-HSCT), azacitidine with donor lymphocyte infusion (DLI) is a feasible option to perform a preemptive or salvage treatment. However, its efficacy lacked comprehensive analysis, and this study aimed to fill this gap. Methods We searched potential studies in PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials. Thirteen studies involving 811 patients were analyzed. The inverse variance method was used to calculate the pooled proportion and 95% confidence interval (CI). Subgroup analysis was performed to explore the source of heterogeneity. Results The rate of pooled complete remission + partial remission (CR + PR), CR, and 2-year overall survival (OS) were 30% (95% CI: 22%-39%), 21% (95% CI: 16%-28%), and 31% (95% CI: 27%-35%), respectively. The pooled acute graft-versus-host disease (GvHD) and chronic GvHD rates were 15% (95% CI: 9%-23%) and 14% (95% CI: 8%-23%), respectively. Adverse cytogenetics and a higher percentage of bone marrow (BM) blasts at relapse were correlated with worse CR + PR and CR (interaction p < 0.05). Higher 2-year OS was found in patients with lower BM blasts at relapse or a longer time from allo-HSCT to relapse (interaction p < 0.05). Furthermore, the preemptive treatment for molecular relapse/minimal residual disease positivity resulted in much better outcomes than that for hematological relapse, both in terms of CR and 2-year OS (interaction p < 0.001). Conclusion The regimen of azacitidine and DLI could safely improve the outcomes of relapsed AML/MDS after allo-HSCT, especially in those with signs of early relapse. The administration of targeted medicines in azacitidine-based therapies may further improve the outcomes of relapsed AML/MDS.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Wang
- Chinese Evidence-based Medicine Center and Cochrane China Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Zhang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Wang Y, Sun Y, Xie J, Hu J, Liu N, Chen J, Li B, Lan S, Niu J, Wang L, Qiao Z, Zhang Y, Ren J, Zhang B, Qian L, Tan Y, Dou L, Li Y, Hu L. Allogeneic haematopoietic stem cell transplantation with decitabine-containing preconditioning regimen in TP53-mutant myelodysplastic syndromes: A case study. Front Oncol 2022; 12:928324. [PMID: 35924157 PMCID: PMC9339648 DOI: 10.3389/fonc.2022.928324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Myelodysplastic syndrome (MDS) with TP53 mutations has a poor prognosis after transplantation, and novel therapeutic means are urgently needed. Decitabine (Dec) monotherapy has demonstrated improved overall response rates in MDS and acute myeloid leukaemia, although these responses were not durable. This study aimed to preliminary evaluate the efficacy of a Dec-containing allogeneic haematopoietic stem cell transplantation (allo-HSCT) preconditioning regimen in TP53-mutant MDS. Nine patients with TP53-mutant myelodysplastic syndromes received the decitabine-containing preconditioning regimen and subsequent myeloablative allo-HCT between April 2013 and September 2021 in different centres. At a median follow-up of 42 months (range, 5 to 61 months), the overall survival (OS) was 89% (8/9), progression-free survival (PFS) was 89% (8/9), and relapse incidence was 11.1%. The incidence of severe acute (grade III-IV) graft-versus-host disease (GVHD) was 22.2% (2/9) and that of chronic moderate-to-severe GVHD was 11.1% (1/9). The 1-year GVHD-free/relapse-free survival (GRFS) was 56% (5/9). In conclusion, we found real-world clinical data that supports the use of a Dec-containing preconditioning regimen before allo-HSCT for possible improved outcomes in TP53-mutant MDS patients; there is therefore an urgent call for an in-depth exploration of the involved mechanism to confirm these preliminary findings.
Collapse
Affiliation(s)
- Yuxin Wang
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yao Sun
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jing Xie
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jiangwei Hu
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Na Liu
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jianlin Chen
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Botao Li
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Sanchun Lan
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jingwen Niu
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Lei Wang
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Zhuoqing Qiao
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yu Zhang
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jing Ren
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Bin Zhang
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Liren Qian
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yehui Tan
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Liping Dou
- Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuhang Li
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Liangding Hu
- Senior Department of Hematology, The Fifth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
11
|
Wang QY, Liu HH, Dong YJ, Liang ZY, Yin Y, Liu W, Wang QY, Wang Q, Sun YH, Xu WL, Han N, Li Y, Ren HY. Low-Dose 5-Aza and DZnep Alleviate Acute Graft- Versus-Host Disease With Less Side Effects Through Altering T-Cell Differentiation. Front Immunol 2022; 13:780708. [PMID: 35281001 PMCID: PMC8907421 DOI: 10.3389/fimmu.2022.780708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Previous studies showed that hypomethylating agents (HMAs) could alleviate acute graft-versus-host disease (aGvHD), but affect engraftment after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The combination of two different HMAs in lower doses might overcome this problem. This study aimed to evaluate the treatment effect of the combination of two HMAs—azacitidine (5-Aza) and histone H3K27 methyltransferase inhibitor 3-deazaneplanocin (DZNep)—for the prophylaxis of aGvHD after allo-HSCT and to explore the possible mechanisms. Methods We first optimized the concentrations of individual and combinational 5-Aza and DZNep treatments to ensure no obvious toxicities on activated T cells by evaluating T-cell proliferation, viability, and differentiation. A mouse model of aGvHD was then established to assess the prophylactic efficacy of 5-Aza, DZNep, and their combination on aGvHD. The immunomodulatory effect on T cells and the hematopoietic reconstruction were assessed. Additionally, RNA sequencing (RNA-seq) was performed to identify the underlying molecular mechanisms. Results Compared with single treatments, the in vitro application of 5-Aza with DZNep could more powerfully reduce the production of T helper type 1 (Th1)/T cytotoxic type 1 (Tc1) cells and increase the production of regulatory T cells (Tregs). In an allo-HSCT mouse model, in vivo administration of 5-Aza with DZNep could enhance the prophylactic effect for aGvHD compared with single agents. The mechanism study demonstrated that the combination of 5-Aza and DZNep in vivo had an enhanced effect to inhibit the production of Th1/Tc1, increase the proportions of Th2/Tc2, and induce the differentiation of Tregs as in vitro. RNA-seq analysis revealed the cytokine and chemokine pathways as one mechanism for the alleviation of aGvHD with the combination of 5-Aza and DZNep. Conclusion The combination of 5-Aza and DZNep could enhance the prophylactic effect for aGvHD by influencing donor T-cell differentiation through affecting cytokine and chemokine pathways. This study shed light on the effectively prophylactic measure for aGvHD using different epigenetic agent combinations.
Collapse
Affiliation(s)
- Qing Ya Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Hui Hui Liu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yu Jun Dong
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Ze Yin Liang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Qing Yun Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Qian Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yu Hua Sun
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Wei Lin Xu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Na Han
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Han Yun Ren
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
12
|
Comparative analysis of Decitabine intensified BUCY2 and BUCY2 conditioning regimen for high-risk MDS patients undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2022; 57:1063-1071. [PMID: 35459877 DOI: 10.1038/s41409-022-01645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
The optimal conditioning regimen for high-risk myelodysplastic syndrome (MDS) patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains elusive. This study aimed to explore the anti-leukemic efficacy and toxicity of Decitabine (Dec, 20 mg/m2/day, day -11 to -7) intensified BUCY2 vs. traditional regimen in high-risk MDS population. We retrospectively evaluated 93 consecutive high-risk MDS patients undergoing allo-HSCT in our institution, comparing discrepancies in clinical characteristics and outcomes between cases using Dec-intensified BUCY2 (n = 52) and traditional BUCY2 regimen (n = 41). Three-year cumulative incidence of relapse after Dec-intensified BUCY2 conditioning was remarkably lower than that of patients using BUCY2 regimen (20.2% vs. 39.0%, p = 0.034). Overall survival and disease-free survival at 3 years for Dec-intensified BUCY2 group were 70.2% and 64.9%, respectively, which were significantly improved when compared with BUCY2 group (51.1% and 43.9%, p = 0.031 and p = 0.027). Furthermore, overall survival and disease-free survival for MDS cases receiving cytoreduction therapy were dramatically better than patients in non-cytoreduction group (p = 0.041, p = 0.047). In summary, the Dec-intensified conditioning regimen could be effective and feasible, providing prominent recurrence control with moderate toxicity for high-risk MDS patients. These patients might also benefit from pre-transplant cytoreductive therapeutic schedules. Larger randomized controlled trials are still needed to further confirm these conclusions.
Collapse
|
13
|
Li Z, Shi W, Lu X, Lu H, Cao X, Tang L, Yan H, Zhong Z, You Y, Xia L, Hu Y, Wang H. Decitabine-Intensified Modified Busulfan/Cyclophosphamide Conditioning Regimen Improves Survival in Acute Myeloid Leukemia Patients Undergoing Related Donor Hematopoietic Stem Cell Transplantation: A Propensity Score Matched Analysis. Front Oncol 2022; 12:844937. [PMID: 35371981 PMCID: PMC8966032 DOI: 10.3389/fonc.2022.844937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
To identify the benefit of decitabine (Dec)-intensified myeloablative conditioning on the outcomes of patients with acute myeloid leukemia (AML) after related donor hematopoietic stem cell transplantation (HSCT), we performed a retrospective matched-pair study from a pool of 156 patients to evaluate Dec [20 mg/m2/day intravenously (i.v.) on days -11 to -7]-intensified modified busulfan/cyclophosphamide (mBuCy) conditioning regimen vs. mBuCy regimen in 92 AML patients, with 46 patients in each cohort. The cumulative incidence of grade II-IV acute graft-versus-host disease (aGVHD) was lower in the Dec group (15.2% ± 0.3% vs. 32.6% ± 0.5%, P = 0.033). Compared with mBuCy group (15.5% ± 0.3%), a significantly higher proportion of limited chronic GVHD (cGVHD) in Dec group (35% ± 0.6%) was observed (P = 0.025). Dec-intensified mBuCy conditioning was associated with better 2-year overall survival (OS) and GVHD-free relapse-free survival (GRFS) (81% ± 6.2% vs. 59.4% ± 7.5%, P = 0.03; 58.7% ± 8.1% vs. 40.9% ± 7.3%, P = 0.042; respectively). Our results also elucidated that the Dec group had better 2-year OS and lower 2-year cumulative incidence of relapse (CIR) in patients acquiring haploidentical HSCT than that of the mBuCy group (84.8% ± 7.1% vs. 58.2% ± 10.3%, P = 0.047; 17.9% ± 0.8% vs. 40.0% ± 1.0%, P = 0.036; respectively), which did not increase the treatment-related mortality and regimen-associated toxicities. Dec-intensified myeloablative regimen and high-risk stratification were the variables associated with OS, leukemia-free survival (LFS), and GRFS in multivariate analysis. In high-risk patients, no differences were found in CIR, OS, LFS, and GRFS between the two groups. These data indicated that Dec-intensified mBuCy conditioning regimen was associated with better survival than mBuCy regimen in AML patients, especially in patients undergoing haploidentical HSCT.
Collapse
Affiliation(s)
- Ziying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiena Cao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaodong Zhong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Ciotti G, Marconi G, Martinelli G. Hypomethylating Agent-Based Combination Therapies to Treat Post-Hematopoietic Stem Cell Transplant Relapse of Acute Myeloid Leukemia. Front Oncol 2022; 11:810387. [PMID: 35071015 PMCID: PMC8770807 DOI: 10.3389/fonc.2021.810387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Allogeneic stem cell transplantation still represents the best curative option for most patients with acute myeloid leukemia, but relapse is still dramatically high. Due to their immunologic activity and safety profile, hypomethylating agents (HMAs) represent an interesting backbone for combination therapies. This review reports mechanism of action, safety, and efficacy data on combination strategies based on HMAs in the setting of post-allogeneic stem cell transplant relapse. Several studies highlighted how HMAs and donor lymphocyte infusion (DLI) combination may be advantageous. The combination strategy of HMA with venetoclax, possibly in association with DLI, is showing excellent results in terms of response rate, including molecular responses. Lenalidomide, despite its well-known high rates of severe graft-versus-host disease in post-transplant settings, is showing an acceptable safety profile in association with HMAs with a competitive response rate. Regarding FLT3 internal tandem duplication (ITD) mutant AML, tyrosine kinase inhibitors and particularly sorafenib have promising results as monotherapy and in combination with HMAs. Conversely, combination strategies with gemtuzumab ozogamicin or immune checkpoint inhibitors did not show competitive response rates and seem to be currently less attractive strategies. Associations with histone deacetylase inhibitors and isocitrate dehydrogenase 1 and 2 (IDH1/2) inhibitors represent new possible strategies that need to be better investigated.
Collapse
Affiliation(s)
- Giulia Ciotti
- Ematologia, Dipartimento di Medicina Traslazionale e di Precisione, Università La Sapienza, Azienda Ospedaliera Policlinico Umberto I, Rome, Italy
| | - Giovanni Marconi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
15
|
The Evolving Role of Allogeneic Stem Cell Transplant in the Era of Molecularly Targeted Agents. Cancer J 2022; 28:78-84. [DOI: 10.1097/ppo.0000000000000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Li Y, Cheng L, Xu C, Chen J, Hu J, Liu N, Lan S, Xie J, Sun T, Wang L, Zhang Y, Sun Y, Chen S, Hu L. A Retrospective Observation of Treatment Outcomes Using Decitabine-Combined Standard Conditioning Regimens Before Transplantation in Patients With Relapsed or Refractory Acute Myeloid Leukemia. Front Oncol 2021; 11:702239. [PMID: 34504785 PMCID: PMC8421765 DOI: 10.3389/fonc.2021.702239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Hypomethylating agents, decitabine (DAC) and azacitidine, can act as prophylactic and pre-emptive approaches after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and a non-intensive bridging approach before allo-HSCT. However, they are rarely used as a part of conditioning regimens in patients with relapsed or refractory acute myeloid leukemia (AML). This retrospectively study included a total of 65 patients (median, 37; range, 13–63) with relapsed or refractory AML who were treated by allo-HSCT after myeloablative conditioning regimens without or with DAC (high-dose DAC schedule, 75 mg/m2 on day −9 and 50 mg/m2 on day −8; low-dose DAC schedule, 25 mg/m2/day on day −10 to −8). DAC exerted no impact on hematopoietic reconstitution. However, patients who were treated with the high-dose DAC schedule had significantly higher incidence of overall survival (OS, 50.0%) and leukemia-free survival (LFS, 35.0%), and lower incidence of relapse (41.1%) and grade II–IV acute graft versus host disease (aGVHD, 10.0%) at 3 years, when compared with those treated with standard conditioning regimens or with the low-dose DAC schedule. In conclusion, high-dose DAC combined with standard conditioning regimens before allo-HSCT is feasible and efficient and might improve outcomes of patients with relapsed or refractory AML, which provides a potential approach to treat these patients.
Collapse
Affiliation(s)
- Yuhang Li
- Department of Hematology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Longcan Cheng
- Department of Hematology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Chen Xu
- Department of Hematology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianlin Chen
- Department of Hematology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiangwei Hu
- Department of Hematology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Na Liu
- Department of Hematology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sanchun Lan
- Department of Hematology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Xie
- Department of Hematology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ting Sun
- Department of Hematology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Wang
- Department of Hematology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Zhang
- Department of Hematology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yao Sun
- Department of Hematology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuiping Chen
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liangding Hu
- Department of Hematology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
van der Velden WJFM, Choi G, de Witte MA, van der Meer A, de Haan AFJ, Blijlevens NMA, Huls G, Kuball J, van Dorp S. Anti-thymocyte globulin with CsA and MMF as GVHD prophylaxis in nonmyeloablative HLA-mismatched allogeneic HCT. Bone Marrow Transplant 2021; 56:2651-2655. [PMID: 34148060 PMCID: PMC8214052 DOI: 10.1038/s41409-021-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
Nonmyeloablative regimens are used for allogeneic hematopoietic cell transplantation (HCT) of older or medically unfit patients, but successful outcome is still hindered by graft-versus-host disease (GVHD), especially in the setting of HLA-mismatched HCT. New GVHD prophylaxis strategies are emerging, including the triple drug strategy, that improve the GVHD-free and relapse-free survival (GRFS). Because the impact of ATG in HLA-mismatched Flu-TBI-based nonmyeloablative HCT has not been investigated, we did a retrospective analysis in three Dutch centers. 67 patients were evaluable, with a median age of 56 years. Overall survival, relapse-free survival and GRFS at 4 years were 52%, 43%, and 38%, respectively. NRM findings and cumulative incidence of relapse at 4 years were 26% and 31%, respectively. At 1-year grade II-IV had occurred in 40% of the patients, and the incidence of moderate-severe chronic GVHD incidence was 16%. Acknowledging the limitations of retrospective analyses, we conclude that the use of ATG for HLA-mismatched truly nonmyeloablative Flu-TBI HCT is feasible and results in acceptable long term outcomes, especially with regards to GRFS. We consider ATG in combination with cyclosporin and mycophenolate mofetil as an alternative for the triple drug strategy that uses sirolimus for GVHD prophylaxis in this particular setting.
Collapse
Affiliation(s)
| | - Goda Choi
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Moniek A de Witte
- Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arnold van der Meer
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anton F J de Haan
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jürgen Kuball
- Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Suzanne van Dorp
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Cruijsen M, Hilberink JR, van der Velden WJFM, Jansen JH, Bär B, Schaap NPM, de Haan A, Mulder AB, de Groot MR, Baron F, Vellenga E, Blijlevens NNM, Huls G. Low relapse risk in poor risk AML after conditioning with 10-day decitabine, fludarabine and 2 Gray TBI prior to allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2021; 56:1964-1970. [PMID: 33824442 DOI: 10.1038/s41409-021-01272-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 11/10/2022]
Abstract
Patients with poor risk acute myeloid leukemia (AML) have a dismal outcome. We hypothesized that combining decitabine with a standard non-myeloablative (NMA) conditioning regimen prior to allogeneic hematopoietic cell transplantation (allo HCT), might decrease the relapse incidence. We conducted a multicenter prospective phase II study (NCT02252107) with 10-day decitabine (20 mg/m2/day) integrated in a standard non-myeloablative conditioning regimen (3 days fludarabine 30 mg/m2 with 2 Gray total body irradiation (TBI)). Patients with AML ≥ 18 years in 1st (in)complete remission (CR/CRi) with a poor or very poor risk profile, as defined by the HOVON-132 protocol, were eligible. Results: Forty-six patients (median age 60; range 23-74) were included. Median follow up time was 44 months (range 31-65 months). The cumulative 1-year incidence of relapse and NRM were respectively 23% and 11%. Incidence of grade III-IV acute graft-vs-host-disease (GVHD) and severe chronic GVHD were 13% and 20%, respectively. One-year OS was 70%. Application of ELN 2017 risk classification to the study cohort revealed a cumulative one-year relapse rate of respectively 31% and 13% for the adverse and intermediate risk patients. To conclude, the 10-day DEC/FLU/TBI conditioning regimen prior to allo HCT in poor risk AML patients is effective and feasible.
Collapse
Affiliation(s)
- Marjan Cruijsen
- Department of Hematology, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands. .,Catharina Hospital Eindhoven, Eindhoven, Netherlands.
| | - Jacobien R Hilberink
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Joop H Jansen
- Department of Laboratory Medicine, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Brigitte Bär
- Department of Hematology, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Nicolaas P M Schaap
- Department of Hematology, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Anton de Haan
- Department for Health Evidence, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - André B Mulder
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marco R de Groot
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Frédéric Baron
- Department of Hematology, CHU and University of Liège, Liège, Belgium
| | - Edo Vellenga
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nicole N M Blijlevens
- Department of Hematology, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
19
|
Drozd-Sokołowska J, Karakulska-Prystupiuk E, Biecek P, Kobylińska K, Piekarska A, Dutka M, Waszczuk-Gajda A, Mądry K, Kopińska A, Gołos A, Góra-Tybor J, Szwedyk P, Bołkun Ł, Czyż A, Giebel S, Basak GW, Dwilewicz-Trojaczek J. Azacitidine for relapse of acute myeloid leukemia or myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation, multicenter PALG analysis. Eur J Haematol 2021; 107:129-136. [PMID: 33764578 DOI: 10.1111/ejh.13628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Relapse of myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) belongs to the major causes of treatment failure. METHODS Retrospective multicenter analysis of patients diagnosed with AML or MDS who had hematological relapse after allo-HSCT and were treated with azacitidine for this indication. RESULTS Twenty-three patients receiving azacitidine as the first treatment of relapse (Group_1) and 8 patients receiving azacitidine after other treatment of relapse (Group_2) were included. There were 68% males, median age at initiation of azacitidine was 53 years (15-66). Median time to relapse was 3.5 months and 6.3 months in Group_1 and Group_2, respectively; median time from relapse to azacitidine 0.2 and 2.3 months. Azacitidine 75 mg/m2 , days 1-7, was administered in 78% and 75% of patients in Group_1 and Group_2, concomitant DLI in 48% and 50%. With median follow-up of 4.7 and 13.6 months, the median overall survival was 5.9 and 9.5 months. 17% and 37.5% patients proceeded to salvage allo-HSCT, with median OS of 11.6 months and not reached respectively. CONCLUSIONS Azacitidine treatment for hematological relapse is associated with poor outcome; nevertheless, a proportion of patients may benefit from it, including patients receiving subsequent salvage allo-HSCT.
Collapse
Affiliation(s)
- Joanna Drozd-Sokołowska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Karakulska-Prystupiuk
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Kobylińska
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Agnieszka Piekarska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Dutka
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Waszczuk-Gajda
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Mądry
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Kopińska
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Gołos
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Paweł Szwedyk
- Department of Hematology, Ludwik Rydygier Hospital, Cracow, Poland
| | - Łukasz Bołkun
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Czyż
- Department of Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Sebastian Giebel
- Maria Sklodowska-Curie Institute-Cancer Center, Gliwice Branch, Gliwice, Poland
| | - Grzegorz Władysław Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jadwiga Dwilewicz-Trojaczek
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Hilberink JR, Morsink LM, van der Velden WJ, Mulder AB, Hazenberg CL, de Groot M, Choi G, Schuringa JJ, Meijer K, Blijlevens NM, Ammatuna E, Huls G. Pretransplantation MRD in Older Patients With AML After Treatment With Decitabine or Conventional Chemotherapy. Transplant Cell Ther 2021; 27:246-252. [DOI: 10.1016/j.jtct.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/25/2022]
|
21
|
Wong KK, Hassan R, Yaacob NS. Hypomethylating Agents and Immunotherapy: Therapeutic Synergism in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Front Oncol 2021; 11:624742. [PMID: 33718188 PMCID: PMC7947882 DOI: 10.3389/fonc.2021.624742] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Decitabine and guadecitabine are hypomethylating agents (HMAs) that exert inhibitory effects against cancer cells. This includes stimulation of anti-tumor immunity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients. Treatment of AML and MDS patients with the HMAs confers upregulation of cancer/testis antigens (CTAs) expression including the highly immunogenic CTA NY-ESO-1. This leads to activation of CD4+ and CD8+ T cells for elimination of cancer cells, and it establishes the feasibility to combine cancer vaccine with HMAs to enhance vaccine immunogenicity. Moreover, decitabine and guadecitabine induce the expression of immune checkpoint molecules in AML cells. In this review, the accumulating knowledge on the immunopotentiating properties of decitabine and guadecitabine in AML and MDS patients are presented and discussed. In summary, combination of decitabine or guadecitabine with NY-ESO-1 vaccine enhances vaccine immunogenicity in AML patients. T cells from AML patients stimulated with dendritic cell (DC)/AML fusion vaccine and guadecitabine display increased capacity to lyse AML cells. Moreover, decitabine enhances NK cell-mediated cytotoxicity or CD123-specific chimeric antigen receptor-engineered T cells antileukemic activities against AML. Furthermore, combination of either HMAs with immune checkpoint blockade (ICB) therapy may circumvent their resistance. Finally, clinical trials of either HMAs combined with cancer vaccines, NK cell infusion or ICB therapy in relapsed/refractory AML and high-risk MDS patients are currently underway, highlighting the promising efficacy of HMAs and immunotherapy synergy against these malignancies.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
22
|
Assi R, Masri N, Abou Dalle I, El-Cheikh J, Bazarbachi A. Post-Transplant Maintenance Therapy for Patients with Acute Myeloid Leukemia: Current Approaches and the Need for More Trials. J Blood Med 2021; 12:21-32. [PMID: 33531851 PMCID: PMC7847363 DOI: 10.2147/jbm.s270015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Relapse rates following allogeneic stem cell transplantation for acute myeloid leukemia remain unacceptably high and a major cause of death. Maintenance therapies post-transplant administered either to patients with impending relapse or at high risk of relapse could present a strategy to improve survival and overall outcomes. With the increasing use of molecular and genomic characterization of the disease, more novel therapies became available as maintenance strategies. These options were, however, hindered by excessive toxicities, mostly hematologic, especially with the use of myeloablative conditioning regimens. Several key questions have also emerged including the efficacy of these therapies, the duration of maintenance, as well as the potential modulation of the graft and the immune microenvironment. These issues are further complicated by the paucity of well-designed prospective randomized clinical trials evaluating these agents. Future directions in this field should include better risk stratification and patient selection based on assays of minimal residual disease, as well as the incorporation of novel targets and pathways of leukemogenesis. In this article, we highlight the current evidence behind the use of post-transplant maintenance therapy, the optimal patient and disease selection, as well as the challenges faced by these strategies in an area that remains quite controversial. We will focus on therapies targeting leukemia stem cells that directly or indirectly modulate the allografted immune microenvironment and augment the graft-versus-leukemia impact.
Collapse
Affiliation(s)
- Rita Assi
- Division of Hematology-Oncology, Lebanese American University and Lebanese American University Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Nohad Masri
- Division of Hematology-Oncology, Lebanese American University and Lebanese American University Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Iman Abou Dalle
- Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jean El-Cheikh
- Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Bazarbachi
- Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
23
|
Jiang EL. [How I treat myelodysplastic syndromes with allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:10-14. [PMID: 33677862 PMCID: PMC7957254 DOI: 10.3760/cma.j.issn.0253-2727.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 11/15/2022]
Affiliation(s)
- E L Jiang
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin 300020, China
| |
Collapse
|
24
|
Yao W, Chu X, Fang X, Zhu X, Tang B, Wan X, Geng L, Tong J, Song K, Zhang X, Qiang P, Sun G, Liu H, Sun Z. Decitabine prior to salvaged cord blood transplantation for acute myeloid leukaemia/myelodysplastic syndrome not in remission. J Clin Pharm Ther 2020; 45:1372-1381. [PMID: 33010180 DOI: 10.1111/jcpt.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 11/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Many refractory/relapsed haematological malignancies, in non-remission state, still have poor prognosis even after allogeneic haematopoietic stem cell transplantation. Recently, decitabine or umbilical cord blood transplantation (UCBT) seemed to be effective in these patients. However, few studies have added decitabine to myeloablative conditioning regimens for UCBT in patients with haematological malignancies not in remission. Therefore, the objective was to evaluate the clinical outcomes of patients with refractory/relapsed acute myeloid leukaemia (AML) or myelodysplastic syndrome (MDS) using decitabine as part of a myeloablative conditioning regimen prior to salvaged unrelated UCBT at our centre. METHODS We enrolled 20 consecutive patients with refractory/relapsed AML/MDS between 2013 and 2018. All patients were in non-remission state before transplantation. All transplants were performed with decitabine as part of the myeloablative conditioning regimen, which was decitabine + fludarabine/busulfan/cyclophosphamide. RESULTS AND DISCUSSION All patients achieved neutrophil and platelet engraftment. Incidence of grade III/IV acute graft-vs-host disease (GVHD) was 20.0%, which was also decreased compared to non-decitabine group (P = .025). The median follow-up time after UCBT was 29 months (range 14-64 months). The 2-year probability of GVHD-free relapse-free survival (GRFS) was higher in the decitabine group. Univariate showed that the decitabine group was associated with a higher GRFS than the non-decitabine group. The estimated probability of overall survival and relapse was 55% and 20.0%, respectively. WHAT IS NEW AND CONCLUSIONS Our results suggest that addition of decitabine as part of the myeloablative conditioning regimen prior to UCBT for refractory/relapsed AML/MDS in patients who are not in remission is safe and might be an effective treatment option.
Collapse
Affiliation(s)
- Wen Yao
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Sciences and Technology of China, Hefei, Anhui, P. R. China
| | - Xiandeng Chu
- Department of Hematology, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, P. R. China
| | - Xinchen Fang
- Central Laboratory of Medical Research Centre, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Sciences and Technology of China, Hefei, Anhui, P. R. China
| | - Baolin Tang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Sciences and Technology of China, Hefei, Anhui, P. R. China
| | - Xiang Wan
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Sciences and Technology of China, Hefei, Anhui, P. R. China
| | - Liangquan Geng
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Sciences and Technology of China, Hefei, Anhui, P. R. China
| | - Juan Tong
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Sciences and Technology of China, Hefei, Anhui, P. R. China
| | - Kaidi Song
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Sciences and Technology of China, Hefei, Anhui, P. R. China
| | - Xuhan Zhang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Sciences and Technology of China, Hefei, Anhui, P. R. China
| | - Ping Qiang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Sciences and Technology of China, Hefei, Anhui, P. R. China
| | - Guangyu Sun
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Sciences and Technology of China, Hefei, Anhui, P. R. China
| | - Huilan Liu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Sciences and Technology of China, Hefei, Anhui, P. R. China
| | - Zimin Sun
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Sciences and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
25
|
Baek DW, Kim J, Cho HJ, Moon JH, Sohn SK. Hypomethylating agent-based post-transplant strategies to maximize the outcome of high-risk acute myeloid leukemia after allogeneic stem cell transplantation. Expert Rev Hematol 2020; 13:959-969. [PMID: 32731765 DOI: 10.1080/17474086.2020.1804355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Clinical outcomes of patients diagnosed with high-risk acute myeloid leukemia (AML) are poor, and relapse or refractoriness is main cause of treatment failure, even in those who underwent standard allogeneic stem cell transplantation (allo-SCT). Therefore, innovative or additional approaches are necessary to overcome refractoriness to the graft-versus-leukemia (GVL) effect immediately after allo-SCT. AREAS COVERED Hypomethylating agents (HMA) present a feasible option that can be adopted during the post-transplant phase. Moreover, combination strategies based on HMA may induce a synergistic effect by promoting anti-leukemic effects that overcome residual leukemic burden, and it is a well-tolerated therapeutic option for high-risk disease. Relevant literatures published in the last 30 years were searched from PubMed to review the topic of AML, allo-SCT, and HMAs. EXPERT OPINION Post-transplant therapy is strongly needed to improve the outcomes of allogeneic transplantation for certain AML patients classified with high-risk disease. In that sense, prophylactic and preemptive HMAs are a promising additive therapy for allogeneic recipients.
Collapse
Affiliation(s)
- Dong Won Baek
- Department of Hematology/Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University , Daegu, South Korea
| | - Juhyung Kim
- Department of Hematology/Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University , Daegu, South Korea
| | - Hee Jeong Cho
- Department of Hematology/Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University , Daegu, South Korea
| | - Joon Ho Moon
- Department of Hematology/Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University , Daegu, South Korea
| | - Sang Kyun Sohn
- Department of Hematology/Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University , Daegu, South Korea
| |
Collapse
|
26
|
van Ens D, Mousset CM, Hutten TJA, van der Waart AB, Campillo-Davo D, van der Heijden S, Vodegel D, Fredrix H, Woestenenk R, Parga-Vidal L, Jansen JH, Schaap NPM, Lion E, Dolstra H, Hobo W. PD-L1 siRNA-mediated silencing in acute myeloid leukemia enhances anti-leukemic T cell reactivity. Bone Marrow Transplant 2020; 55:2308-2318. [PMID: 32528120 DOI: 10.1038/s41409-020-0966-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is an immune-susceptible malignancy, as demonstrated by its responsiveness to allogeneic stem cell transplantation (alloSCT). However, by employing inhibitory signaling pathways, including PD-1/PD-L1, leukemia cells suppress T cell-mediated immune attack. Notably, impressive clinical efficacy has been obtained with PD-1/PD-L1 blocking antibodies in cancer patients. Yet, these systemic treatments are often accompanied by severe toxicity, especially after alloSCT. Here, we investigated RNA interference technology as an alternative strategy to locally interfere with PD-1/PD-L1 signaling in AML. We demonstrated efficient siRNA-mediated PD-L1 silencing in HL-60 and patients' AML cells. Importantly, WT1-antigen T cell receptor+ PD-1+ 2D3 cells showed increased activation toward PD-L1 silenced WT1+ AML. Moreover, PD-L1 silenced AML cells significantly enhanced the activation, degranulation, and IFN-γ production of minor histocompatibility antigen-specific CD8+ T cells. Notably, PD-L1 silencing was equally effective as PD-1 antibody blockade. Together, our study demonstrates that PD-L1 silencing may be an effective strategy to augment AML immune-susceptibility. This provides rationale for further development of targeted approaches to locally interfere with immune escape mechanisms in AML, thereby minimizing severe toxicity. In combination with alloSCT and/or adoptive T cell transfer, this strategy could be very appealing to boost graft-versus-leukemia immunity and improve outcome in AML patients.
Collapse
Affiliation(s)
- Diede van Ens
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte M Mousset
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tim J A Hutten
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anniek B van der Waart
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sanne van der Heijden
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Denise Vodegel
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hanny Fredrix
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rob Woestenenk
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Loreto Parga-Vidal
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicolaas P M Schaap
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Harry Dolstra
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
27
|
Snyder KJ, Zitzer NC, Gao Y, Choe HK, Sell NE, Neidemire-Colley L, Ignaci A, Kale C, Devine RD, Abad MG, Pietrzak M, Wang M, Lin H, Zhang YW, Behbehani GK, Jackman JE, Garzon R, Vaddi K, Baiocchi RA, Ranganathan P. PRMT5 regulates T cell interferon response and is a target for acute graft-versus-host disease. JCI Insight 2020; 5:131099. [PMID: 32191634 DOI: 10.1172/jci.insight.131099] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a T cell-mediated immunological disorder and the leading cause of nonrelapse mortality in patients who receive allogeneic hematopoietic cell transplants. Based on recent observations that protein arginine methyltransferase 5 (PRMT5) and arginine methylation are upregulated in activated memory T cells, we hypothesized that PRMT5 is involved in the pathogenesis of aGVHD. Here, we show that PRMT5 expression and enzymatic activity were upregulated in activated T cells in vitro and in T cells from mice developing aGVHD after allogeneic transplant. PRMT5 expression was also upregulated in T cells of patients who developed aGVHD after allogeneic hematopoietic cell transplant compared with those who did not develop aGVHD. PRMT5 inhibition using a selective small-molecule inhibitor (C220) substantially reduced mouse and human allogeneic T cell proliferation and inflammatory IFN-γ and IL-17 cytokine production. Administration of PRMT5 small-molecule inhibitors substantially improves survival, reducing disease incidence and clinical severity in mouse models of aGVHD without adversely affecting engraftment. Importantly, we show that PRMT5 inhibition retained the beneficial graft-versus-leukemia effect by maintaining cytotoxic CD8+ T cell responses. Mechanistically, we show that PRMT5 inhibition potently reduced STAT1 phosphorylation as well as transcription of proinflammatory genes, including interferon-stimulated genes and IL-17. Additionally, PRMT5 inhibition deregulates the cell cycle in activated T cells and disrupts signaling by affecting ERK1/2 phosphorylation. Thus, we have identified PRMT5 as a regulator of T cell responses and as a therapeutic target in aGVHD.
Collapse
Affiliation(s)
- Katiri J Snyder
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Nina C Zitzer
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Hannah K Choe
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Natalie E Sell
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Anora Ignaci
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Charuta Kale
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Raymond D Devine
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Min Wang
- Prelude Therapeutics, Wilmington, Delaware, USA
| | - Hong Lin
- Prelude Therapeutics, Wilmington, Delaware, USA
| | | | - Gregory K Behbehani
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Kris Vaddi
- Prelude Therapeutics, Wilmington, Delaware, USA
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| |
Collapse
|
28
|
Loke J, Malladi R, Moss P, Craddock C. The role of allogeneic stem cell transplantation in the management of acute myeloid leukaemia: a triumph of hope and experience. Br J Haematol 2020; 188:129-146. [PMID: 31823351 PMCID: PMC6972492 DOI: 10.1111/bjh.16355] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acute myeloid leukaemia (AML) is the commonest indication for allogeneic stem cell transplantation (allo-SCT) worldwide. The accumulated experience of allografting in AML over the last four decades has provided critical insights into both the contribution of the conditioning regimen and the graft-versus-leukaemia effect to the curative potential of the most common form of immunotherapy utilised in standard clinical practice. Coupled with advances in donor availability and transplant technologies, this has resulted in allo-SCT becoming an important treatment modality for the majority of adults with high-risk AML. At the same time, advances in genomic classification, coupled with progress in the accurate quantification of measurable residual disease, have increased the precision with which allo-mandatory patients can be identified, whilst simultaneously permitting accurate identification of those patients who can be spared the toxicity of an allograft. Despite this progress, disease recurrence still remains a major cause of transplant failure and AML has served as a paradigm for the development of strategies to reduce the risk of relapse - notably the novel concept of post-transplant maintenance, utilising pharmacological or cellular therapies.
Collapse
Affiliation(s)
- Justin Loke
- Centre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
- University of BirminghamBirminghamUK
| | - Ram Malladi
- Centre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
- University of BirminghamBirminghamUK
| | - Paul Moss
- Centre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
- University of BirminghamBirminghamUK
| | - Charles Craddock
- Centre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
- University of BirminghamBirminghamUK
| |
Collapse
|
29
|
Wang QY, Li Y, Liang ZY, Yin Y, Liu W, Wang Q, Dong YJ, Sun YH, Xu WL, Ren HY. Decitabine-Containing Conditioning Regimen for Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Intermediate- and High-Risk Myelodysplastic Syndrome/Acute Myeloid Leukemia: Potential Decrease in the Incidence of Acute Graft versus Host Disease. Cancer Manag Res 2019; 11:10195-10203. [PMID: 31824191 PMCID: PMC6900353 DOI: 10.2147/cmar.s229768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose To evaluate the role of Decitabine in the allo-HSCT conditioning regimen for intermediate- and high-risk patients with MDS or AML. Patients and methods Retrospective analysis of data pertaining to 76 intermediate- and high-risk patients with MDS or AML who underwent allo-HSCT between December 2005 and June 2018 at the Peking University First Hospital. Forty patients received Decitabine-containing conditioning regimen before transplantation, while thirty-six patients received regimen without Decitabine. Results Over a median follow-up of 40 months (range, 1 to 155), the cumulative incidence of grade II to IV acute graft versus host disease was 12.4% [95% confidence interval (CI) 4.9–30.9%] in the Decitabine group and 41.5% (95% CI 28.1–61.2%) in the non-Decitabine group (P=0.005). On multivariate analysis, Decitabine-containing conditioning regimen was found to protect against grade II to IV aGVHD (HR=0.279, 95% CI 0.102–0.765, P=0.013). Incidence of respiratory infection in the Decitabine and non-Decitabine groups was 22.5% and 52.78%, respectively (P=0.012). No significant between-group difference was observed with respect to 3-year OS, DFS, or RR (P=0.980, 0.959, and 0.573, respectively), while the median relapse time was longer in the Decitabine group [7 months (range, 2–12) versus 3 months (range, 2–4), P=0.171]. Decitabine-containing conditioning showed a tendency for lower relapse rate among higher risk patients, as assessed by IPSS R; however, the between-group difference was not statistically significant (P=0.085). Conclusion Inclusion of Decitabine in the conditioning regimen for allo-HSCT in intermediate- and high-risk patients may lower the incidence of aGVHD and respiratory infections, and contribute to longer median relapse time.
Collapse
Affiliation(s)
- Qing Ya Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Ze Yin Liang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Qian Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yu Jun Dong
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yu Hua Sun
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Wei Lin Xu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Han Yun Ren
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| |
Collapse
|
30
|
Maintenance therapy with decitabine after allogeneic hematopoietic stem cell transplantation to prevent relapse of high-risk acute myeloid leukemia. Bone Marrow Transplant 2019; 55:1206-1208. [PMID: 31534194 DOI: 10.1038/s41409-019-0677-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/20/2019] [Indexed: 11/08/2022]
|
31
|
Conditioning Regimen of 5-Day Decitabine Administration for Allogeneic Stem Cell Transplantation in Patients with Myelodysplastic Syndrome and Myeloproliferative Neoplasms. Biol Blood Marrow Transplant 2019; 26:285-291. [PMID: 31494229 DOI: 10.1016/j.bbmt.2019.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 01/09/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment for patients with myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). However, post-HSCT relapse remains a major cause of treatment failure. Here we assessed the efficacy of a new conditioning regimen comprising decitabine (Dec), busulfan (Bu), cyclophosphamide (Cy), fludarabine (Flu), and cytarabine (Ara-c) for allo-HSCT in patients with MDS and MDS/MPN. A total of 48 patients were enrolled, including 44 with MDS and 4 with chronic myelomonocytic leukemia (CMML). Patients received Dec 20 mg/m2/day on days -9 to -5, combined with a Bu/Cy/Flu/Ara-c-modified preparative regimen. At a median follow-up of 522 days (range, 15 to 1313 days), the overall survival (OS) was 86%, relapse incidence was 12%, and nonrelapse mortality was 12%. The incidence of severe acute (grade III-IV) graft-versus-host disease (GVHD) was 23% and that of chronic GVHD was 15%. At 2 years, OS was 74% and 86%, respectively for high-risk and very-high-risk patients with MDS. Survival was promising in patients with poor-risk gene mutations, such as TP53 and ASXL1 (88%), and in those with ≥3 gene mutations (79%). Results of immunomonitoring studies revealed that proper natural killer cells made essential contributions to these favorable clinical outcomes. Overall, this new regimen was associated with a low relapse rate, low incidence and severity of GVHD, and satisfactory survival in allo-HSCT recipients with MDS and MDS/MPN.
Collapse
|
32
|
Zhao XL, Jiang EL, Zhai WH, Ma QL, Pang AM, Wei JL, He Y, Yang DL, Feng SZ, Han MZ. [Decitabine-based conditioning regimen is feasible and effective in the treatment of myelodysplastic syndrome and chronic myelomonocytic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:467-471. [PMID: 31340618 PMCID: PMC7342392 DOI: 10.3760/cma.j.issn.0253-2727.2019.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 01/09/2023]
Abstract
Objective: To assess the efficacy and toxicity of decitabine-based conditioning regimen in patients with myelodysplastic syndrome (MDS) , acute myeloid leukemia secondary to MDS (MDS-AML) or chronic myelomonocytic leukemia (CMML) . Methods: From March 1, 2013 to May 25, 2015, 22 patients who underwent allogenic hematopoietic stem cell transplantation (allo-HSCT) with decitabine-based conditioning regimen were analyzed retrospectively. Results: ①22 patients, 14 males and 8 females with a median age of 42.5 (24-56) years old, were diagnosed as MDS (n=14) , CMML (n=4) , MDS-AML (n=4) . ②15 patients were treated with the conditioning regimen of decitabine combined with busulfan, cyclophosphamide, fludarabine, and cytarabine, the other 7 cases were treated with decitabine, busulfan, fludarabine, and cytarabine. The dose of decitabine was 20 mg·m(-2)·d(-1) for 5 days.Rabbit anti-human anti-thymocyte globulin (2.5 mg·kg(-1)·d(-1) for 4 days) was involved in conditioning regimen in patients with unrelated donor or haploidentical transplantation. ③Except 1 patient died of infection in 2 months after transplantation, the other patients were engrafted successfully. The median time of granulocyte engraftment was 13 (12-18) days, and the median time of platelet engraftment was 16 (13-81) days. ④The incidence of acute graft versus host disease (aGVHD) was (41.3±10.6) %, and severe aGVHD (grade of III-IV) was (18.4±9.7) %. The incidence of chronic graft versus host disease (cGVHD) was (56.4±11.3) %, and extensive cGVHD was (36.4±12.1) %. ⑤8 patients were suffered with cytomegalovirus (CMV) viremia. Among the 18 patients with definitely infection, 6 occurred during myelosuppression and 12 cases occurred after hematopoietic reconstruction. The 2-year and 3-year non-relapse mortality was (13.9±7.4) % and (24.3±9.5) %, respectively. ⑥The 2-year and 3-year overall survival (OS) was (77.3±8.9) % and (67.9±10.0) %, respectively. The 2-year and 3-year relapse-free survival (RFS) was (72.7±9.5) % and (63.6±10.3) %, respectively. Conclusions: allo-HSCT with decitabine-based conditioning regimen is feasible in the treatment of MDS, MDS-AML or CMML.
Collapse
Affiliation(s)
- X L Zhao
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shi X, Chen X, Fang B, Ping Y, Qin G, Yue D, Li F, Yang S, Zhang Y. Decitabine enhances tumor recognition by T cells through upregulating the MAGE-A3 expression in esophageal carcinoma. Biomed Pharmacother 2019; 112:108632. [PMID: 30797153 DOI: 10.1016/j.biopha.2019.108632] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 02/05/2023] Open
Abstract
Cancer testis (CT) antigens are expressed in various types of tumors and represent the potential targets for T cell-based immunotherapy. Analysis of CT gene expression and DNA methylation have indicated that certain CT genes are epigenetically regulated and studies have confirmed that certain CT antigens are regulated by DNA methylation. In this study, we explored the epigenetic regulation of MAGE-A3 and improved the clinical outcome of MAGE-A3-specific T cell therapy in esophageal squamous cell carcinoma (ESCC). We used molecular profiling datasets in The Cancer Genome Atlas to analyze CT gene expression in ESCC and its regulation by DNA methylation. We performed quantitative reverse transcription PCR (qRT-PCR), immunohistochemistry and bisulfite sequencing in ESCC cell lines and ESCC tissues. Functional assays, such as flow cytometry, cytotoxicity assays and ELISA, were performed to determine the demethylation agent, decitabine (5-aza-2'-deoxycytidine, DAC)-treated cancer cell improved antigen specific T cells response. ESCC tumor cell-xenograft mouse model and enzyme-linked immunospot (ELISPOT) assays were used to determine the function of DAC treatment in enhancing anti-MAGE-3 T cell responses in ESCC. Furthermore, we performed qRT-PCR and flow cytometry in the peripheral blood mononuclear cells (PBMC) of myelodysplastic syndromes (MDS) patients. MAGE-A3, one of the CT antigens, expressed at various levels in ESCC and was interfered by DNA methylation. We observed an efficient increase in MAGE-A3 expression in tumor cells and tissues after the treatment of decitabine and the expression of MAGE-A3 was affected by DNA methylation. Functional assays showed enhanced secretion of IFN-γ and cytolysis of MAGE-A3 antigen-specific T cells by DAC-treated target cells. In the tumor cell-xenograft mouse model and ELISPOT assays, DAC increased the expression of MAGE-A3 and T cell mediated tumor clearance in ESCC as well. Notably, the proportions of MAGE-A3-responsive T cells were elevated in DAC-treated patients with MDS, indicating DAC dismissed the epigenetic inhibition of MAGE-A3. DAC would probably improve the clinical outcome of MAGE-A3-specific T cell therapy by augmenting the expression of target gene.
Collapse
Affiliation(s)
- Xiaojuan Shi
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Baijun Fang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dongli Yue
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shengli Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
34
|
de Kort EA, de Lil HS, Bremmers MEJ, van Groningen LFJ, Blijlevens NMA, Huls G, Brüggemann RJM, van Dorp S, van der Velden WJFM. Cyclosporine A trough concentrations are associated with acute GvHD after non-myeloablative allogeneic hematopoietic cell transplantation. PLoS One 2019; 14:e0213913. [PMID: 30897127 PMCID: PMC6428294 DOI: 10.1371/journal.pone.0213913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Low plasma CsA concentrations (<300–350 ng/mL) early following allogeneic hematopoietic stem cell transplantation (HSCT) is associated with an increased risk of developing acute graft-versus-host disease (aGvHD). Nevertheless, the current optimal target trough concentration for CsA following HSCT is considered to be 200–400 ng/mL. Here, we performed a retrospective analysis of a homogeneous group of 129 patients who received HSCT after non-myeloablative conditioning, and we analyzed the impact of CsA trough concentration measured during the first four weeks (CsA W1-4) on the incidence aGvHD, relapse-free survival (RFS), non-relapse mortality (NRM), overall survival (OS), and toxicity. The 180-day incidence of grade II-IV aGvHD was 25% (32/129 patients). In multivariate analysis the incidence of grade II-IV aGvHD was significantly lower among patients with a CsA W1-4 concentration ≥350 ng/mL compared to patients with a concentration <350 ng/mL (18% versus 38%, respectively; P = 0.007), with a hazard ration (HR) of 0.38 (95% CI: 0.19–0.77). In contrast, we found no correlation between CsA trough concentration and RFS, NRM, or OS. Moreover, we found an increased incidence of hypomagnesemia at higher CsA concentrations, but no difference in the incidence of acute renal toxicity, hepatic toxicity, or electrolyte imbalance. Interestingly, 30% of patients experienced hyponatremia with no apparent cause other than the use of CsA, with urinalysis suggesting SIADH as the underlying cause. Our findings suggest that a CsA trough concentration of 350–500 ng/mL might be more appropriate in the first month following non-myeloablative HSCT.
Collapse
Affiliation(s)
- Elizabeth A. de Kort
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heleen S. de Lil
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manita E. J. Bremmers
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Suzanne van Dorp
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
35
|
Sommer S, Cruijsen M, Claus R, Bertz H, Wäsch R, Marks R, Zeiser R, Bogatyreva L, Blijlevens NM, May A, Duyster J, Huls G, van der Velden WJ, Finke J, Lübbert M. Decitabine in combination with donor lymphocyte infusions can induce remissions in relapsed myeloid malignancies with higher leukemic burden after allogeneic hematopoietic cell transplantation. Leuk Res 2018; 72:20-26. [DOI: 10.1016/j.leukres.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/26/2018] [Accepted: 07/07/2018] [Indexed: 12/19/2022]
|
36
|
Current status and future clinical directions in the prevention and treatment of relapse following hematopoietic transplantation for acute myeloid and lymphoblastic leukemia. Bone Marrow Transplant 2018; 54:6-16. [DOI: 10.1038/s41409-018-0203-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/17/2022]
|
37
|
Hobo W, Hutten TJA, Schaap NPM, Dolstra H. Immune checkpoint molecules in acute myeloid leukaemia: managing the double-edged sword. Br J Haematol 2018; 181:38-53. [PMID: 29318591 DOI: 10.1111/bjh.15078] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New immunotherapeutic interventions have revolutionized cancer treatment. The immune responsiveness of acute myeloid leukaemia (AML) was first demonstrated by allogeneic stem cell transplantation. In addition, milder immunotherapeutic approaches are exploited. However, the long-term efficacy of these therapies is hampered by various immune resistance and editing mechanisms. In this regard, co-inhibitory signalling pathways have been shown to play a crucial role. Via up-regulation of inhibitory checkpoints, tumour-reactive T cell and Natural Killer cell responses can be strongly impeded. Accordingly, the introduction of checkpoint inhibitors targeting CTLA-4 (CTLA4) and PD-1 (PDCD1, CD279)/PD-L1 (CD274, PDCD1LG1) accomplished a breakthrough in cancer treatment, with impressive clinical responses. Numerous new co-inhibitory players and novel combination therapies are currently investigated for their potential to boost anti-tumour immunity and improve survival of cancer patients. Although the challenge here remains to avoid severe systemic toxicity. This review addresses the involvement of co-inhibitory signalling in AML immune evasion and discusses the opportunities for checkpoint blockers in AML treatment.
Collapse
Affiliation(s)
- Willemijn Hobo
- Department of Laboratory Medicine - Laboratory of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Tim J A Hutten
- Department of Laboratory Medicine - Laboratory of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Nicolaas P M Schaap
- Department of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine - Laboratory of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
38
|
Decitabine enhances targeting of AML cells by CD34 + progenitor-derived NK cells in NOD/SCID/IL2Rg null mice. Blood 2017; 131:202-214. [PMID: 29138222 DOI: 10.1182/blood-2017-06-790204] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022] Open
Abstract
Combining natural killer (NK) cell adoptive transfer with hypomethylating agents (HMAs) is an attractive therapeutic approach for patients with acute myeloid leukemia (AML). However, data regarding the impact of HMAs on NK cell functionality are mostly derived from in vitro studies with high nonclinical relevant drug concentrations. In the present study, we report a comparative study of azacitidine (AZA) and decitabine (DAC) in combination with allogeneic NK cells generated from CD34+ hematopoietic stem and progenitor cells (HSPC-NK cells) in in vitro and in vivo AML models. In vitro, low-dose HMAs did not impair viability of HSPC-NK cells. Furthermore, low-dose DAC preserved HSPC-NK killing, proliferation, and interferon gamma production capacity, whereas AZA diminished their proliferation and reactivity. Importantly, we showed HMAs and HSPC-NK cells could potently work together to target AML cell lines and patient AML blasts. In vivo, both agents exerted a significant delay in AML progression in NOD/SCID/IL2Rgnull mice, but the persistence of adoptively transferred HSPC-NK cells was not affected. Infused NK cells showed sustained expression of most activating receptors, upregulated NKp44 expression, and remarkable killer cell immunoglobulin-like receptor acquisition. Most importantly, only DAC potentiated HSPC-NK cell anti-leukemic activity in vivo. Besides upregulation of NKG2D- and DNAM-1-activating ligands on AML cells, DAC enhanced messenger RNA expression of inflammatory cytokines, perforin, and TRAIL by HSPC-NK cells. In addition, treatment resulted in increased numbers of HSPC-NK cells in the bone marrow compartment, suggesting that DAC could positively modulate NK cell activity, trafficking, and tumor targeting. These data provide a rationale to explore combination therapy of adoptive HSPC-NK cells and DAC in patients with AML.
Collapse
|
39
|
Abstract
Acute myeloid leukemia (AML) is predominantly a disease of older adults associated with poor long-term outcomes with available therapies. Used as single agents, hypomethylating agents (HMAs) induce only 15 to 25% complete remissions, but current data suggest that median OS observed after HMAs is comparable to that observed after more intensive therapies. Whether long-term cure may be obtained in some patients treated with HMAs is unknown. Combinations of HMAs to novel agents are now extensively investigated and attractive response rates have been reported when combining HMAs to different drug classes. The absence of reliable predictive biomarkers of efficacy of HMAs in AML and the uncertainties regarding their most relevant mechanisms of action hinder the rational design of the combinations to be tested in priority, usually in untreated older AML patients.
Collapse
|
40
|
Ferguson P, Craddock C. Allogeneic transplantation in primary refractory AML. Bone Marrow Transplant 2017; 52:950-951. [PMID: 28436972 DOI: 10.1038/bmt.2017.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/16/2017] [Indexed: 02/01/2023]
Affiliation(s)
- P Ferguson
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - C Craddock
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK.,Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|