1
|
Ferdjallah A, Long S, DeFor TE, Hoffmann C, Wagner JE, Jacobson P, MacMillan ML. CYP2B6 genetic variation in cyclophosphamide metabolism and hemorrhagic cystitis in Fanconi anemia patients undergoing allogeneic hematopoietic cell transplantation: A descriptive genetic association study. Medicine (Baltimore) 2025; 104:e41937. [PMID: 40128086 PMCID: PMC11936550 DOI: 10.1097/md.0000000000041937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/07/2025] [Indexed: 03/26/2025] Open
Abstract
Fanconi anemia (FA) is an inherited disorder characterized by congenital malformations, bone marrow failure, and malignancies. Hematopoietic cell transplant (HCT) is the only proven cure for the hematological complications. FA patients have increased chromosomal instability and aberrant deoxyribonucleic acid repair and thus can only tolerate low doses of chemotherapy or radiation as part of conditioning prior to HCT. Yet, they are still prone to severe regimen related toxicities including hemorrhagic cystitis (HC) from cyclophosphamide (CY). As CYP2B6 is a primary enzyme responsible for the catalyzation of the prodrug form of CY, understanding the association between CYP2B6 genetic variants and HC in FA patients may predict which patients will be more susceptible to developing HC. A descriptive genetic association study was performed to identify genetic variants associated with HC in patients with FA who underwent HCT between 1999 and 2017. All patients received a CY-based preparative regimen and had pretransplant recipient deoxyribonucleic acid available for genomic analysis. Forty FA pediatric patients were eligible for this analysis. They had received HCT from matched sibling donors (n = 6) or alternative donors (n = 34) for marrow failure (n = 38) or myelodysplastic syndrome (n = 2). The incidence of HC was 32.5% which occurred at a median of 32 days (range 20-180) after HCT. 9 patients had a concomitant viral infection (BK virus, n = 8 both adenovirus and BK virus, n = 1). No genetic variants were significantly associated with HC. The top variants were rs2279343 (g.23060A > G), and rs2279344 (g.23280G > A) in the CYP2B6 gene. The incidence of HC among FA patients with the rs2279343 variant was 42% (CI 22%-62%) compared to 20% (CI 0%-40%) among those without the variant (P = .19). The incidence of HC among patients with the variant in rs2279344 was 40% (CI 22%-58%) compared to 10% (CI 0%-28%) among those without (P = .11). No variants in our analysis were statistically associated with HC. The data suggest that CYP2B6 variants may increase the risk for HC in FA patients who received a CY based preparative therapy but these risk variants must be further evaluated in a larger population.
Collapse
Affiliation(s)
- Asmaa Ferdjallah
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Susie Long
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN
| | - Todd E. DeFor
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN
- Biostatistics and Informatics Core Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Cody Hoffmann
- Genomics Center, University of Minnesota, Minneapolis, MN
| | - John E. Wagner
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Pamala Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Margaret L. MacMillan
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
2
|
Vissers LTW, van der Burg M, Lankester AC, Smiers FJW, Bartels M, Mohseny AB. Pediatric Bone Marrow Failure: A Broad Landscape in Need of Personalized Management. J Clin Med 2023; 12:7185. [PMID: 38002797 PMCID: PMC10672506 DOI: 10.3390/jcm12227185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Irreversible severe bone marrow failure (BMF) is a life-threatening condition in pediatric patients. Most important causes are inherited bone marrow failure syndromes (IBMFSs) and (pre)malignant diseases, such as myelodysplastic syndrome (MDS) and (idiopathic) aplastic anemia (AA). Timely treatment is essential to prevent infections and bleeding complications and increase overall survival (OS). Allogeneic hematopoietic stem cell transplantation (HSCT) provides a cure for most types of BMF but cannot restore non-hematological defects. When using a matched sibling donor (MSD) or a matched unrelated donor (MUD), the OS after HSCT ranges between 60 and 90%. Due to the introduction of post-transplantation cyclophosphamide (PT-Cy) to prevent graft versus host disease (GVHD), alternative donor HSCT can reach similar survival rates. Although HSCT can restore ineffective hematopoiesis, it is not always used as a first-line therapy due to the severe risks associated with HSCT. Therefore, depending on the underlying cause, other treatment options might be preferred. Finally, for IBMFSs with an identified genetic etiology, gene therapy might provide a novel treatment strategy as it could bypass certain limitations of HSCT. However, gene therapy for most IBMFSs is still in its infancy. This review summarizes current clinical practices for pediatric BMF, including HSCT as well as other disease-specific treatment options.
Collapse
Affiliation(s)
- Lotte T. W. Vissers
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.T.W.V.); (M.v.d.B.)
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.T.W.V.); (M.v.d.B.)
| | - Arjan C. Lankester
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| | - Frans J. W. Smiers
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| | - Marije Bartels
- Department of Pediatric Hematology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Alexander B. Mohseny
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| |
Collapse
|
3
|
Martínez-Balsalobre E, Guervilly JH, van Asbeck-van der Wijst J, Pérez-Oliva AB, Lachaud C. Beyond current treatment of Fanconi Anemia: What do advances in cell and gene-based approaches offer? Blood Rev 2023; 60:101094. [PMID: 37142543 DOI: 10.1016/j.blre.2023.101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Fanconi anemia (FA) is a rare inherited disorder that mainly affects the bone marrow. This condition causes decreased production of all types of blood cells. FA is caused by a defective repair of DNA interstrand crosslinks and to date, mutations in over 20 genes have been linked to the disease. Advances in science and molecular biology have provided new insight between FA gene mutations and the severity of clinical manifestations. Here, we will highlight the current and promising therapeutic options for this rare disease. The current standard treatment for FA patients is hematopoietic stem cell transplantation, a treatment associated to exposure to radiation or chemotherapy, immunological complications, plus opportunistic infections from prolonged immune incompetence or increased risk of morbidity. New arising treatments include gene addition therapy, genome editing using CRISPR-Cas9 nuclease, and hematopoietic stem cell generation from induced pluripotent stem cells. Finally, we will also discuss the revolutionary developments in mRNA therapeutics as an opportunity for this disease.
Collapse
Affiliation(s)
- Elena Martínez-Balsalobre
- Cancer Research Center of Marseille, Aix-Marseille Univ., Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France.
| | - Jean-Hugues Guervilly
- Cancer Research Center of Marseille, Aix-Marseille Univ., Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France.
| | | | - Ana Belén Pérez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain.
| | - Christophe Lachaud
- Cancer Research Center of Marseille, Aix-Marseille Univ., Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France.
| |
Collapse
|
4
|
Ansari F, Behfar M, Naji P, Darvish Z, Rostami T, Mohseni R, Alimoghaddam K, Salajegheh P, Ahadi B, Mardani M, Hamidieh AA. Fanconi anemia phenotypic and transplant outcomes' associations in Iranian patients. Health Sci Rep 2023; 6:e1180. [PMID: 37033392 PMCID: PMC10075997 DOI: 10.1002/hsr2.1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Objectives Fanconi anemia (FA) is a rare, heterogeneous, inherited disorder. Allogeneic hematopoietic stem cell transplantation (HSCT) represents the only therapeutic option to restore normal hematopoiesis. This study reports the outcomes of FA‐HSCT patients and identifies factors, including clinical phenotype. Our team examined more than 95% of Iranian FA patients during the last decade. Study Design One hundred and six FA patients (age range: 2–41) who underwent HSCT from March 2007 to February 2018 were enrolled. Clinical characteristics of genetic disease, pre‐HSCT findings, HSCT indication, and long‐term follow‐up evaluated and recorded. Data were analyzed using SPSS 19.0. Results The mean follow‐up period for survivors was 36 months (range, 1–101). The 3‐year overall survival (OS) and disease‐free survival were 72.2% and 71.2%, respectively. The 3‐year OS rate for patients with limited and extensive malformations was 78.8% and 56.6%, respectively (p = 0.025). Acute graft versus host disease incidence was 60.52% for patients with limited malformations versus 70% for patients with extensive ones (p = 0.49). Chronic graft versus host disease incidence for these two groups was 9.21% and 10%, respectively (p = 0.91). Conclusions OS was not associated with each of the malformations singly; however, it was lower in the extensive group. The younger age of patients at the HSCT time leads to a higher OS. The differences in FA patients' outcomes and the various genotypes were probably related. These data provide a powerful tool for further studies on genotype–phenotype association with HSCT results. The younger age of FA patients at the HSCT time leads to a higher OS. OS was lower in the congenital malformations extensive group. The malformations’ scope affects aGvHD incidence significantly, while not cGvHD. Various HSCT outcomes in different centers can be due to distinct genotypes.
Collapse
Affiliation(s)
- Faezeh Ansari
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research InstituteTehran University of Medical SciencesTehranIran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research InstituteTehran University of Medical SciencesTehranIran
- Pediatric Hematopoietic Stem Cell Transplant Department, Children's Medical CenterTehran University of Medical SciencesTehranIran
| | - Parisa Naji
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research InstituteTehran University of Medical SciencesTehranIran
| | - Zahra Darvish
- Institute for Oncology, Hematology and Cell Therapy, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Tahereh Rostami
- Institute for Oncology, Hematology and Cell Therapy, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research InstituteTehran University of Medical SciencesTehranIran
| | - Kamran Alimoghaddam
- Hematology‐Oncology and Stem Cell Transplantation Research CenterTehran University of Medical SciencesTehranIran
| | - Pouria Salajegheh
- Department of Pediatric, Faculty of MedicineKerman University of Medical SciencesKermanIran
| | - Batool Ahadi
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research InstituteTehran University of Medical SciencesTehranIran
| | - Mahta Mardani
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research InstituteTehran University of Medical SciencesTehranIran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Fink O, Even-Or E, Avni B, Grisariu S, Zaidman I, Schejter YD, NaserEddin A, Najajreh M, Stepensky P. Two decades of stem cell transplantation in patients with Fanconi anemia: Analysis of factors affecting transplant outcomes. Clin Transplant 2023; 37:e14835. [PMID: 36259220 PMCID: PMC10078339 DOI: 10.1111/ctr.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/18/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is currently the only curative treatment for the hematological complications of patients with Fanconi anemia (FA). Over the last two decades, HSCT outcomes have improved dramatically following the development of regimens tailored for FA patients. In this study, we analyzed genetic, clinical, and transplant data of 41 patients with FA who underwent HSCT at Hadassah Medical Center between November 1996 and September 2020. Overall survival (OS) was 82.9% with a median follow-up time of 2.11-years (95% CI, .48-16.56). Thirteen patients (31.7%) developed acute graft-versus-host disease (GVHD), three of them with grades 3-4. Nine patients developed chronic GVHD, five had extensive disease. Twelve patients (29.3%) developed stable mixed-chimerism with complete resolution of bone marrow failure (BMF); none of them had acute nor chronic GVHD. Significantly higher GVHD rates were observed in transplants from peripheral blood stem cell grafts as compared to other stem cell sources (p = .002 for acute and p = .004 for chronic GVHD). Outcome parameters were comparable between HSCT from matched-sibling (n = 20) to other donors (n = 21), including survival rates (p = .1), time to engraftment (p = .69 and p = .14 for neutrophil and platelet engraftment time, respectively), chimerism status (p = .36 and p = .83 for full-donor and mixed chimerism, respectively), and GVHD prevalence (p = 1). Our results demonstrate the vast improvements in HSCT outcomes of patients with FA, narrowing the gap between matched-sibling versus alternative donor transplantations. Our data identifies factors that may significantly affect transplant outcomes such as graft source and chimerism status.
Collapse
Affiliation(s)
- Orly Fink
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Even-Or
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Batia Avni
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Sigal Grisariu
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Irina Zaidman
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Yael Dinur Schejter
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Adeeb NaserEddin
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Mohammad Najajreh
- The Huda Al Masri Pediatric Cancer Department, Beit Jala Hospital, Beit Jala, Palestine
| | - Polina Stepensky
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
6
|
Modern management of Fanconi anemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:649-657. [PMID: 36485157 PMCID: PMC9821189 DOI: 10.1182/hematology.2022000393] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review, we present a clinical case report and discussion to outline the importance of long-term specific Fanconi anemia (FA) monitoring, and we discuss the main aspects of the general management of patients with FA and clinical complications. While several nontransplant treatments are currently under evaluation, hematopoietic stem cell transplantation (HSCT) remains the only therapeutic option for bone marrow failure (BMF). Although HSCT outcomes in patients with FA have remarkably improved over the past 20 years, in addition to the mortality intrinsic to the procedure, HSCT increases the risk and accelerates the appearance of late malignancies. HSCT offers the best outcome when performed in optimal conditions (moderate cytopenia shifting to severe, prior to transfusion dependence and before clonal evolution or myelodysplasia/acute myeloid leukemia); hence, an accurate surveillance program is vital. Haploidentical HSCT offers very good outcomes, although long-term effects on malignancies have not been fully explored. A monitoring plan is also important to identify cancers, particularly head and neck carcinomas, in very early phases. Gene therapy is still experimental and offers the most encouraging results when performed in early phases of BMF by infusing high numbers of corrected cells without genotoxic effects. Patients with FA need comprehensive monitoring and care plans, coordinated by centers with expertise in FA management, that start at diagnosis and continue throughout life. Such long-term follow-up is essential to detect complications related to the disease or treatment in this setting.
Collapse
|
7
|
Sakaguchi H, Yoshida N. Recent advances in hematopoietic cell transplantation for inherited bone marrow failure syndromes. Int J Hematol 2022; 116:16-27. [PMID: 35633493 DOI: 10.1007/s12185-022-03362-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are a group of rare genetic disorders characterized by bone marrow failure with unique phenotypes and predisposition to cancer. Classical IBMFSs primarily include Fanconi anemia with impaired DNA damage repair, dyskeratosis congenita with telomere maintenance dysfunction, and Diamond-Blackfan anemia with aberrant ribosomal protein biosynthesis. Recently, comprehensive genetic analyses have been implemented for the definitive diagnosis of classic IBMFSs, and advances in molecular genetics have led to the identification of novel disorders such as AMeD and MIRAGE syndromes. Allogeneic hematopoietic cell transplantation (HCT), a promising option to overcome impaired hematopoiesis in patients with IBMFSs, does not correct nonhematological defects and may enhance the risk of secondary malignancies. Disease-specific management is necessary because IBMFSs differ in underlying defects and are associated with varying degrees of risk for clonal evolution and early or late complications after HCT. In addition, long-term follow-up is essential to detect complications related to the IBMFS or HCT. This review provides a summary of current clinical practices along with the latest data on HCT in IBMFSs.
Collapse
Affiliation(s)
- Hirotoshi Sakaguchi
- Department of Transplantation and Cellular Therapy, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Nao Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan.
| |
Collapse
|
8
|
Bonfim C, Nichele S, Loth G, Funke VAM, Nabhan SK, Pillonetto DV, Lima ACM, Pasquini R. Transplantation for Fanconi anaemia: lessons learned from Brazil. THE LANCET HAEMATOLOGY 2022; 9:e228-e236. [DOI: 10.1016/s2352-3026(22)00032-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
|
9
|
Kiumarsi A, Mousavi SA, Kasaeian A, Rostami T, Rad S, Ghavamzadeh A, Mousavi SA. Radiation-free Reduced-intensity Hematopoietic Stem Cell Transplantation with In-Vivo T-cell Depletion from Matched Related and Unrelated Donors for Fanconi Anemia: Prognostic Factor Analysis. Exp Hematol 2022; 109:27-34. [DOI: 10.1016/j.exphem.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
|
10
|
Lim YJ, Arbiv OA, Kalbfleisch ME, Klaassen RJ, Fernandez C, Rayar M, Steele M, Lipton JH, Cuvelier G, Pastore YD, Silva M, Brossard J, Michon B, Abish S, Sinha R, Corriveau-Bourque C, Breakey VR, Tole S, Goodyear L, Sung L, Zlateska B, Cada M, Dror Y. Poor Outcome After Hematopoietic Stem Cell Transplantation Of Patients With Unclassified Inherited Bone Marrow Failure Syndromes. Eur J Haematol 2021; 108:278-287. [PMID: 34897809 DOI: 10.1111/ejh.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Classification of inherited bone marrow failure syndromes (IBMFSs) according to clinical and genetic diagnoses enables proper adjustment of treatment. Unfortunately, 30% of patients enrolled in the Canadian Inherited Marrow Failure Registry (CIMFR) with features suggesting hereditability could not be classified with a specific syndromic diagnosis. We analyzed the outcome of hematopoietic stem cell transplantation (HSCT) in unclassified IBMFSs (uIBMFSs) and the factors associated with outcome. Twenty-two patients with uIBMFSs and 70 patients with classified IBMFSs underwent HSCT. Five-year overall survival of uIBMFS patients after HSCT was inferior to that of patients with classified IBMFSs (56% vs 76.5%). The outcome of patients with uIBMFS who received cord blood was significantly lower than that of patients who received other stem cell sources (14.8% vs 90.9%). Engraftment failure was higher among patients with uIBMFS who received cord blood than those who received bone marrow. None of the following factors was significantly associated with poor survival: transfusion load, transplant indication, the intensity of conditioning regimen, human leukocyte antigen-identical sibling/alternative donor. We suggest that identifying the genetic diagnosis is essential to modulate the transplant procedure including conditioning agents and stem cell sources for better outcome and the standard CBT should be avoided in uIBMFS.
Collapse
Affiliation(s)
- Yeon Jung Lim
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Current Affiliation, Department of Pediatrics, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Omri A Arbiv
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melanie E Kalbfleisch
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Meera Rayar
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | | - Josee Brossard
- Centre U Sante de l'Estrie-Fleur, Sherbrooke, Québec, Canada
| | - Bruno Michon
- Centre Hospital University Quebec-Pav CHUL, Sainte-Foy, Québec, Canada
| | - Sharon Abish
- Montreal Children's Hospital, Montreal, Québec, Canada
| | - Roona Sinha
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Vicky R Breakey
- McMaster Children's Hospital/McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | - Soumitra Tole
- Children's Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - Lisa Goodyear
- Janeway Child Health Centre, St. John's, Newfoundland, Canada
| | - Lillian Sung
- Child Health and Evaluative Sciences, .The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bozana Zlateska
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michaela Cada
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto
| | - Yigal Dror
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
LNK (SH2B3) Inhibition Expands Healthy and Fanconi Anemia Human Hematopoietic Stem and Progenitor Cells. Blood Adv 2021; 6:731-745. [PMID: 34844262 PMCID: PMC8945310 DOI: 10.1182/bloodadvances.2021004205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for a variety of hematological diseases. Allogenic HSCT requires hematopoietic stem cells (HSCs) from matched donors and comes with cytotoxicity and mortality. Recent advances in genome modification of HSCs have demonstrated the possibility of using autologous HSCT-based gene therapy to cure monogenic diseases, such as the inherited bone marrow failure (BMF) syndrome Fanconi Anemia (FA). However, for FA and other BMF syndromes insufficient HSC numbers with functional defects results in delayed hematopoietic recovery and increased risk of graft failure. We and others previously identified the adaptor protein Lnk (Sh2b3) as a critical negative regulator of murine HSC homeostasis. However, whether LNK (SH2B3) controls human HSCs has not been studied. Here, we demonstrate that depletion of LNK via lentiviral expression of miR30-based short hairpin RNAs (shRNAs) resulted in robust expansion of transplantable human HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Importantly, LNK depletion enhanced cytokine mediated JAK/STAT activation in CD34+ hematopoietic stem and progenitor cells (HSPCs). Moreover, we demonstrate that LNK depletion expands primary HSPCs associated with FA. In xenotransplant, engraftment defects of FANCD2-depleted FA-like HSCs were markedly improved by LNK inhibition. Finally, targeting LNK in primary bone marrow HSPCs from FA patients enhanced their colony forming potential in vitro. Together, these results demonstrate the potential of targeting LNK to expand HSCs to improve HSCT and HSCT-based gene therapy.
Collapse
|
12
|
Pierri F, Faraci M, Giardino S, Dufour C. Hematopoietic stem cell transplantation for classical inherited bone marrow failure syndromes: an update. Expert Rev Hematol 2021; 14:911-925. [PMID: 34488529 DOI: 10.1080/17474086.2021.1977119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Inherited bone marrow failure syndromes (IBMFS) feature complex molecular pathophysiology resulting in ineffective hematopoiesis and increased risk of progression to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Allogenic hematopoietic stem cell transplantation (HSCT) is the only well-established cure for the hematological manifestations of these diseases. AREAS COVERED In recent years, analysis of large series from international databases (mainly from the European Bone Marrow Transplantation [EBMT] database) has improved knowledge about HSCT in IBMFS. This review, following a thorough Medline search of the pertinent published studies, reports the most recent data on HSCT in IBMFS. EXPERT OPINION Despite the common features, IBMFS are very different in their manifestations and in the occurrence and management of HSCT complications. Thus, a 'disease-specific' HSCT using an optimized conditioning regimen based on the characteristics of the disease is essential for achieving long-term survival. The phenotypical heterogeneity associated with extramedullary abnormalities has to be carefully evaluated before HSCT because transplantation may only correct impaired hematopoiesis. HSCT may be associated with the risk of treatment-related mortality and with significant early and late morbidity. For these reasons, the benefits should be carefully weighed against the risks.
Collapse
Affiliation(s)
| | - Maura Faraci
- Hematopoietic Stem Cell Transplantation Unit, Italy
| | | | - Carlo Dufour
- Hematology Unit, Department of Hematology-Oncology, IRCSS-Istituto G. Gaslini, Genova, Italy
| |
Collapse
|
13
|
Zhang Y, Li Y, Wu L, Zhou M, Wang C, Mo W, Chen X, Xu S, Zhou R, Wang S, Zhang Y. Mixed chimerism after allogeneic hematopoietic stem cell transplantation for severe aplastic anemia. ACTA ACUST UNITED AC 2021; 26:435-443. [PMID: 34130602 DOI: 10.1080/16078454.2021.1938422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A retrospective study on 287 patients with SAA who underwent allo-HSCT between October 2012 and January 2020 was conducted to explore the outcomes, risk factors and treatment options for MC. Among 287 AA patients who excluded Fanconi anemia (FA), Congenital dyskeratosis (DKC), Paroxysmal nocturnal hemoglobinuria (PNH), etc.112 underwent matched sibling donor (MSD)-HSCT, 91 matched unrelated donor-HSCT and 84 haploidentical-HSCT. Patients were divided into the following 4 groups: group 1: Donor chimerism (DC); group 2: MC without cytopenia; group 3: MC with cytopenia; group 4: secondary graft failure (SGF). Compared with the other three groups, SGF predicted a poor prognosis of SAA (P< 0.001). In addition, SGF was associated with the early (within 3 months after transplantation) presence of MC and the high levels of MC. Uni- and multivariate logistic regression analysis showed that donor/recipient sex-mismatching and CTX + ATG regimen were high-risk factors for MC. Of note, in MC patients with cytopenia (group 3), the effective response rate reached 55% (6/11) following enhanced immunosuppression combined with cellular therapy, while only one of the four was effective who received enhanced immunosuppression alone. SGF was associated with poor prognosis, early presence of MC and increased levels of recipient chimerism. The donor/recipient sex-mismatching and CTX + ATG regimen based MSD-HSCT were risk factors for MC. Cellular therapy could improve the effective response rate of patients with progressive MC.
Collapse
Affiliation(s)
- Yuling Zhang
- Department of Hematology, Nansha Hospital, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Yumiao Li
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Liangliang Wu
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Ming Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Xiaowei Chen
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Shilin Xu
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Ruiqing Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Yuping Zhang
- Department of Hematology, Nansha Hospital, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
HLA-haploidentical TCRαβ+/CD19+-depleted stem cell transplantation in children and young adults with Fanconi anemia. Blood Adv 2021; 5:1333-1339. [PMID: 33656536 DOI: 10.1182/bloodadvances.2020003707] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
We report on the outcome of 24 patients with Fanconi anemia (FA) lacking an HLA matched related or unrelated donor, given an HLA-haploidentical T-cell receptor αβ (TCRαβ+) and CD19+ cell-depleted hematopoietic stem cell transplantation (HSCT) in the context of a prospective, single-center phase 2 trial. Sustained primary engraftment was achieved in 22 (91.6%) of 24 patients, with median time to neutrophil recovery of 12 days (range, 9-15 days) and platelet recovery of 10 days (range, 7-14 days). Cumulative incidences of grade 1 to 2 acute graft-versus-host disease (GVHD) and chronic GVHD were 17.4% (95% confidence interval [CI], 5.5%-35.5%) and 5.5% (95% CI, 0.8%-33.4%), respectively. The conditioning regimen, which included fludarabine, low-dose cyclophosphamide and, in most patients, single-dose irradiation was well tolerated; no fatal transplant-related toxicity was observed. With a median follow-up of 5.2 years (range, 0.3-8.7 years), the overall and event-free survival probabilities were 100% and 86.3% (95% CI, 62.8%-95.4%), respectively (2 graft failures and 1 case of poor graft function were considered as events). The 2 patients who experienced primary graft failure underwent a subsequent successful HSCT from the other parent. This is the first report of FA patients given TCRαβ+/CD19+-depleted haplo-HSCT in the context of a prospective trial, and the largest series of T-cell-depleted haplo-HSCT in FA reported to date. This trial was registered at www.clinicaltrials.gov as #NCT01810120.
Collapse
|
15
|
Lee RH, Kang H, Yom SS, Smogorzewska A, Johnson DE, Grandis JR. Treatment of Fanconi Anemia-Associated Head and Neck Cancer: Opportunities to Improve Outcomes. Clin Cancer Res 2021; 27:5168-5187. [PMID: 34045293 DOI: 10.1158/1078-0432.ccr-21-1259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Fanconi anemia, the most frequent genetic cause of bone marrow failure, is characterized by an extreme predilection toward multiple malignancies, including a greater than 500-fold incidence of head and neck squamous cell carcinoma (HNSCC) relative to the general population. Fanconi anemia-associated HNSCC and esophageal SCC (FA-HNSCC) often present at advanced stages with poor survival. Surgical resection remains the primary treatment for FA-HNSCC, and there is often great reluctance to administer systemic agents and/or radiotherapy to these patients given their susceptibility to DNA damage. The paucity of FA-HNSCC case reports limits evidence-based management, and such cases have not been analyzed collectively in detail. We present a systematic review of FA-HNSCC treatments reported from 1966 to 2020, defining a cohort of 119 patients with FA-HNSCC including 16 esophageal SCCs (131 total primary tumors), who were treated with surgery, radiotherapy, systemic therapy (including cytotoxic agents, EGFR inhibitors, or immune checkpoint inhibitors), or a combination of modalities. We summarize the clinical responses and regimen-associated toxicities by treatment modality. The collective evidence suggests that when possible, surgical resection with curative intent should remain the primary treatment modality for FA-HNSCC. Radiation can be administered with acceptable toxicity in the majority of cases, including patients who have undergone stem cell transplantation. Although there is little justification for cytotoxic chemotherapy, EGFR inhibitors and tyrosine kinase inhibitors may be both safe and effective. Immunotherapy may also be considered. Most oncologists have little personal experience with FA-HNSCC. This review is intended as a comprehensive resource for clinicians.
Collapse
Affiliation(s)
- Rex H Lee
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hyunseok Kang
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
16
|
Lu Y, Xiong M, Sun RJ, Zhao YL, Zhang JP, Cao XY, Liu DY, Wei ZJ, Zhou JR, Lu DP. Hematopoietic stem cell transplantation for inherited bone marrow failure syndromes: alternative donor and disease-specific conditioning regimen with unmanipulated grafts. ACTA ACUST UNITED AC 2021; 26:134-143. [PMID: 33491597 DOI: 10.1080/16078454.2021.1876393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: The outcomes of alternative donor hematopoietic stem cell transplantation (HSCT) with unmanipulated grafts for Inherited bone marrow failure syndromes (IBMFS) are discouraging. Our study is to demonstrate that IBMFS with disease-specific characteristics requires a tailored conditioning regimens to enhance engraftment and reduce regimen related toxicities. Methods: We retrospectively analyzed 42 patients diagnosed with IBMFS and transplanted with an alternative donor graft at our center from November 2012 to August 2018. Twenty-seven patients had Fanconi anemia (FA), 7 had dyskeratosis congenita (DC), and 8 had severe congenital neutropenia (SCN). Patients received ex-vivo unmanipulated alternative donor grafts from a matched unrelated donor (MUD) (n = 22), haploidentical donor (HID) (n = 17) and unrelated cord blood donor (UCBD) (n = 3). FA and DC patient subgroups received reduce intensified conditioning (RIC), while SCN patients received a myeloablative conditioning (MAC) regimen. Results: The median follow-up time for the surviving patients was 38 months (range: 9-63 months). The failure-free survival (FFS) for entire cohort was 76.1%, and was 72.4%, 100% and 56.2% for patients with FA, DC and SCN, respectively. There were no primary graft failures. The cumulative incidence of aGVHD at day 100 was 48.1%. The cumulative incidence of cGVHD at 1 and 3 years was 35.0% and 69.3%, respectively. Conclusion: HSCT using alternative donors with unmanipulated grafts and disease-specific conditioning regimens for IBMFS patients shows promising survival.
Collapse
Affiliation(s)
- Yue Lu
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, People's Republic of China
| | - Min Xiong
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, People's Republic of China
| | - Rui-Juan Sun
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, People's Republic of China
| | - Yan-Li Zhao
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, People's Republic of China
| | - Jian-Ping Zhang
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, People's Republic of China
| | - Xing-Yu Cao
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, People's Republic of China
| | - De-Yan Liu
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, People's Republic of China
| | - Zhi-Jie Wei
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, People's Republic of China
| | - Jia-Rui Zhou
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, People's Republic of China
| | - Dao-Pei Lu
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, People's Republic of China
| |
Collapse
|
17
|
Zubicaray J, Pagliara D, Sevilla J, Eikema D, Bosman P, Ayas M, Zecca M, Yesilipek A, Kansoy S, Renard C, Dalle JH, Campos A, Faraci M, Kupesiz A, Smiers FJW, Velardi A, Abecasis M, Corti P, Fagioli F, González Muñiz S, Kriván G, Dufour C, Risitano A, Corbacioglu S, Peffault de Latour R. Haplo-identical or mismatched unrelated donor hematopoietic cell transplantation for Fanconi anemia: Results from the Severe Aplastic Anemia Working Party of the EBMT. Am J Hematol 2021; 96:571-579. [PMID: 33606297 DOI: 10.1002/ajh.26135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is the only curative option for bone marrow failure or hematopoietic malignant diseases for Fanconi anemia (FA) patients. Although results have improved over the last decades, reaching more than 90% survival when a human leukocyte antigen (HLA)-identical donor is available, alternative HCT donors are still less reported. We compared HCT outcomes using HLA-mismatched unrelated donors (MMUD; n = 123) or haplo-identical donors (HDs), either using only in vivo T cell depletion (n = 33) or T cells depleted in vivo with some type of graft manipulation ex vivo (n = 59) performed for FA between 2000 and 2018. Overall survival (OS) by 24 months was 62% (53-71%) for MMUD, versus 80% (66-95%) for HDs with only in vivo T cell depletion and 60% (47-73%) for HDs with in vivo and ex vivo T cell depletion (p = .22). Event-free survival (EFS) was better for HD-transplanted FA patients with only in vivo T cell depletion 86% (73-99%) than for those transplanted from a MMUD 58% (48-68%) or those with graft manipulation 56% (42-69%) (p = .046). Grade II-IV acute graft-versus-host disease (GVHD) was 41% (MMUD) versus 40% (HDs with no graft manipulation) versus 17% (HDs with T cell depleted graft), (p = .005). No differences were found for the other transplant related outcomes. These data suggest that HDs might be considered as an alternative option for FA patients with better EFS using unmanipulated grafts.
Collapse
Affiliation(s)
- Josune Zubicaray
- Niño Jesus Children's Hospital, Fundación para la investigación del HIUNJ Madrid Spain
| | | | - Julian Sevilla
- Niño Jesus Children's Hospital, Fundación para la investigación del HIUNJ Madrid Spain
| | | | - Paul Bosman
- EBMT Data Office Leiden Leiden The Netherlands
| | - Mouhab Ayas
- King Faisal Specialist Hospital and Research Centre Riyadh Saudi Arabia
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | | | - Savas Kansoy
- Ege University Pediatric BMT Centre Izmir Turkey
| | - Cécile Renard
- Institut d'Hematologie et d'Oncologie Pediatrique, Hospices Civils de Lyon Lyon France
| | - Jean H. Dalle
- Hemato‐Immunology Department Robert‐Debre Hospital, GHU Nord‐Université de Paris Paris France
| | | | | | | | - Frans J. W. Smiers
- Department of Pediatrics Leiden University Medical Center Leiden The Netherlands
| | | | | | - Paola Corti
- Clinica Pediatrica, Fondazione MBBM Universita degli Studi di Milano Bicocca Monza Italy
| | - Franca Fagioli
- Pediatric Onco‐Hematology and Stem Cell Transplantation Division Regina Margherita Children's Hospital, University of Turin Turin Italy
| | | | - Gergely Kriván
- Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation Central Hospital of Southern Pest – National Institute of Hematology and Infectious Diseases Budapest Hungary
| | | | - Antonio Risitano
- AORN San Giuseppe Moscati, Hematology and Hematopoietic Stem Cell Transplantation Unit Avellino Italy
- Federico II University of Naples Naples Italy
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation University of Regensburg Regensburg Germany
| | - Régis Peffault de Latour
- French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria Saint Louis Hospital and University Paris Diderot Paris France
| |
Collapse
|
18
|
Bernard F, Uppungunduri CRS, Meyer S, Cummins M, Patrick K, James B, Skinner R, Tewari S, Carpenter B, Wynn R, Veys P, Amrolia P. Excellent overall and chronic graft-versus-host-disease-free event-free survival in Fanconi anaemia patients undergoing matched related- and unrelated-donor bone marrow transplantation using alemtuzumab-Flu-Cy: the UK experience. Br J Haematol 2021; 193:804-813. [PMID: 33855694 DOI: 10.1111/bjh.17418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/20/2022]
Abstract
Haematopoietic stem cell transplantation (HSCT) remains the only curative option in Fanconi anaemia (FA). We analysed the outcome of children transplanted for FA between 1999 and 2018 in the UK. A total of 94 transplants were performed in 82 patients. Among the donors, 51·2% were matched related donors (MRD) while the remainder were alternative donors. Most patients received a fludarabine-cyclophosphamide (Flu-Cy)-based conditioning regimen (86·6%) and in vivo T-cell depletion with alemtuzumab (69·5%). Five-year overall survival (OS) was 85·4% [70·4-93.2] with MRD, 95·7% [72·9-99.4] with matched unrelated donors (MUD), 44·4% [6·6-78.5] with mismatched unrelated donors (MMUD) and 44·4% [13·6-71.9] with mismatched related donors (MMRD) (P < 0·001). Other factors significantly impacting OS were pre-transplant bone marrow status, source of stem cells, cytomegalovirus (CMV) serostatus, preparation with Flu-Cy, use of total body irradiation (TBI) and alemtuzumab as serotherapy. In multivariate analysis, absence of myelodysplastic syndrome (MDS) or leukaemia, bone marrow as source of stem cells, cytomegalovirus (CMV) other than +/- (Recipient/Donor) and Flu-Cy were protective factors for five-year OS. Five-year chronic graft-versus-host-disease (cGVHD)-free event-free survival was 75·4% with the same risk factors except for CMV serostatus. Five-year non-relapse mortality was 13·8% [7·3-22.3]. Only five patients (6·1%) developed grade II-IV acute GVHD and two patients chronic GVHD. These data confirm the excellent outcome of matched related or unrelated HSCT in children with FA.
Collapse
Affiliation(s)
- Fanette Bernard
- Paediatric Onco-Haematology Unit, Geneva University Hospital, Geneva, Switzerland
| | | | - Stephan Meyer
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Teenage and Young Adult Cancer, The Christie NHS Foundation Trust, Manchester, UK.,Department of Haematology and Oncology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Michelle Cummins
- Department of Paediatric Haematology and Bone Marrow Transplantation, Bristol Royal Hospital for Children, Bristol, UK
| | - Katharine Patrick
- Department of Paediatric Haematology, Sheffield Children's Hospital, Sheffield, UK
| | - Beki James
- Department of Paediatric Oncology and Haematology, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Roderick Skinner
- Department of Paediatric and Adolescent Haematology and Oncology, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Sanjay Tewari
- Department of Paediatric Haematology/Oncology, The Royal Marsden Hospital NHS Trust, Sutton, UK
| | - Ben Carpenter
- Department of Haematology, University College London Hospitals NHS Trust, London, UK
| | - Robert Wynn
- Department of Blood and Marrow Transplant, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Paul Veys
- Department of Bone Marrow Transplant and Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Persis Amrolia
- Department of Bone Marrow Transplant and Haematology, Great Ormond Street Hospital for Children, London, UK.,Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | | |
Collapse
|
19
|
Survival and toxicity outcomes of hematopoietic stem cell transplantation for pediatric patients with Fanconi anemia: a unified multicentric national study from the Spanish Working Group for Bone Marrow Transplantation in Children. Bone Marrow Transplant 2020; 56:1213-1216. [PMID: 33303901 DOI: 10.1038/s41409-020-01172-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is currently the only curative option for hematological manifestations in patients with Fanconi anemia (FA). We report the outcome of 34 patients with FA inside a collaborative multicenter national study based on recommendations of Spanish Working Group for Bone Marrow Transplantation in Children (GETMON) between 2009 and 2016. Fludarabine-based conditioning regimen was carried out in all patients, with low dose total body irradiation in unrelated transplants. Disease status before HSCT was bone marrow failure (BMF) in 30 patients and myelodysplastic syndrome (MDS) in four. Donors were matched siblings donors (MSD) in 18, matched unrelated donors (MUD) in 15, and one haploidentical donor. All except one patient engrafted. Cumulative incidence of grades II-IV acute graft-versus-host disease (GVHD) was 29% and 11% for chronic GVHD. Median follow-up after HSCT was 6.5 years. Seven patients (21%) died due to transplant-related causes, two (6%) because of MDS relapse, and one (3%) after a squamous cell carcinoma. Overall survival (OS) was 73% at 5 years post-transplant, with no differences between MSD and MUD transplants. OS for patients with BMF was 80% while for MDS was 25%. Our data suggest HSCT can cure hematologic manifestations of most FA patients with BMF.
Collapse
|
20
|
Hayashi RJ. Considerations in Preparative Regimen Selection to Minimize Rejection in Pediatric Hematopoietic Transplantation in Non-Malignant Diseases. Front Immunol 2020; 11:567423. [PMID: 33193340 PMCID: PMC7604384 DOI: 10.3389/fimmu.2020.567423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023] Open
Abstract
The variables that influence the selection of a preparative regimen for a pediatric hematopoietic stem cell transplant procedure encompasses many issues. When one considers this procedure for non-malignant diseases, components in a preparative regimen that were historically developed to reduce malignant tumor burden may be unnecessary. The primary goal of the procedure in this instance becomes engraftment with the establishment of normal hematopoiesis and a normal immune system. Overcoming rejection becomes the primary priority, but pursuit of this goal cannot neglect organ toxicity, or post-transplant morbidity such as graft-versus-host disease or life threatening infections. With the improvements in supportive care, newborn screening techniques for early disease detection, and the expansion of viable donor sources, we have reached a stage where hematopoietic stem cell transplantation can be considered for virtually any patient with a hematopoietic based disease. Advancing preparative regiments that minimize rejection and transplant related toxicity will thus dictate to what extent this medical technology is fully utilized. This mini-review will provide an overview of the origins of conditioning regimens for transplantation and how agents and techniques have evolved to make hematopoietic stem cell transplantation a viable option for children with non-malignant diseases of the hematopoietic system. We will summarize the current state of this facet of the transplant procedure and describe the considerations that come into play in selecting a particular preparative regimen. Decisions within this realm must tailor the treatment to the primary disease condition to ideally achieve an optimal outcome. Finally, we will project forward where advances are needed to overcome the persistent engraftment obstacles that currently limit the utilization of transplantation for haematopoietically based diseases in children.
Collapse
Affiliation(s)
- Robert J Hayashi
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
21
|
Salas MQ, Atenafu EG, Lam W, Law AD, Kim D(DH, Michelis FV, Al-Shaibani Z, Gerbitz A, Lipton JH, Viswabandya A, Mattsson J, Gupta V, Kumar R. High Overall and GVHD-Free Survival in Patients with Aplastic Anemia Receiving in vivo T-cell Depletion Transplants and Long-Term Complications. BLOOD CELL THERAPY 2020; 3:48-58. [PMID: 36714178 PMCID: PMC9847295 DOI: 10.31547/bct-2020-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/24/2020] [Indexed: 02/01/2023]
Abstract
We report a single-center experience of allogeneic hematopoietic stem cell transplant for patients with severe aplastic anemia over 13 years of age. Fifty-eight patients were included, and in vivo T-cell depletion was used in all cases. Fifty-one (88%) received alemtuzumab and 7 (12%) were given rabbit anti-thymocyte globulin. The median follow-up period was 6 years (range: 0-13.5). Data was collected retrospectively and updated in April 2019. The median age was 31 years (range: 18-67). Forty (69%) recipients received grafts from related donors and 18 (31%) received them from unrelated donors. Peripheral blood grafts were infused in 12 (20.7%) patients. Five-year overall survival (OS) was 80.7%. Five-year graft-versus-host disease (GVHD)/rejection-free survival was 56%. Eight (13.8%) patients experienced graft failure. The cumulative incidence of grade II-IV acute GVHD at day 100 was 14% and that of chronic GVHD at 1 year was 7%. The selection of unrelated donors and the use of peripheral blood grafts were not significant risk factors for clinically relevant GVHD or for lower OS. Recipients older than 40 years showed significantly worse OS, as observed from the results of univariate analysis. T-cell depletion in severe aplastic anemia shows low rates of GVHD and high OS, but older patients remain a group with higher risk of mortality. Long-term complications were mainly autoimmune in character.
Collapse
Affiliation(s)
- Maria Queralt Salas
- University of Toronto, Dept of Medicine, Section of Medical Oncology and Hematology,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada,Hematology Department, Institut Català d'Oncologia-Hospitalet, IDIBELL, Barcelona, Spain
| | - Eshetu G. Atenafu
- Department of Biostatistics, Princes Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wilson Lam
- University of Toronto, Dept of Medicine, Section of Medical Oncology and Hematology,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Arjun Datt Law
- University of Toronto, Dept of Medicine, Section of Medical Oncology and Hematology,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dennis (Dong Hwan) Kim
- University of Toronto, Dept of Medicine, Section of Medical Oncology and Hematology,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fotios V. Michelis
- University of Toronto, Dept of Medicine, Section of Medical Oncology and Hematology,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zeyad Al-Shaibani
- University of Toronto, Dept of Medicine, Section of Medical Oncology and Hematology,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Armin Gerbitz
- University of Toronto, Dept of Medicine, Section of Medical Oncology and Hematology,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey Howard Lipton
- University of Toronto, Dept of Medicine, Section of Medical Oncology and Hematology,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Auro Viswabandya
- University of Toronto, Dept of Medicine, Section of Medical Oncology and Hematology,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonas Mattsson
- University of Toronto, Dept of Medicine, Section of Medical Oncology and Hematology,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vikas Gupta
- University of Toronto, Dept of Medicine, Section of Medical Oncology and Hematology
| | - Rajat Kumar
- University of Toronto, Dept of Medicine, Section of Medical Oncology and Hematology,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Giardino S, Latour RP, Aljurf M, Eikema D, Bosman P, Bertrand Y, Tbakhi A, Holter W, Bornhäuser M, Rössig C, Burkhardt B, Zecca M, Afanasyev B, Michel G, Ganser A, Alseraihy A, Ayas M, Uckan‐Cetinkaya D, Bruno B, Patrick K, Bader P, Itälä‐Remes M, Rocha V, Jubert C, Diaz MA, Shaw PJ, Junior LGD, Locatelli F, Kröger N, Faraci M, Pierri F, Lanino E, Miano M, Risitano A, Robin M, Dufour C. Outcome of patients with Fanconi anemia developing myelodysplasia and acute leukemia who received allogeneic hematopoietic stem cell transplantation: A retrospective analysis on behalf of EBMT group. Am J Hematol 2020; 95:809-816. [PMID: 32267023 DOI: 10.1002/ajh.25810] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is curative for bone marrow failure in patients with Fanconi anemia (FA), but the presence of a malignant transformation is associated with a poor prognosis and the management of these patients is still challenging. We analyzed outcome of 74 FA patients with a diagnosis of myelodysplastic syndrome (n = 35), acute leukemia (n = 35) or with cytogenetic abnormalities (n = 4), who underwent allo-HSCT from 1999 to 2016 in EBMT network. Type of diagnosis, pre-HSCT cytoreductive therapies and related toxicities, disease status pre-HSCT, donor type, and conditioning regimen were considered as main variables potentially influencing outcome. The 5-year OS and EFS were 42% (30-53%) and 39% (27-51%), respectively. Patients transplanted in CR showed better OS compared with those transplanted in presence of an active malignant disease (OS:71%[48-95] vs 37% [24-50],P = .04), while none of the other variables considered had an impact. Twenty-two patients received pre-HSCT cytoreduction and 9/22 showed a grade 3-4 toxicity, without any lethal event or negative influence on survival after HSCT(OS:toxicity pre-HSCT 48% [20-75%] vs no-toxicity 51% [25-78%],P = .98). The cumulative incidence of day-100 grade II-IV a-GvHD and of 5-year c-GvHD were 38% (26-50%) and 40% (28-52%). Non-relapse-related mortality and incidence of relapse at 5-years were 40% (29-52%) and 21% (11-30%) respectively, without any significant impact of the tested variables. Causes of death were transplant-related events in most patients (34 out of the 42 deaths, 81%). This analysis confirms the poor outcome of transformed FA patients and identifies the importance of achieving CR pre-HSCT, suggesting that, in a newly diagnosed transformed FA patient, a cytoreductive approach pre-HSCT should be considered if a donor have been secured.
Collapse
Affiliation(s)
- Stefano Giardino
- Hematopoietic stem cell transplantation UnitIstituto Giannina Gaslini Genoa Italy
| | - Regis P. Latour
- French reference center for aplastic anemia and PNH;Saint‐Louis HospitalUniversité de Paris Paris France
| | - Mahmoud Aljurf
- King Faisal Hospital and Research Centre Riyadh Saudi Arabia
| | | | | | | | | | | | | | - Claudia Rössig
- Pediatric Hematology and OncologyUniversity Children´s Hospital Muenster Muenster Germany
| | - Birgit Burkhardt
- Pediatric Hematology and OncologyUniversity Children´s Hospital Muenster Muenster Germany
| | - Marco Zecca
- Fondazione IRCSS Policlinico San Matteo Pavia Italy
| | | | | | | | - Amal Alseraihy
- King Faisal Hospital and Research Centre Riyadh Saudi Arabia
| | - Mouhab Ayas
- King Faisal Hospital and Research Centre Riyadh Saudi Arabia
| | | | | | | | - Peter Bader
- Immunologie und IntensivmedizinKlinikum der Johann‐Wolfgang Goethe Universität, Klinik für Kinder‐und Jugendmedizin, Schwerpunkt Stammzelltransplantation Frankfurt am Main Germany
| | | | | | | | - Miguel A. Diaz
- Hospital Infantil Universitario "Niño Jesus" Madrid Spain
| | - Peter J. Shaw
- The Children's Hospital at Westmead Sydney Australia
| | | | - Franco Locatelli
- IRCSS OspedalePediatrico Bambino Gesù, SapienzaUniversity of Rome Rome Italy
| | | | - Maura Faraci
- Hematopoietic stem cell transplantation UnitIstituto Giannina Gaslini Genoa Italy
| | - Filomena Pierri
- Hematopoietic stem cell transplantation UnitIstituto Giannina Gaslini Genoa Italy
| | - Edoardo Lanino
- Hematopoietic stem cell transplantation UnitIstituto Giannina Gaslini Genoa Italy
| | | | | | - Marie Robin
- French reference center for aplastic anemia and PNH;Saint‐Louis HospitalUniversité de Paris Paris France
| | - Carlo Dufour
- UOC EmatologiaIstituto Giannina Gaslini Genoa Italy
| | | |
Collapse
|
23
|
Gupta AO, Wagner JE. Umbilical Cord Blood Transplants: Current Status and Evolving Therapies. Front Pediatr 2020; 8:570282. [PMID: 33123504 PMCID: PMC7567024 DOI: 10.3389/fped.2020.570282] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic cell transplants using stem cells from umbilical cord blood are used worldwide for the treatment of malignant and non-malignant disorders. Transplant procedures from this stem cell source have shown promising outcomes in successfully treating various hematologic, immunologic, malignant, and inherited metabolic disorders. Rapid availability of these stem cells is an important advantage over other unrelated donor transplants, especially in situations where waiting can adversely affect the prognosis. The umbilical cord blood is rich in CD34+ stem cells, though with a limited cell dose and usually takes longer to engraft. Limitations around this have been addressed by in vivo and ex vivo expansion techniques as well as enhanced engraftment kinetics. Development of adoptive immunotherapy using other components of umbilical cord blood such as regulatory T cells, virus-specific T cells, and natural killer cells has further transformed the field and enhanced the utility of umbilical cord blood unit.
Collapse
Affiliation(s)
- Ashish O Gupta
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - John E Wagner
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
24
|
Results of Allogenic Hematopoietic Stem Cell Transplantation in Fanconi Anemia Caused by Bone Marrow Failure: Single-Regimen, Single-Center Experience of 14 Years. Biol Blood Marrow Transplant 2019; 25:2017-2023. [DOI: 10.1016/j.bbmt.2019.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022]
|
25
|
Gabelli M, Veys P, Chiesa R. Current status of umbilical cord blood transplantation in children. Br J Haematol 2019; 190:650-683. [PMID: 31410846 DOI: 10.1111/bjh.16107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
The first umbilical cord blood (UCB) transplantation was performed 30 years ago. UCB transplantation (UCBT) is now widely used in children with malignant and non-malignant disorders who lack a matched family donor. UCBT affords a lower incidence of graft-versus-host disease compared to alternative stem cell sources, but also presents a slower immune recovery and a high risk of infections if serotherapy is not omitted or targeted within the conditioning regimen. The selection of UCB units with high cell content and good human leucocyte antigen match is essential to improve the outcome. Techniques, such as double UCBT, ex vivo stem cell expansion and intra-bone injection of UCB, have improved cord blood engraftment, but clinical benefit remains to be demonstrated. Cell therapies derived from UCB are under evaluation as potential novel strategies to reduce relapse and viral infections following transplantation. In recent years, improvements within haploidentical transplantation have reduced the overall use of UCBT as an alternative stem cell source; however, each may have its relative merits and disadvantages and tailored use of these alternative stem cell sources may be the optimal approach.
Collapse
Affiliation(s)
- Maria Gabelli
- Bone Marrow Transplantation, Great Ormond Street Hospital, London, UK
| | - Paul Veys
- Bone Marrow Transplantation, Great Ormond Street Hospital, London, UK
| | - Robert Chiesa
- Bone Marrow Transplantation, Great Ormond Street Hospital, London, UK
| |
Collapse
|
26
|
van de Vrugt HJ, Harmsen T, Riepsaame J, Alexantya G, van Mil SE, de Vries Y, Bin Ali R, Huijbers IJ, Dorsman JC, Wolthuis RMF, Te Riele H. Effective CRISPR/Cas9-mediated correction of a Fanconi anemia defect by error-prone end joining or templated repair. Sci Rep 2019; 9:768. [PMID: 30683899 PMCID: PMC6347620 DOI: 10.1038/s41598-018-36506-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Fanconi anemia (FA) is a cancer predisposition syndrome characterized by congenital abnormalities, bone marrow failure, and hypersensitivity to aldehydes and crosslinking agents. For FA patients, gene editing holds promise for therapeutic applications aimed at functionally restoring mutated genes in hematopoietic stem cells. However, intrinsic FA DNA repair defects may obstruct gene editing feasibility. Here, we report on the CRISPR/Cas9-mediated correction of a disruptive mutation in Fancf. Our experiments revealed that gene editing could effectively restore Fancf function via error-prone end joining resulting in a 27% increased survival in the presence of mitomycin C. In addition, templated gene correction could be achieved after double strand or single strand break formation. Although templated gene editing efficiencies were low (≤6%), FA corrected embryonic stem cells acquired a strong proliferative advantage over non-corrected cells, even without imposing genotoxic stress. Notably, Cas9 nickase activity resulted in mono-allelic gene editing and avoidance of undesired mutagenesis. In conclusion: DNA repair defects associated with FANCF deficiency do not prohibit CRISPR/Cas9 gene correction. Our data provide a solid basis for the application of pre-clinical models to further explore the potential of gene editing against FA, with the eventual aim to obtain therapeutic strategies against bone marrow failure.
Collapse
Affiliation(s)
- Henri J van de Vrugt
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| | - Tim Harmsen
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Joey Riepsaame
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Genome Engineering Oxford, Sir William Dunn School of Pathology, University of Oxford South Parks Road, OX1 3RE, Oxford, UK
| | - Georgina Alexantya
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Saskia E van Mil
- Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Yne de Vries
- Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Rahmen Bin Ali
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ivo J Huijbers
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Rob M F Wolthuis
- Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Affiliation(s)
- Neal S Young
- From the Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| |
Collapse
|
28
|
Wang Y, Zhou W, Alter BP, Wang T, Spellman SR, Haagenson M, Yeager M, Lee SJ, Chanock SJ, Savage SA, Gadalla SM. Chromosomal Aberrations and Survival after Unrelated Donor Hematopoietic Stem Cell Transplant in Patients with Fanconi Anemia. Biol Blood Marrow Transplant 2018; 24:2003-2008. [PMID: 29879518 DOI: 10.1016/j.bbmt.2018.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Studies of chromosomal aberrations in blood or bone marrow of patients with Fanconi anemia (FA) have focused on their associations with leukemic transformation. The role of such abnormalities on outcomes after hematopoietic cell transplantation (HCT) is unclear. We used genome-wide single nucleotide polymorphism arrays to identify chromosomal aberrations in pre-HCT blood samples from 73 patients with FA who received unrelated donor HCT for severe aplastic anemia between 1991 and 2007. Outcome data and blood samples were available through the Center for International Blood and Marrow Transplant Research. For survival analyses, we used the Kaplan-Meier estimator to calculate the survival probabilities and the exact log-rank test to compare the survival differences across groups. Chromosomal aberrations were detected in 16 (22%) patients; most frequent were clonal copy loss in chromosome 7 (9.6%), clonal copy gains in the long arm (q) of chromosome 1 (chr1q+) (8.2%), and clonal or complete copy gains in the q arm of chromosome 3 (chr3q+) (8.2%). Seven (9.6%) patients had alterations in 3 or more chromosomes. Poor post-HCT overall survival (OS) was noted in patients with chr3q+ (P = .04), or those with abnormalities in ≥3 chromosomes (P = .03). The 1-year OS was 0% versus 45% in patients with either alteration versus its absence. No statistically significant differences in OS were noted in patients carrying deletions in chr7 (1-year OS = 29% versus 42%; log-rank P = .74). The study is limited by the small sample size. A larger, prospective study is warranted to validate our findings in light of recent improvement in transplant modalities and outcomes.
Collapse
Affiliation(s)
- Youjin Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Blanche P Alter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|