1
|
Arai N, Narita H, Kuroiwa K, Nagao K, Hayashi H, Kawamata N, Okamura R, Sasaki Y, Shimada S, Watanuki M, Kawaguchi Y, Yanagisawa K, Hattori N. Fludarabine Melphalan, Reduced-dose Busulfan Versus Fludarabine, Melphalan, Full-dose Busulfan in Patients Receiving Cord Blood Transplantation. Transplant Proc 2024; 56:1828-1835. [PMID: 39232926 DOI: 10.1016/j.transproceed.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Various reduced-intensity conditioning/reduced-toxicity conditioning regimens have been developed for patients receiving allogeneic hematopoietic cell transplantation. The balance between disease relapse and toxicity can be partly dependent on reduced-intensity conditioning/reduced-toxicity conditioning regimens. This retrospective study aimed to compare the nonrelapse mortality, relapse incidence, progression-free survival, and overall survival rates between the fludarabine/melphalan/reduced-dose busulfan (Flu/Mel/Bu2; busulfan at a dose of 6.4 mg/kg intravenously) and fludarabine/melphalan/full-dose busulfan (Flu/Mel/Bu4; busulfan at a dose of 12.8 mg/kg intravenously) regimens in patients receiving umbilical cord blood transplantation. METHOD Eighty-seven adult patients who received the Flu/Mel/Bu2 (n = 45) or Flu/Mel/Bu4 (n = 42) regimen as a conditioning regimen before umbilical cord blood transplantation at our institution between January 2013 and December 2022 were included in this study. RESULTS There were no significant differences in terms of clinical outcomes including nonrelapse mortality, relapse incidence, progression-free survival, and overall survival rates between the two regimens. Further, even in higher-risk patients classified according to the Refined Disease Risk Index, the Flu/Mel/Bu2 regimen was comparable to the Flu/Mel/Bu4 regimen. CONCLUSION The novel Flu/Mel/Bu2 regimen could be applied in clinical settings as it can be tolerated and effective in older patients.
Collapse
Affiliation(s)
- Nana Arai
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Hinako Narita
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Kai Kuroiwa
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Kazuki Nagao
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Hidenori Hayashi
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Natsuki Kawamata
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Reiko Okamura
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Yohei Sasaki
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Shotaro Shimada
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Megumi Watanuki
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Yukiko Kawaguchi
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Kouji Yanagisawa
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Norimichi Hattori
- Department of Medicine, Division of Hematology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan.
| |
Collapse
|
2
|
Kuroiwa K, Sato M, Narita H, Okamura R, Uesugi Y, Sasaki Y, Shimada S, Watanuki M, Fujiwara S, Kawaguchi Y, Arai N, Yanagisawa K, Iezumi K, Hattori N. Influence of FOXP3 single-nucleotide polymorphism after allogeneic hematopoietic stem cell transplantation. Int J Hematol 2024; 119:583-591. [PMID: 38418747 DOI: 10.1007/s12185-024-03726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
The impact of FOXP3 single-nucleotide polymorphisms (SNP) on clinical outcomes after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains poorly understood. We investigated the relationship between a FOXP3 SNP (rs3761548) and clinical outcomes in 91 patients with hematological malignancies after allo-HSCT. Multivariate analysis showed that risk of severe chronic graft-versus-host disease (cGVHD) was significantly higher in patients with the FOXP3-3279C/A or FOXP3-3279A/A genotype than those with the FOXP3-3279C/C genotype [hazard ratio (HR), 2.69; 95% confidence interval (CI) 1.14-6.31; p = 0.023]. Therefore, FOXP3 at SNP rs3761548 can be a useful marker for predicting the occurrence of severe cGVHD.
Collapse
Affiliation(s)
- Kai Kuroiwa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Misuzu Sato
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hinako Narita
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Reiko Okamura
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yuka Uesugi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yohei Sasaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shotaro Shimada
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Megumi Watanuki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shun Fujiwara
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yukiko Kawaguchi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Nana Arai
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Kouji Yanagisawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Keiichi Iezumi
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Norimichi Hattori
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan.
| |
Collapse
|
3
|
Li A, Feng R. [CAR-T cell therapy-related long-term cytopenias]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:870-875. [PMID: 38049346 PMCID: PMC10694071 DOI: 10.3760/cma.j.issn.0253-2727.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 12/06/2023]
Affiliation(s)
- A Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - R Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Piccinelli S, Romee R, Shapiro RM. The natural killer cell immunotherapy platform: an overview of the landscape of clinical trials in liquid and solid tumors. Semin Hematol 2023; 60:42-51. [PMID: 37080710 DOI: 10.1053/j.seminhematol.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
The translation of natural killer (NK) cells to the treatment of malignant disease has made significant progress in the last few decades. With a variety of available sources and improvements in both in vitro and in vivo NK cell expansion, the NK cell immunotherapy platform has come into its own. The enormous effort continues to further optimize this platform, including ways to enhance NK cell persistence, trafficking to the tumor microenvironment, and cytotoxicity. As this effort bears fruit, it is translated into a plethora of clinical trials in patients with advanced malignancies. The adoptive transfer of NK cells, either as a standalone therapy or in combination with other immunotherapies, has been applied for the treatment of both liquid and solid tumors, with numerous early-phase trials showing promising results. This review aims to summarize the key advantages of NK cell immunotherapy, highlight several of the current approaches being taken for its optimization, and give an overview of the landscape of clinical trials translating this platform into clinic.
Collapse
|
5
|
Cao Y, Gong X, Feng Y, Wang M, Hu Y, Liu H, Liu X, Qi S, Ji Y, Liu F, Zhu H, Guo W, Shen Q, Zhang R, Zhao N, Zhai W, Song X, Chen X, Geng L, Chen X, Zheng X, Ma Q, Tang B, Wei J, Huang Y, Ren Y, Song K, Yang D, Pang A, Yao W, He Y, Shang Y, Wan X, Zhang W, Zhang S, Sun G, Feng S, Zhu X, Han M, Song Z, Guo Y, Sun Z, Jiang E, Chen J. The Composite Immune Risk Score predicts overall survival after allogeneic hematopoietic stem cell transplantation: A retrospective analysis of 1838 cases. Am J Hematol 2023; 98:309-321. [PMID: 36591789 PMCID: PMC10108217 DOI: 10.1002/ajh.26792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 01/03/2023]
Abstract
There has been little consensus on how to quantitatively assess immune reconstitution after hematopoietic stem cell transplantation (HSCT) as part of the standard of care. We retrospectively analyzed 11 150 post-transplant immune profiles of 1945 patients who underwent HSCT between 2012 and 2020. 1838 (94.5%) of the cases were allogeneic HSCT. Using the training set of patients (n = 729), we identified a composite immune signature (integrating neutrophil, total lymphocyte, natural killer, total T, CD4+ T, and B cell counts in the peripheral blood) during days 91-180 after allogeneic HSCT that was predictive of early mortality and moreover simplified it into a formula for a Composite Immune Risk Score. When we verified the Composite Immune Risk Score in the validation (n = 284) and test (n = 391) sets of patients, a high score value was found to be associated with hazard ratios (HR) of 3.64 (95% C.I. 1.55-8.51; p = .0014) and 2.44 (95% C.I., 1.22-4.87; p = .0087), respectively, for early mortality. In multivariate analysis, a high Composite Immune Risk Score during days 91-180 remained an independent risk factor for early mortality after allogeneic HSCT (HR, 1.80; 95% C.I., 1.28-2.55; p = .00085). In conclusion, the Composite Immune Risk Score is easy to compute and could identify the high-risk patients of allogeneic HSCT who require targeted effort for prevention and control of infection.
Collapse
Affiliation(s)
- Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Huilan Liu
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Xueou Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yanping Ji
- Anhui Medical UniversityHefeiChina
- Department of HematologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Fang Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Huaiping Zhu
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Wenwen Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Ningning Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaoqiang Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Liangquan Geng
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Xia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xuetong Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Baolin Tang
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yong Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yuanyuan Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Kaidi Song
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Wen Yao
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yue Shang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiang Wan
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Song Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Guangyu Sun
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Zimin Sun
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| |
Collapse
|
6
|
Chen YF, Li J, Xu LL, Găman MA, Zou ZY. Allogeneic stem cell transplantation in the treatment of acute myeloid leukemia: An overview of obstacles and opportunities. World J Clin Cases 2023; 11:268-291. [PMID: 36686358 PMCID: PMC9850970 DOI: 10.12998/wjcc.v11.i2.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
As an important treatment for acute myeloid leukemia, allogeneic hematopoietic stem cell transplantation (allo-HSCT) plays an important role in reducing relapse and improving long-term survival. With rapid advancements in basic research in molecular biology and immunology and with deepening understanding of the biological characteristics of hematopoietic stem cells, allo-HSCT has been widely applied in clinical practice. During allo-HSCT, preconditioning, the donor, and the source of stem cells can be tailored to the patient's conditions, greatly broadening the indications for HSCT, with clear survival benefits. However, the risks associated with allo-HSCT remain high, i.e. hematopoietic reconstitution failure, delayed immune reconstitution, graft-versus-host disease, and post-transplant relapse, which are bottlenecks for further improvements in allo-HSCT efficacy and have become hot topics in the field of HSCT. Other bottlenecks recognized in the current treatment of individuals diagnosed with acute myeloid leukemia and subjected to allo-HSCT include the selection of the most appropriate conditioning regimen and post-transplantation management. In this paper, we reviewed the progress of relevant research regarding these aspects.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ling-Long Xu
- Department of Hematology, Taizhou Central Hospital, Taizhou 318000, Zhejiang Province, China
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Zhen-You Zou
- Department of Scientific Research,Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
7
|
Silla L. Peripheral blood persistence and expansion of transferred non-genetically modified Natural Killer cells might not be necessary for clinical activity. IMMUNOTHERAPY ADVANCES 2023; 3:ltac024. [PMID: 36726770 PMCID: PMC9885937 DOI: 10.1093/immadv/ltac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that react without previous exposition to virus infected or malignant cells and stimulate adaptive immune response to build a long-lasting immunity against it. To that end, tissue resident NK cells are predominantly regulatory as opposed to cytotoxic. In the hematopoietic stem cell transplant (HSCT) setting, which curative potential relies on the graft versus leukemia effect, NK cells are known to play a significant role. This knowledge has paved the way to the active investigation on its anti-tumor effect outside the stem cell transplant scenario. Based on the relevant literature on the adoptive transfer of non-genetically modified NK cells for the treatment of relapsed/refractory acute leukemia and on our own experience, we discuss the role of donor cell peripheral blood persistence and expansion and its lack of correlation with anti-leukemia activity.
Collapse
Affiliation(s)
- Lucia Silla
- Correspondence: Rua Ramiro, Barcelos #2350, Universidade Federal do Rio, Grande do Sul, Porto Alegre, RS 90035-903, Brazil;
| |
Collapse
|
8
|
Yokoyama H. Role of NK cells in cord blood transplantation and their enhancement by the missing ligand effect of the killer-immunoglobulin like receptor. Front Genet 2022; 13:1041468. [PMID: 36330445 PMCID: PMC9623085 DOI: 10.3389/fgene.2022.1041468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are the first lymphocytes reconstituted after allogenic hematopoietic stem cell transplantation (HSCT). Especially, in cord blood transplantation (CBT), the increase in the number of NK cells is sustained for a long period. Although there are conflicting results, many studies show that early reconstitution of NK cells is associated with favorable CBT outcomes, suggesting that maximizing NK cell functions could improve the CBT outcome. Killer immunoglobulin-like receptors (KIRs) include inhibitory and stimulatory receptors, which can regulate NK-cell activity. Because some of the KIRs have HLA class I as their ligand, the KIR—ligand interaction on NK cells can be lost in some cases of CBT, which results in the activation of NK cells and alters HSCT outcome. Thus, effects of KIR–ligand mismatch under various conditions have been widely examined; however, the results have been controversial. Among such studies, those using the largest number of CBTs showed that HLA—C2 (KIR2DL1—ligand) mismatches have a favorable effect on the relapse rate and overall survival only when the CBT used methotrexate for graft-versus-host disease prophylaxis. Another study suggested that KIR—ligand mismatch is involved in reducing the relapse of acute myeloid leukemia, mediated by reactivation of cytomegalovirus. These results indicate that activation of NK cells by KIR—ligand mismatch may have favorable effects on CBT outcomes and could help enhance the NK-cell function.
Collapse
|
9
|
Mushtaq MU, Shahzad M, Shah AY, Chaudhary SG, Zafar MU, Anwar I, Neupane K, Khalid A, Ahmed N, Bansal R, Balusu R, Singh AK, Abhyankar SH, Callander NS, Hematti P, McGuirk JP. Impact of natural killer cells on outcomes after allogeneic hematopoietic stem cell transplantation: A systematic review and meta-analysis. Front Immunol 2022; 13:1005031. [PMID: 36263054 PMCID: PMC9574024 DOI: 10.3389/fimmu.2022.1005031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells play a vital role in early immune reconstitution following allogeneic hematopoietic stem cell transplantation (HSCT). METHODS A literature search was performed on PubMed, Cochrane, and Clinical trials.gov through April 20, 2022. We included 21 studies reporting data on the impact of NK cells on outcomes after HSCT. Data was extracted following the PRISMA guidelines. Pooled analysis was done using the meta-package (Schwarzer et al.). Proportions with 95% confidence intervals (CI) were computed. RESULTS We included 1785 patients from 21 studies investigating the impact of NK cell reconstitution post-HSCT (8 studies/1455 patients), stem cell graft NK cell content (4 studies/185 patients), therapeutic NK cell infusions post-HSCT (5 studies/74 patients), and pre-emptive/prophylactic NK cell infusions post-HSCT (4 studies/77 patients). Higher NK cell reconstitution was associated with a better 2-year overall survival (OS) (high: 77%, 95%CI 0.73-0.82 vs low: 55%, 95%CI 0.37-0.72; n=899), however, pooled analysis for relapse rate (RR) or graft versus host disease (GVHD) could not be performed due to insufficient data. Higher graft NK cell content demonstrated a trend towards a better pooled OS (high: 65.2%, 95%CI 0.47-0.81 vs low: 46.5%, 95%CI 0.24-0.70; n=157), lower RR (high: 16.9%, 95%CI 0.10-0.25 vs low: 33%, 95%CI 0.04-0.72; n=157), and lower acute GVHD incidence (high: 27.6%, 95%CI 0.20-0.36 vs low: 49.7%, 95%CI 0.26-0.74; n=157). Therapeutic NK or cytokine-induced killer (CIK) cell infusions for hematologic relapse post-HSCT reported an overall response rate (ORR) and complete response (CR) of 48.9% and 11% with CIK cell infusions and 82.8% and 44.8% with NK cell infusions, respectively. RR, acute GVHD, and chronic GVHD were observed in 55.6% and 51.7%, 34.5% and 20%, and 20.7% and 11.1% of patients with CIK and NK cell infusions, respectively. Pre-emptive donor-derived NK cell infusions to prevent relapse post-HSCT had promising outcomes with 1-year OS of 69%, CR rate of 42%, ORR of 77%, RR of 28%, and acute and chronic GVHD rates of 24.9% and 3.7%, respectively. CONCLUSION NK cells have a favorable impact on outcomes after HSCT. The optimal use of NK cell infusions post-HSCT may be in a pre-emptive fashion to prevent disease relapse.
Collapse
Affiliation(s)
- Muhammad Umair Mushtaq
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Moazzam Shahzad
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
- Moffitt Cancer Center, University of South Florida, Tampa, FL, United States
| | - Amna Y. Shah
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sibgha Gull Chaudhary
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Muhammad U. Zafar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Iqra Anwar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Karun Neupane
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ayesha Khalid
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Nausheen Ahmed
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Bansal
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ramesh Balusu
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anurag K. Singh
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sunil H. Abhyankar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Natalie S. Callander
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Peiman Hematti
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Joseph P. McGuirk
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
10
|
Zhao F, Shi Y, Chen X, Zhang R, Pang A, Zhai W, Yang D, He Y, Feng S, Zhang P, Jiang E, Han M. Higher Dose of CD34+ cells Promotes Early Reconstitution of Natural Killer Cells and Is Associated with Better Outcomes After Unmanipulated Hematopoietic Stem Cell Transplantation for Myeloid Malignancies. Transplant Cell Ther 2022; 28:589.e1-589.e10. [DOI: 10.1016/j.jtct.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
|
11
|
Jennifer Zhang Q. Donor selection based on NK alloreactivity for patients with hematological malignancies. Hum Immunol 2022; 83:695-703. [PMID: 35965181 DOI: 10.1016/j.humimm.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells are an important defender against infections and tumors. Their function is regulated by the balance of inhibitory and activating receptors. Among all inhibitory NK receptors: killer immunoglobulin-like receptors (KIR) and CD94/NKG2A recognize human leukocyte antigen (HLA) Class I molecules, allowing NK cells to be 'licensed' to avoid autoreactivity, but be fully functional at the same time. Licensed NK cells can target malignant cells with altered or downregulated/missing 'self' antigens. NK cell attacking malignant cells is one of the mechanisms of graft-versus-leukemia (GVL) effect. Numerous studies have demonstrated that NK cells improve hematopoietic stem cell transplantation (HCT) survival by reducing relapse mortality through GVL effect. Therapeutic strategies, such as adoptive alloreactive NK cell transfer, CAR-NK cells, antibodies against NKG2A and KIR2DL1-3, have been utilized to treat hematological malignancies in HCT. In this review, NK cell functions, NK cell receptors and ligands, as well as common alloreactive NK donor selection algorithms for patients with hematological malignancies in the setting of HCT are discussed. The goal of this review is to provide insights on the controversial results and provide better understanding and resources on how to perform alloreactive donor NK cell selection in HCT.
Collapse
Affiliation(s)
- Qiuheng Jennifer Zhang
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA.
| |
Collapse
|
12
|
Chandar R, Meena S, Varla H, Ramakrishnan B, Vellaichamy Swaminathan V, Uppuluri R, Raj R. Post-transplant strategies to improve relapse-free survival in childhood leukemia: Whole blood donor lymphocyte infusions and lenalidomide for inducing graft-versus-leukemia effect. Pediatr Transplant 2022; 26:e14293. [PMID: 35437875 DOI: 10.1111/petr.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/18/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Post-transplant graft-versus-leukemia (GVL) effect has been shown to be an important determinant of a successful outcome following hematopoietic stem cell transplantation (HSCT) in children with acute leukemia. PATIENTS AND METHODS: We performed a retrospective analysis of the children up to 18 years of age with acute leukemia who underwent HSCT between November 2002 and November 2018. GVL induction strategies included whole blood donor lymphocyte infusions (DLI) and/or lenalidomide. RESULTS A total of 134 children were included with engraftment in 125 children (93%). Acute graft-versus-host disease (GVHD) was documented in 85 (63%) children without any induction strategies. GVL induction strategies were employed in 19 children (14%); DLI (n = 12), Lenalidomide (n = 2), DLI + lenalidomide (n = 5). Among the 19, 12 children (63%) are alive without relapse; 6 children died of relapse (31%). Among the 6 who died of relapse despite induction strategies, 5/6 had ALL and one child had AML. GVL induction was effective in preventing relapse in 7/12 (58%) children with ALL and 5/6 (83%) children with AML. Relapse-free survival in the cohort is 73/134 (55%) with a median follow-up of 32 months. GVHD of any grade was significantly associated with a lower risk of relapse (p = .008). Median survival time was 160.3 days (range 132-187) in those with chronic GVHD versus 88.3 days (range 68-107) in those without (p value = .004). CONCLUSION Pre-emptive whole blood DLIs in graded aliquots, and lenalidomide are important tools for post HSCT GVL induction, which significantly impacts relapse-free survival in childhood leukemia.
Collapse
Affiliation(s)
- Rumesh Chandar
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | - Satishkumar Meena
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | - Harika Varla
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | | | | | - Ramya Uppuluri
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| |
Collapse
|
13
|
Kricke S, Rao K, Adams S. The significance of mixed chimaerism and cell lineage chimaerism monitoring in paediatric patients post haematopoietic stem cell transplant. Br J Haematol 2022; 198:625-640. [PMID: 35421255 DOI: 10.1111/bjh.18190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
Haematopoietic stem cell transplants (HSCTs) are carried out across the world to treat haematological and immunological diseases which would otherwise prove fatal. Certain diseases are predominantly encountered in paediatric patients, such severe primary immunodeficiencies (PID) and diseases of inborn errors of metabolism (IEM). Chimaerism testing for these disorders has different considerations compared to adult diseases. This review focuses on the importance of cell-lineage-specific chimaerism testing and examines the appropriate cell populations to be assessed in individual paediatric patient groups. By analysing disease-associated subpopulations, abnormalities are identified significantly earlier than in whole samples and targeted clinical decisions can be made. Chimaerism methods have evolved over time and lead to an ever-increasing level of sensitivity and biomarker arrays to distinguish between recipient and donor cells. Short tandem repeat (STR) is still the gold standard for routine chimaerism assessment, and hypersensitive methods such as quantitative and digital polymerase chain reaction (PCR) are leading the forefront of microchimaerism testing. The rise of molecular methods operating with minute DNA amounts has been hugely beneficial to chimaerism testing of paediatric samples. As HSCTs are becoming increasingly personalised and risk-adjusted towards a child's individual needs, chimaerism testing needs to adapt alongside these medical advances ensuring the best possible care.
Collapse
Affiliation(s)
- Susanne Kricke
- Specialist Integrated Haematology and Malignancy Diagnostic Service, Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Kanchan Rao
- Department of Blood and Marrow Transplantation, Great Ormond Street Hospital for Children, London, UK
| | - Stuart Adams
- Specialist Integrated Haematology and Malignancy Diagnostic Service, Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
14
|
Bertaina A, Abraham A, Bonfim C, Cohen S, Purtill D, Ruggeri A, Weiss D, Wynn R, Boelens JJ, Prockop S. An ISCT Stem Cell Engineering Committee Position Statement on Immune Reconstitution: the importance of predictable and modifiable milestones of immune reconstitution to transplant outcomes. Cytotherapy 2022; 24:385-392. [PMID: 35331394 DOI: 10.1016/j.jcyt.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Allogeneic stem cell transplantation is a potentially curative therapy for some malignant and non-malignant disease. There have been substantial advances since the approaches first introduced in the 1970s, and the development of approaches to transplant with HLA incompatible or alternative donors has improved access to transplant for those without a fully matched donor. However, success is still limited by morbidity and mortality from toxicity and imperfect disease control. Here we review our emerging understanding of how reconstitution of effective immunity after allogeneic transplant can protect from these events and improve outcomes. We provide perspective on milestones of immune reconstitution that are easily measured and modifiable.
Collapse
Affiliation(s)
- Alice Bertaina
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, District of Columbia, USA
| | - Allistair Abraham
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Carmem Bonfim
- Pediatric Bone Marrow Transplantation Division, Hospital Pequeno Principe, Curitiba, Brazil
| | - Sandra Cohen
- Université de Montréal and Maisonneuve Rosemont Hospital, Montréal, Québec, Canada
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | | | | | - Robert Wynn
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, and Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Susan Prockop
- Stem Cell Transplant Program, Division of Hematology/Oncology Boston Children's Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute.
| |
Collapse
|
15
|
The Future of Natural Killer Cell Immunotherapy for B Cell Non-Hodgkin Lymphoma (B Cell NHL). Curr Treat Options Oncol 2022; 23:381-403. [PMID: 35258793 PMCID: PMC8930876 DOI: 10.1007/s11864-021-00932-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cells have played a critical—if largely unrecognized or ignored—role in the treatment of B cell non-Hodgkin lymphoma (NHL) since the introduction of CD20-directed immunotherapy with rituximab as a cornerstone of therapy over 25 years ago. Engagement with NK cells leading to lysis of NHL targets through antibody-dependent cellular cytotoxicity (ADCC) is a critical component of rituximab’s mechanism of action. Despite this important role, the only aspect of B cell NHL therapy that has been adopted as standard therapy that even indirectly augments or restores NK cell function is the introduction of obinutuzumab, a CD20 antibody with enhanced ability to engage with NK cells. However, over the last 5 years, adoptive immunotherapy with effector lymphocytes of B cell NHL has experienced tremendous growth, with five different CAR T cell products now licensed by the FDA, four of which target CD19 and have approved indications for some subtype of B cell NHL—axicabtagene ciloleucel, brexucabtagene autoleucel, lisocabtagene maraleucel, and tisagenlecleucel. These T cell-based immunotherapies essentially mimic the recognition, activation pathway, and cytotoxic machinery of a CD19 antibody engaging NK cells and lymphoma targets. Despite their efficacy, these T cell-based immunotherapies have been difficult to implement because they require 4–6 weeks of manufacture, are costly, and have significant toxicities. This renewed interest in the potential of cellular immunity—and the manufacturing, supply chain, and administration logistics that have been addressed with these new agents—have ignited a new wave of enthusiasm for NK cell-directed therapies in NHL. With high safety profiles and proven anti-lymphoma efficacy, one or more new NK cell-directed modalities are certain to be introduced into the standard toolbox of NHL therapy within the next few years, be it function-enhancing cytokine muteins, multi-domain NK cell engagers, or adoptive therapy with expanded or genetically modified NK cells.
Collapse
|
16
|
Strati P, Varma A, Adkins S, Nastoupil LJ, Westin JR, Hagemeister FB, Fowler NH, Lee HJ, Fayad LE, Samaniego F, Ahmed S, Chen Y, Horowitz S, Arafat S, Johncy S, Kebriaei P, Mulanovich VE, Heredia EA, Neelapu SS. Hematopoietic recovery and immune reconstitution after axicabtagene ciloleucel in patients with large B-cell lymphoma. Haematologica 2021; 106:2667-2672. [PMID: 32732355 PMCID: PMC8485681 DOI: 10.3324/haematol.2020.254045] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 may be associated with long-term adverse effects such as cytopenia and immune deficiency. In order to characterize these late events, we analyzed 31 patients with relapsed or refractory large B-cell lymphoma treated with axicabtagene ciloleucel at our institution on two clinical trials, ZUMA-1 (clinicaltrials gov. Identifier: NCT02348216) and ZUMA-9 (clinicaltrials gov. Identifier: NCT03153462). Complete blood counts, lymphocyte subsets, and immunoglobulin levels were measured serially until month 24 or progression. Fifteen (48%) patients had grade 3-4 cytopenia, including anemia (five, 16%), neutropenia (nine, 29%), or thrombocytopenia (13, 42%) at day 30. Cytopenia at day 30 was not significantly associated with later diagnosis of myelodysplasia. Among patients with ongoing remission, grade 3-4 cytopenia was observed in one of nine (11%) at 2 years. While peripheral CD8+ T cells recovered early, CD4+ T-cell recovery was delayed with a count of <200/mL in three of nine (33%) patients at 1 year and two of seven (29%) at 2 years. Immunoglobulin G levels normalized in five of nine (56%) patients at 2 years. Thirteen (42%) patients developed grade 3-4 infectious complications, including herpes zoster and Pneumocystis jiroveci pneumonia. These results suggest the need for prolonged monitoring and prophylaxis against opportunistic infections in these patients, to improve the longterm safety of axicabtagene ciloleucel therapy.
Collapse
Affiliation(s)
- Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ankur Varma
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX
- Division of Hematology, Oncology and Cellular Therapy, Rush University, Chicago, IL, USA
| | - Sherry Adkins
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Loretta J. Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason R. Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Fredrick B Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nathan H Fowler
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hun J. Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luis E. Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yiming Chen
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sandra Horowitz
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sara Arafat
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Swapna Johncy
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Partow Kebriaei
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Ella Ariza Heredia
- Department of Infectious Disease, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sattva S. Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
17
|
Silla L, Valim V, Pezzi A, da Silva M, Wilke I, Nobrega J, Vargas A, Amorin B, Correa B, Zambonato B, Scherer F, Merzoni J, Sekine L, Huls H, Cooper LJ, Paz A, Lee DA. Adoptive immunotherapy with double-bright (CD56 bright /CD16 bright ) expanded natural killer cells in patients with relapsed or refractory acute myeloid leukaemia: a proof-of-concept study. Br J Haematol 2021; 195:710-721. [PMID: 34490616 DOI: 10.1111/bjh.17751] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
Patients with acute myeloid leukaemia (AML) have a five-year survival rate of 28·7%. Natural killer (NK)-cell have anti-leukaemic activity. Here, we report on a series of 13 patients with high-risk R/R AML, treated with repeated infusions of double-bright (CD56bright /CD16bright ) expanded NK cells at an academic centre in Brazil. NK cells from HLA-haploidentical donors were expanded using K562 feeder cells, modified to express membrane-bound interleukin-21. Patients received FLAG, after which cryopreserved NK cells were thawed and infused thrice weekly for six infusions in three dose cohorts (106 -107 cells/kg/infusion). Primary objectives were safety and feasibility. Secondary endpoints included overall response (OR) and complete response (CR) rates at 28-30 days after the first infusion. Patients received a median of five prior lines of therapy, seven with intermediate or adverse cytogenetics, three with concurrent central nervous system (CNS) leukaemia, and one with concurrent CNS mycetoma. No dose-limiting toxicities, infusion-related fever, or cytokine release syndrome were observed. An OR of 78·6% and CR of 50·0% were observed, including responses in three patients with CNS disease and clearance of a CNS mycetoma. Multiple infusions of expanded, cryopreserved NK cells were safely administered after intensive chemotherapy in high-risk patients with R/R AML and demonstrated encouraging outcomes.
Collapse
Affiliation(s)
- Lucia Silla
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vanessa Valim
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Annelise Pezzi
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria da Silva
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ianae Wilke
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Nobrega
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alini Vargas
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Amorin
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Correa
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Zambonato
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Joice Merzoni
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Leo Sekine
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Helen Huls
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alessandra Paz
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Dean A Lee
- Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
18
|
Maeda Y. Immune reconstitution after T-cell replete HLA haploidentical hematopoietic stem cell transplantation using high-dose post-transplant cyclophosphamide. J Clin Exp Hematop 2021; 61:1-9. [PMID: 33551435 PMCID: PMC8053574 DOI: 10.3960/jslrt.20040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
As HLA haploidentical related donors are quickly available, HLA haploidentical hematopoietic stem cell transplantation (haploHSCT) using high-dose post-transplant cyclophosphamide (PTCy) is now widely used. Recent basic and clinical studies revealed the details of immune reconstitution after T-cell replete haploHSCT using PTCy. T cells and NK cells in the graft proliferate abundantly at day 3 post-haploHSCT, and the PTCy eliminates these proliferating cells. After ablation of proliferating mature cells, donor-derived NK cell reconstitution occurs after the second week; however, recovering NK cells remain functionally impaired for at least several months after haploHSCT. PTCy depletes proliferating cells, resulting in the preferential accumulation of Treg and CD4+ T cells, especially the memory stem T cell (TSCM) phenotype. TSCM capable of both self-renewal and differentiation into effector T cells may play an important role in the first month of immune reconstitution. Subsequently, de novo T cells progressively recover but their levels remain well below those of donor CD4+ T cells at the first year after haploHSCT. The phenotype of recovering T cells after HSCT is predominantly effector memory, whereas B cells are predominantly phenotypically naive throughout the first year after haploHSCT. B cell recovery depends on de novo generation and they are not detected until week 4 after haploHSCT. At week 5, recovering B cells mostly exhibit an unconventional transitional cell phenotype and the cell subset undergoes maturation. Recent advances in immune reconstitution have improved our understanding of the relationship between haploHSCT with PTCy and the clinical outcome.
Collapse
Affiliation(s)
- Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
19
|
Salas MQ, Prem S, Remberger M, Lam W, Kim DDH, Michelis FV, Al-Shaibani Z, Gerbitz A, Lipton JH, Viswabandya A, Kumar R, Kumar D, Mattsson J, Law AD. High incidence but low mortality of EBV-reactivation and PTLD after alloHCT using ATG and PTCy for GVHD prophylaxis. Leuk Lymphoma 2020; 61:3198-3208. [PMID: 32715815 DOI: 10.1080/10428194.2020.1797010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We explore risk factors and impacts of post-transplant EBV-Reactivation (EBV-R) and PTLD in 270 patients that underwent RIC alloHCT using ATG-PTCy and cyclosporine for GVHD prophylaxis. Twenty-five (12%) patients had probable (n = 7) or proven (n = 18) PTLD. Patients were managed with reduction of immunosuppression and 22 with weekly rituximab (375 mg/m2 IV). ORR was 84%; 8 (32%) recipients died, and one-year OS and NRM of patients with PTLD was 59.7% and 37%, respectively. One hundred seventy-two (63.7%) recipients had EBV-R. One-year OS and RFS of patients with EBV-R were 68.2% and 60.6%, and of EBV-Negative patients were 62.1% and 50.1%, respectively. High incidence but low mortality of EBV-R and PTLD was documented. EBV-R induced a protective effect on RFS in multivariable analysis (HR 0.91, p = .011). Therefore, EBV-R may have a protective effect on RFS in this setting. Further research is necessary to evaluate the interplay of EBV-R, immune reconstitution, and post-transplant outcomes.
Collapse
Affiliation(s)
- Maria Queralt Salas
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Hematology Department, Institut Català d'Oncologia - Hospitalet, IDIBELL, Barcelona, Spain
| | - Shruti Prem
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mats Remberger
- Department of Medical Sciences, Uppsala University and KFUE, Uppsala University Hospital, Uppsala, Sweden
| | - Wilson Lam
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dennis Dong Hwan Kim
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Fotios Vasilios Michelis
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Zeyad Al-Shaibani
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Armin Gerbitz
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jeffrey Howard Lipton
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Auro Viswabandya
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rajat Kumar
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Deepali Kumar
- Transplant Infectious Diseases and Multi Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Jonas Mattsson
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Arjun Datt Law
- Department of Medicine, Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
20
|
Minculescu L, Fischer-Nielsen A, Haastrup E, Ryder LP, Andersen NS, Schjoedt I, Friis LS, Kornblit BT, Petersen SL, Sengelov H, Marquart HV. Improved Relapse-Free Survival in Patients With High Natural Killer Cell Doses in Grafts and During Early Immune Reconstitution After Allogeneic Stem Cell Transplantation. Front Immunol 2020; 11:1068. [PMID: 32547559 PMCID: PMC7273963 DOI: 10.3389/fimmu.2020.01068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Mature immunocompetent cells from the stem cell graft as well as early robust immune reconstitution are essential for the graft-vs. -tumor (GVT) effect to eliminate residual malignant cells after allogeneic hematopoietic stem cell transplantation (HSCT). In this prospective study we characterized graft composition of T- and NK cell subsets in 88 recipients of peripheral blood stem cell grafts with multicolor flowcytometry. Our primary aim was to analyze the impact of graft composition on immune reconstitution and clinical outcomes after transplantation. Patients transplanted with graft NK cell doses above the median value of 27 × 106/kg had significantly increased relapse-free-survival compared to patients transplanted with lower doses, HR 2.12 (95% CI 1.01-4.45, p = 0.04) Peripheral blood concentrations of NK cells obtained from donors before G-CSF mobilization were significantly correlated to graft NK cell doses (Spearman's ρ 0.53, p = 0.03). The dose of transplanted NK cells/kg correlated significantly with NK cell concentrations in patients early after transplantation (Spearman's ρ 0.26, p = 0.02, and ρ = 0.35, p = 0.001 for days 28 and 56, respectively). Early immune reconstitution above median values of NK cells was significantly associated with improved relapse-free survival (HR 2.84 [95% CI 1.29-6.28], p = 0.01, and HR 4.19 [95% CI 1.68-10.4], p = 0.002, for day 28 and 56, respectively). Early concentrations above the median value of the mature effector CD56dim NK cell subset were significantly associated with decreased relapse incidences at 1 year, 7% (95% CI 1.8-17) vs. 28% (95% CI 15-42), p = 0.04, and 7% (95% CI 1.8-18) vs. 26% (95% CI 14-40) %, p = 0.03, for days 28 and 56, respectively. The results suggest a protective effect of high doses of NK cells in grafts and during early immune reconstitution and support the perception of NK cells as innate effector cells with anti-tumor effects in the setting of allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Lia Minculescu
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anne Fischer-Nielsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Eva Haastrup
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars Peter Ryder
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Ida Schjoedt
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lone Smidstrup Friis
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Brian Thomas Kornblit
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Søren Lykke Petersen
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sengelov
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
21
|
Tan Y, Wu Q, Zhou F. Targeting acute myeloid leukemia stem cells: Current therapies in development and potential strategies with new dimensions. Crit Rev Oncol Hematol 2020; 152:102993. [PMID: 32502928 DOI: 10.1016/j.critrevonc.2020.102993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
High relapse rate of acute myeloid leukemia (AML) is still a crucial problem despite considerable advances in anti-cancer therapies. One crucial cause of relapse is the existence of leukemia stem cells (LSCs) with self-renewal ability, which contribute to repeated treatment resistance and recurrence. Treatments targeting LSCs, especially in combination with existing chemotherapy regimens or hematopoietic stem cell transplantation might help achieve a higher complete remission rate and improve overall survival. Many novel agents of different therapeutic strategies that aim to modulate LSCs self-renewal, proliferation, apoptosis, and differentiation are under investigation. In this review, we summarize the latest advances of different therapies in development based on the biological characteristics of LSCs, with particular attention on natural products, synthetic compounds, antibody therapies, and adoptive cell therapies that promote the LSC eradication. We also explore the causes of AML recurrence and proposed potential strategies with new dimensions for targeting LSCs in the future.
Collapse
Affiliation(s)
- Yuxin Tan
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
22
|
Mosquito allergy: a novel strong prognostic symptom of outcome after allogeneic hematopoietic transplantation. Bone Marrow Transplant 2019; 55:1509-1511. [PMID: 31804620 DOI: 10.1038/s41409-019-0759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 11/08/2022]
|
23
|
Zaghi E, Calvi M, Di Vito C, Mavilio D. Innate Immune Responses in the Outcome of Haploidentical Hematopoietic Stem Cell Transplantation to Cure Hematologic Malignancies. Front Immunol 2019; 10:2794. [PMID: 31849972 PMCID: PMC6892976 DOI: 10.3389/fimmu.2019.02794] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
In the context of allogeneic transplant platforms, human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) represents one of the latest and most promising curative strategies for patients affected by high-risk hematologic malignancies. Indeed, this platform ensures a suitable stem cell source immediately available for virtually any patents in need. Moreover, the establishment in recipients of a state of immunologic tolerance toward grafted hematopoietic stem cells (HSCs) remarkably improves the clinical outcome of this transplant procedure in terms of overall and disease free survival. However, the HLA-mismatch between donors and recipients has not been yet fully exploited in order to optimize the Graft vs. Leukemia effect. Furthermore, the efficacy of haplo-HSCT is currently hampered by several life-threatening side effects including the onset of Graft vs. Host Disease (GvHD) and the occurrence of opportunistic viral infections. In this context, the quality and the kinetic of the immune cell reconstitution (IR) certainly play a major role and several experimental efforts have been greatly endorsed to better understand and accelerate the post-transplant recovery of a fully competent immune system in haplo-HSCT. In particular, the IR of innate immune system is receiving a growing interest, as it recovers much earlier than T and B cells and it is able to rapidly exert protective effects against both tumor relapses, GvHD and the onset of life-threatening opportunistic infections. Herein, we review our current knowledge in regard to the kinetic and clinical impact of Natural Killer (NK), γδ and Innate lymphoid cells (ILCs) IRs in both allogeneic and haplo-HSCT. The present paper also provides an overview of those new therapeutic strategies currently being implemented to boost the alloreactivity of the above-mentioned innate immune effectors in order to ameliorate the prognosis of patients affected by hematologic malignancies and undergone transplant procedures.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
24
|
Fujiwara S, Hattori N, Matsui T, Nakata A, Sasaki Y, Shimada S, Murai S, Abe M, Baba Y, Watanuki M, Kawaguchi Y, Arai N, Kabasawa N, Tsukamoto H, Uto Y, Yanagisawa K, Harada H, Nakamaki T. Refined Disease Risk Index for Hematological Malignancies, Including Rare Disorders, After Allogeneic Stem Cell Transplantation. Transplant Proc 2019; 51:3437-3443. [PMID: 31733801 DOI: 10.1016/j.transproceed.2019.08.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/30/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The refined disease risk index (R-DRI) is a well-designed prognostic parameter that is based on only the disease type and status and is used for stratifying patients undergoing allogeneic hematopoietic stem cell transplantation (allo HSCT) into 4 risk groups. However, the application of the R-DRI for rare diseases has remained unclear. METHODS We evaluated 135 patients who underwent allo HSCT for hematological malignancies including rare diseases, such as acute leukemia of ambiguous lineage, acute T-cell leukemia/lymphoma, extranodal natural killer T-cell lymphoma, and lymphoblastic lymphoma, at our institute. RESULTS According to the R-DRI, overall survival (OS) and progression-free survival at 2 years for patients with the low, intermediate, high, and very high groups were 66.7% and 66.7%, 60.8% and 56.0%, 27.1% and 23.7%, and 5.9% and 5.1%, respectively (P < .0001 and P < .0001, respectively). OS showed no significant difference between B-cell non-Hodgkin lymphoma (B-NHL) and T-cell non-Hodgkin lymphoma (T-NHL) (P = .71). Moreover, OS at 1 year was 80%, 14.3%, 60%, and 0% for the intermediate risk group, the very high-risk group of B-NHL, the intermediate risk group, and the high-risk group of T-NHL, respectively (P = .035). CONCLUSION We showed the applicability of the R-DRI for hematological malignancies, including rare disorders. However, we suggest that T-NHL patients may be better to be assigned between the nodal group and the extranodal group in the R-DRI.
Collapse
Affiliation(s)
- Shun Fujiwara
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Norimichi Hattori
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | - Tomoharu Matsui
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ayaka Nakata
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yohei Sasaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shotaro Shimada
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - So Murai
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Maasa Abe
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuta Baba
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Megumi Watanuki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yukiko Kawaguchi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Nana Arai
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Nobuyuki Kabasawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroyuki Tsukamoto
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yui Uto
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kouji Yanagisawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroshi Harada
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Wang F, Zhao S, Gu Z, Zhao X, Yang N, Guan L, Liu T, Wang L, Fang S, Zhu C, Luo L, Li M, Wang L, Gao C. S1PR5 regulates NK cell responses in preventing graft-versus-host disease while preserving graft-versus-tumour activity in a murine allogeneic haematopoietic stem cell transplantation model. Hematol Oncol 2019; 38:89-102. [PMID: 31465552 DOI: 10.1002/hon.2669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/09/2022]
Abstract
Graft-versus-host disease (GVHD) remains a major complication following allogeneic haematopoietic stem cell transplantation (allo-HSCT) leading to high transplant-related mortality. Natural killer (NK) cells have been found to mitigate GVHD without attenuating the graft-versus-tumour (GVT) activity in the murine model of haematopoietic stem cell transplantation. Sphingosine-1-phosphate receptor 5 (S1PR5) is a very important chemokine receptor on NK cells that governs NK cell distribution in vivo and trafficking at lesion sites. Our preliminary studies showed that the incidence of GVHD was negatively correlated with S1PR5 expression in the NK cells of patients after allo-HSCT. In the present study, we found that S1PR5 deficiency in murine NK cells blocked the migration of NK cells from the bone marrow to the GVHD target organs and attenuated the inhibitory effects on the alloreactive T cells, especially CD3+ CD8+ T cells, which may be the reason why the loss of S1PR5 in NK cells could aggravate GVHD in recipient mice. Furthermore, we also demonstrated that the absence of S1PR5 expression in NK cells did not interfere with the antitumour effects of NK cells and T cells in vivo. Taken together, our data indicate that S1PR5 plays an essential role in balancing GVHD and GVT activity.
Collapse
Affiliation(s)
- Feiyan Wang
- Medical School, Nankai University, Tianjin, China.,Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shasha Zhao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhenyang Gu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xiaoli Zhao
- Department of Hematology, Chinese Academy of Medical Sciences, Tianjin, China
| | - Nan Yang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lixun Guan
- Department of Hematology, Hainan Branch, PLA General Hospital, Hainan, China
| | - Tong Liu
- Inpatient Department, 66242 Army Hospital, Xilin Gol, China
| | - Li Wang
- Department of Hematology and Oncology, Laoshan Branch, Chinese PLA 401 Hospital, Qingdao, China
| | - Shu Fang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Chengying Zhu
- Medical School, Nankai University, Tianjin, China.,Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lan Luo
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Meng Li
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lili Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Chunji Gao
- Medical School, Nankai University, Tianjin, China.,Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
26
|
Natural Killer Immunotherapy for Minimal Residual Disease Eradication Following Allogeneic Hematopoietic Stem Cell Transplantation in Acute Myeloid Leukemia. Int J Mol Sci 2019; 20:ijms20092057. [PMID: 31027331 PMCID: PMC6539946 DOI: 10.3390/ijms20092057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
The most common cause of death in patients with acute myeloid leukemia (AML) who receive allogeneic hematopoietic stem cell transplantation (allo-HSCT) is AML relapse. Therefore, additive therapies post allo-HSCT have significant potential to prevent relapse. Natural killer (NK)-cell-based immunotherapies can be incorporated into the therapeutic armamentarium for the eradication of AML cells post allo-HSCT. In recent studies, NK cell-based immunotherapies, the use of adoptive NK cells, NK cells in combination with cytokines, immune checkpoint inhibitors, bispecific and trispecific killer cell engagers, and chimeric antigen receptor-engineered NK cells have all shown antitumor activity in AML patients. In this review, we will discuss the current strategies with these NK cell-based immunotherapies as possible therapies to cure AML patients post allo-HSCT. Additionally, we will discuss various means of immune escape in order to further understand the mechanism of NK cell-based immunotherapies against AML.
Collapse
|
27
|
Hattori N, Kawaguchi Y, Sasaki Y, Shimada S, Murai S, Abe M, Baba Y, Watanuki M, Fujiwara S, Arai N, Kabasawa N, Tsukamoto H, Uto Y, Yanagisawa K, Saito B, Harada H, Nakamaki T. Monitoring TIGIT/DNAM-1 and PVR/PVRL2 Immune Checkpoint Expression Levels in Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia. Biol Blood Marrow Transplant 2019; 25:861-867. [PMID: 30639819 DOI: 10.1016/j.bbmt.2019.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
Abstract
After allogeneic stem cell transplantation (alloSCT), several immune checkpoints play an important role in the antileukemic immune response in the bone marrow (BM) microenvironment. However, immune checkpoint expression levels in the BM have not been reported after alloSCT in patients with acute myeloid leukemia (AML). We investigated the clinical impact of immune checkpoint expression in BM samples after alloSCT for AML. Higher expression of T cell immunoreceptor with Ig and ITIM domains (TIGIT) was associated with a decreased incidence of acute graft-versus-host disease (P = .048) and poor overall (P = .046) and progression-free survival (P = 0.024). In addition, higher expression of TIGIT at engraftment after alloSCT was correlated with a decreased number of natural killer cells in BM (P = .019). Monitoring TIGIT expression in the BM could be useful for predicting outcome after alloSCT for AML. Our findings raise the possibility that blockade of TIGIT would improve survival.
Collapse
Affiliation(s)
- Norimichi Hattori
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | - Yukiko Kawaguchi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yohei Sasaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shotaro Shimada
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - So Murai
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Maasa Abe
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuta Baba
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Megumi Watanuki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shun Fujiwara
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Nana Arai
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Nobuyuki Kabasawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroyuki Tsukamoto
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yui Uto
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kouji Yanagisawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Bungo Saito
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroshi Harada
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|