1
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
2
|
Azimzadeh M, Jelodar G. Trace elements homeostasis in brain exposed to 900 MHz RFW emitted from a BTS-antenna model and the protective role of vitamin E. J Anim Physiol Anim Nutr (Berl) 2020; 104:1568-1574. [PMID: 32279387 DOI: 10.1111/jpn.13360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/14/2020] [Indexed: 12/26/2022]
Abstract
Advances in telecommunication and their broad usage in the community have become a great concern from the health aspect. The object of the present study was to examine the effects of exposure to 900 MHz RFW on brain Iron (Fe), Copper (Cu), Zinc (Zn) and Manganese (Mn) concentration, and the protective role of pre-treatment of vitamin E on mentioned elements homoeostasis. Twenty adult male Sprague-Dawley rats (200 ± 20 g) randomly were divided into four groups. Control group (without any exposure, received distilled water), treatment control group (orally received 250 mg/kg BW/d vitamin E), treatment group (received 250 mg/kg BW/d vitamin E and exposed to 900 MHz RFW) and sham-exposed group (exposed to 900 MHz RFW). Animals (with freely moving in the cage) were exposed to RFW for 30 consecutive days (4 hr/day). The levels of the above mentioned elements in the brain tissue were determined on the last day using atomic absorption spectrophotometry. Exposure to 900 MHz RFW induced a significant increase in the Fe, Cu, Mn levels and Cu/Zn ratio accompanied by a significant decrease in Zn level in the sham-exposed group compare to control group. Vitamin E pre-treatment improved the level of Fe, Cu, Mn and Cu/Zn ratio, except in the Zn concentration. Exposure to 900 MHz RFW caused disrupted trace elements homoeostasis in the brain tissue and administration of vitamin E as an antioxidant and neuroprotective agent improved the situation.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gholamali Jelodar
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Gupta SK, Patel SK, Tomar MS, Singh SK, Mesharam MK, Krishnamurthy S. Long-term exposure of 2450 MHz electromagnetic radiation induces stress and anxiety like behavior in rats. Neurochem Int 2019; 128:1-13. [DOI: 10.1016/j.neuint.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
4
|
Sienkiewicz Z, van Rongen E. Can Low-Level Exposure to Radiofrequency Fields Effect Cognitive Behaviour in Laboratory Animals? A Systematic Review of the Literature Related to Spatial Learning and Place Memory. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1607. [PMID: 31071933 PMCID: PMC6539921 DOI: 10.3390/ijerph16091607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
This review considers whether exposure to low-level radiofrequency (RF) fields, mostly associated with mobile phone technology, can influence cognitive behaviour of laboratory animals. Studies were nominated for inclusion using an a priori defined protocol with preselected criteria, and studies were excluded from analysis if they did not include sufficient details about the exposure, dosimetry or experimental protocol, or if they lacked a sham-exposed group. Overall, 62 studies were identified that have investigated the effects of RF fields on spatial memory and place learning and have been published since 1993. Of these, 17 studies were excluded, 20 studies reported no significant field-related effects, 21 studies reported significant impairments or deficits, and four studies reported beneficial consequences. The data do not suggest whether these outcomes are related to specific differences in exposure or testing conditions, or simply represent chance. However, some studies have suggested possible molecular mechanisms for the observed effects, but none of these has been substantiated through independent replication. Further behavioural studies could prove useful to resolve this situation, and it is suggested that these studies should use a consistent animal model with standardized exposure and testing protocols, and with detailed dosimetry provided by heterogeneous, anatomically-realistic animal models.
Collapse
Affiliation(s)
- Zenon Sienkiewicz
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire OX11 0RQ, UK.
| | - Eric van Rongen
- Health Council of the Netherlands, P.O. Box 16052, 2500 BB The Hague, The Netherlands.
| |
Collapse
|
5
|
Kim JH, Lee JK, Kim HG, Kim KB, Kim HR. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomol Ther (Seoul) 2019; 27:265-275. [PMID: 30481957 PMCID: PMC6513191 DOI: 10.4062/biomolther.2018.152] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Technological advances of mankind, through the development of electrical and communication technologies, have resulted in the exposure to artificial electromagnetic fields (EMF). Technological growth is expected to continue; as such, the amount of EMF exposure will continue to increase steadily. In particular, the use-time of smart phones, that have become a necessity for modern people, is steadily increasing. Social concerns and interest in the impact on the cranial nervous system are increased when considering the area where the mobile phone is used. However, before discussing possible effects of radiofrequency-electromagnetic field (RF-EMF) on the human body, several factors must be investigated about the influence of EMFs at the level of research using in vitro or animal models. Scientific studies on the mechanism of biological effects are also required. It has been found that RF-EMF can induce changes in central nervous system nerve cells, including neuronal cell apoptosis, changes in the function of the nerve myelin and ion channels; furthermore, RF-EMF act as a stress source in living creatures. The possible biological effects of RF-EMF exposure have not yet been proven, and there are insufficient data on biological hazards to provide a clear answer to possible health risks. Therefore, it is necessary to study the biological response to RF-EMF in consideration of the comprehensive exposure with regard to the use of various devices by individuals. In this review, we summarize the possible biological effects of RF-EMF exposure.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyu-Bong Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
6
|
Eskandary A, Moazedi AA, Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran, Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran. Effect of co-administration of donepezil and folic acid on spatial memory impairment in adult male rat model of Alzheimer's disease. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.22.5.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
7
|
The mechanisms of sulfated polysaccharide drug of propylene glycol alginate sodium sulfate (PSS) on bleeding side effect. Carbohydr Polym 2018; 194:365-374. [PMID: 29801851 DOI: 10.1016/j.carbpol.2018.04.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 01/06/2023]
Abstract
Propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide derivative, has been used as a heparinoid drug to prevent and treat hyperlipidemia and ischemic cardio-cerebrovascular diseases in China for 30 years. But its bleeding risk should not be overlooked. Here we clarified the reasons and mechanism leading to bleeding side effect of PSS. It was found that PSS fractions with low mannuronic acid (M)/guluronic acid (G) ratio and high molecular weight (Mw) can excessively extend activated partial thromboplastin time (APTT) and thrombin time (TT), over-inhibit the thrombin (FIIa) activity mediated by anti-thrombin III (ATIII) to induce bleeding risk. In addition, the fraction of low M/G ratio can suppress platelet aggregation mediated by adenosine diphosphate (ADP) and induce platelet reduction by improving platelet antibody (PA)-IgA/G in serum and by inhibiting or damaging the bone marrow hematopoietic function. And the fraction of high Mw can restrain the reticulated platelet (RP) production, then reduce mean platelet volume (MPV) and platelet-large cell counts or ratio, and finally decrease platelet amount by inhibiting or damaging the bone marrow hematopoietic function. In brief, PSS fractions with low M/G ratio and high Mw were the main reasons to bring about bleeding by excessively suppressing coagulant factors activities and weakening platelet function. Our results suggested that it is very necessary to control the M/G ratio and the range of Mw of PSS to guarantee its safety and effectiveness in clinical.
Collapse
|
8
|
Poulletier de Gannes F, Masuda H, Billaudel B, Poque-Haro E, Hurtier A, Lévêque P, Ruffié G, Taxile M, Veyret B, Lagroye I. Effects of GSM and UMTS mobile telephony signals on neuron degeneration and blood-brain barrier permeation in the rat brain. Sci Rep 2017; 7:15496. [PMID: 29138435 PMCID: PMC5686211 DOI: 10.1038/s41598-017-15690-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/01/2017] [Indexed: 11/17/2022] Open
Abstract
Blood-brain barrier (BBB) permeation and neuron degeneration were assessed in the rat brain following exposure to mobile communication radiofrequency (RF) signals (GSM-1800 and UMTS-1950). Two protocols were used: (i) single 2 h exposure, with rats sacrificed immediately, and 1 h, 1, 7, or 50 days later, and (ii) repeated exposures (2 h/day, 5 days/week, for 4 weeks) with the effects assessed immediately and 50 days after the end of exposure. The rats' heads were exposed at brain-averaged specific absorption rates (BASAR) of 0.026, 0.26, 2.6, and 13 W/kg. No adverse impact in terms of BBB leakage or neuron degeneration was observed after single exposures or immediately after the end of repeated exposure, with the exception of a transient BBB leakage (UMTS, 0.26 W/kg). Fifty days after repeated exposure, the occurrence of degenerating neurons was unchanged on average. However, a significant increased albumin leakage was detected with both RF signals at 13 W/kg. In this work, the strongest, delayed effect was induced by GSM-1800 at 13 W/kg. Considering that 13 W/kg BASAR in the rat head is equivalent to 4 times as much in the human head, deleterious effects may occur following repeated human brain exposure above 50 W/kg.
Collapse
Affiliation(s)
| | - Hiroshi Masuda
- Kurume University School of Medicine, Department of Environmental Medicine, Kurume, Fukuoka, J-830-0011, Japan
| | - Bernard Billaudel
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
| | | | - Annabelle Hurtier
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
| | - Philippe Lévêque
- University of Limoges, CNRS, XLIM, UMR 7252, Limoges, F-87000, France
| | - Gilles Ruffié
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
| | - Murielle Taxile
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
| | - Bernard Veyret
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
- "Paris Sciences et Lettres" Research University / EPHE, Paris, F-75005, France
| | - Isabelle Lagroye
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France.
- "Paris Sciences et Lettres" Research University / EPHE, Paris, F-75005, France.
| |
Collapse
|
9
|
Vijaya Abinaya R, Kim M, Lee SJ, jeong ES, Cha YS. Protective effects ofStachys sieboldiiMIQ extract in SK-N-SH cells and its memory ameliorative effect in mice. J Food Biochem 2017. [DOI: 10.1111/jfbc.12411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ravichandran Vijaya Abinaya
- Department of Food Science and Human Nutrition; Chonbuk National University; 664-14 Duckjin-dong, Jeonju Jeonbuk 561-756 Republic of Korea
| | - Mina Kim
- Department of Food Science and Human Nutrition; Chonbuk National University; 664-14 Duckjin-dong, Jeonju Jeonbuk 561-756 Republic of Korea
| | - Seung-Je Lee
- JeonBuk Institute for Food-Bioindustry; Jeonju 54810 Republic of Korea
| | - Eun-seon jeong
- JeonBuk Institute for Food-Bioindustry; Jeonju 54810 Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition; Chonbuk National University; 664-14 Duckjin-dong, Jeonju Jeonbuk 561-756 Republic of Korea
| |
Collapse
|
10
|
Othman H, Ammari M, Sakly M, Abdelmelek H. Effects of prenatal exposure to WIFI signal (2.45GHz) on postnatal development and behavior in rat: Influence of maternal restraint. Behav Brain Res 2017; 326:291-302. [PMID: 28288806 DOI: 10.1016/j.bbr.2017.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
The present study was carried out to investigate the potential combined influence of maternal restraint stress and 2.45GHz WiFi signal exposure on postnatal development and behavior in the offspring of exposed rats. 24 pregnant albino Wistar rats were randomly assigned to four groups: Control, WiFi-exposed, restrained and both WiFi-exposed and restrained groups. Each of WiFi exposure and restraint occurred 2h/day along gestation till parturition. The pups were evaluated for physical development and neuromotor maturation. Moreover, elevated plus maze test, open field activity and stationary beam test were also determined on postnatal days 28, 30 and 31, respectively. After behavioral tests, the rats were anesthetized and their brains were removed for biochemical analysis. Our main findings showed no detrimental effects on gestation progress and outcomes at delivery in all groups. Subsequently, WiFi and restraint, per se and mainly in concert altered physical development of pups with slight differences between genders. Behaviorally, the gestational WiFi irradiation, restraint and especially the associated treatment affected the neuromotor maturation mainly in male progeny. At adult age, we noticed anxiety, motor deficit and exploratory behavior impairment in male offspring co-exposed to WiFi radiation and restraint, and in female progeny subjected to three treatments. The biochemical investigation showed that, all three treatments produced global oxidative stress in brain of both sexes. As for serum biochemistry, phosphorus, magnesium, glucose, triglycerides and calcium levels were disrupted. Taken together, prenatal WiFi radiation and restraint, alone and combined, provoked several behavioral and biochemical impairments at both juvenile and adult age of the offspring.
Collapse
Affiliation(s)
- Haifa Othman
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia
| | - Mohamed Ammari
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia; University of Tunis El Manar, Higher Institute of Applied Biological Sciences of Tunis, 9, Rue Zouhair Essafi, 1006 Tunis, Tunisia.
| | - Mohsen Sakly
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia
| | - Hafedh Abdelmelek
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia
| |
Collapse
|
11
|
Barthélémy A, Mouchard A, Bouji M, Blazy K, Puigsegur R, Villégier AS. Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25343-25355. [PMID: 27696165 DOI: 10.1007/s11356-016-7758-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The widespread mobile phone use raises concerns on the possible cerebral effects of radiofrequency electromagnetic fields (RF EMF). Reactive astrogliosis was reported in neuroanatomical structures of adaptive behaviors after a single RF EMF exposure at high specific absorption rate (SAR, 6 W/kg). Here, we aimed to assess if neuronal injury and functional impairments were related to high SAR-induced astrogliosis. In addition, the level of beta amyloid 1-40 (Aβ 1-40) peptide was explored as a possible toxicity marker. Sprague Dawley male rats were exposed for 15 min at 0, 1.5, or 6 W/kg or for 45 min at 6 W/kg. Memory, emotionality, and locomotion were tested in the fear conditioning, the elevated plus maze, and the open field. Glial fibrillary acidic protein (GFAP, total and cytosolic fractions), myelin basic protein (MBP), and Aβ1-40 were quantified in six brain areas using enzyme-linked immunosorbent assay. According to our data, total GFAP was increased in the striatum (+114 %) at 1.5 W/kg. Long-term memory was reduced, and cytosolic GFAP was increased in the hippocampus (+119 %) and in the olfactory bulb (+46 %) at 6 W/kg (15 min). No MBP or Aβ1-40 expression modification was shown. Our data corroborates previous studies indicating RF EMF-induced astrogliosis. This study suggests that RF EMF-induced astrogliosis had functional consequences on memory but did not demonstrate that it was secondary to neuronal damage.
Collapse
Affiliation(s)
- Amélie Barthélémy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Amandine Mouchard
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Maladies Neurodégénératives CNRS UMR5293 Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marc Bouji
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Campus des sciences et technologies, Université Saint-Joseph, Dekwaneh, Mar Roukos, Lebanon
| | - Kelly Blazy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France
| | - Renaud Puigsegur
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Sous-direction de la police technique et scientifique, 31 Avenue Franklin Roosevelt, 69130, Ecully, France
| | - Anne-Sophie Villégier
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France.
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France.
| |
Collapse
|
12
|
Igarashi Y, Matsuda Y, Fuse A, Ishiwata T, Naito Z, Yokota H. Pathophysiology of microwave-induced traumatic brain injury. Biomed Rep 2015; 3:468-472. [PMID: 26171150 DOI: 10.3892/br.2015.454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/02/2015] [Indexed: 11/06/2022] Open
Abstract
Microwave technology has been widely used in numerous applications; however, excessive microwave exposure causes adverse effects, particularly in the brain. The present study aimed to evaluate the change in the number of neural cells and presence of apoptotic cells in rats for one month after exposure to excessive microwave radiation. The rats were exposed to 3.0 kW of microwaves for 0.1 sec and were sacrificed after 24 h (n=3), or 3 (n=3), 7 (n=3), 14 (n=3) or 28 days (n=4) of exposure. The neural cells were counted in the motor cortex and hippocampus [cornu ammonis 1 (CA1) and CA2] and the percentage of positive cells stained with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) were also measured, which detected apoptotic cell death in the choroid plexus in the lateral ventricle, motor cortex and hippocampus. In the CA1, the number of neural cells decreased significantly by day 28 compared with that in the control (60.7 vs. 50.6, P=0.0358), but did not decrease before day 28. There were no significant differences on any day in the CA2 and the motor cortex. The number of cells showed a significant increase on day 7 compared to the control in the choroid plexus (2.1±1.1 vs. 21.8±19.1%, P=0.0318). There were no significant differences from the controls in the percentage of TUNEL-positive cells in the motor cortex and hippocampus. The effects of microwave exposure on the brain remain unclear; however, microwave-induced neurotrauma shows the same pathological changes as blast traumatic brain injury.
Collapse
Affiliation(s)
- Yutaka Igarashi
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Akira Fuse
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Toshiyuki Ishiwata
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Zenya Naito
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Hiroyuki Yokota
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
13
|
Klose M, Grote K, Spathmann O, Streckert J, Clemens M, Hansen VW, Lerchl A. Effects of early-onset radiofrequency electromagnetic field exposure (GSM 900 MHz) on behavior and memory in rats. Radiat Res 2014; 182:435-47. [PMID: 25251701 DOI: 10.1667/rr13695.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Female Wistar rats, from an age of 14 days to 19 months, were exposed in the head region for 2 h per day, 5 days per week, to a GSM-modulated 900 MHz radiofrequency electromagnetic field (RF-EMF). The average specific absorption rates (SAR) in the brain were 0 (sham), 0.7, 2.5 and 10 W/kg. To ensure a primary exposure of the head region, rats were fixed in restraining tubes of different sizes according to their increasing body weight. During the experiment, a set of 4 behavioral and learning tests (rotarod, Morris water maze, 8-arm radial maze, open field) were performed 3 times in juvenile, adult and presenile rats. In these tests, no profound differences could be identified between the groups. Only presenile rats of the cage control group showed a lower activity in two of these tests compared to the other groups presumably due to the lack of daily handling. The rotarod data revealed on some testing days significantly longer holding times for the sham-exposed rat vs. the exposed rat, but these findings were not consistent. During the first year, body weights of sham-exposed and exposed rats were not different from those of the cage controls, and thereafter only marginally lower, so that the effect of stress as confounder was probably negligible. The results of this study do not indicate harmful effects of long-term RF-EMF exposure even when begun at an early age on subsequent development, learning skills and behavior in rats, even at relatively high SAR values.
Collapse
Affiliation(s)
- Melanie Klose
- a School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Maaroufi K, Had-Aissouni L, Melon C, Sakly M, Abdelmelek H, Poucet B, Save E. Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload. Behav Brain Res 2013; 258:80-9. [PMID: 24144546 DOI: 10.1016/j.bbr.2013.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 12/13/2022]
Abstract
The increasing use of mobile phone technology over the last decade raises concerns about the impact of high frequency electromagnetic fields (EMF) on health. More recently, a link between EMF, iron overload in the brain and neurodegenerative disorders including Parkinson's and Alzheimer's diseases has been suggested. Co-exposure to EMF and brain iron overload may have a greater impact on brain tissues and cognitive processes than each treatment by itself. To examine this hypothesis, Long-Evans rats submitted to 900 MHz exposure or combined 900 MHz EMF and iron overload treatments were tested in various spatial learning tasks (navigation task in the Morris water maze, working memory task in the radial-arm maze, and object exploration task involving spatial and non spatial processing). Biogenic monoamines and metabolites (dopamine, serotonin) and oxidative stress were measured. Rats exposed to EMF were impaired in the object exploration task but not in the navigation and working memory tasks. They also showed alterations of monoamine content in several brain areas but mainly in the hippocampus. Rats that received combined treatment did not show greater behavioral and neurochemical deficits than EMF-exposed rats. None of the two treatments produced global oxidative stress. These results show that there is an impact of EMF on the brain and cognitive processes but this impact is revealed only in a task exploiting spontaneous exploratory activity. In contrast, there are no synergistic effects between EMF and a high content of iron in the brain.
Collapse
Affiliation(s)
- Karima Maaroufi
- Aix-Marseille University, CNRS, Federation 3C FR 3512, Laboratory of Cognitive Neuroscience, UMR 7291, Marseille, France; Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Çelik MS, Güven K, Akpolat V, Akdağ MZ, Nazıroğlu M, Gül-Güven R, Çelik MY, Erdoğan S. Extremely low-frequency magnetic field induces manganese accumulation in brain, kidney and liver of rats. Toxicol Ind Health 2013; 31:576-80. [DOI: 10.1177/0748233713480204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to determine the effects of extremely low-frequency magnetic field (ELF-MF) on accumulation of manganese (Mn) in the kidney, liver and brain of rats. A total of 40 rats were randomly divided into eight groups. Four control groups received 0, 3.75, 15 and 60 mg Mn per kg body weight orally every 2 days for 45 days, respectively. The remaining four groups received same concentrations of Mn and were also exposed to ELF-MF (1.5 mT; 50 Hz) for 4 h for 5 days a week during 45 days. Following the last exposure, kidney, liver and brain were taken from all rats and they were analyzed for Mn accumulation levels using an inductively coupled plasma-optical emission spectrometer. In result of the current study, we observed that Mn levels in brain, kidney and liver were higher in Mn groups than in control groups. Mn levels in brain, kidney and liver were also higher in Mn plus ELF-MF groups than in Mn groups. In conclusion, result of the current study showed that the ELF-MF induced manganese accumulation in kidney, liver and brain of rats.
Collapse
Affiliation(s)
- Mustafa Salih Çelik
- Department of Biophysics, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Kemal Güven
- Department of Biology, Faculty of Science, Dicle University, Diyarbakir, Turkey
| | - Veysi Akpolat
- Department of Biophysics, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Mehmet Zulkuf Akdağ
- Department of Biophysics, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Reyhan Gül-Güven
- Science Teaching Program, Primary Education Department, Faculty of Ziya Gokalp Education, Diyarbakir, Turkey
| | - M Yusuf Çelik
- Department of Biostatics, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Sait Erdoğan
- Department of Chemistry, Faculty of Science, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
16
|
Memory-related effects of cholinergic receptor ligands in mice as measured by the elevated plus maze test. Pharmacol Rep 2012; 63:1372-82. [PMID: 22358085 DOI: 10.1016/s1734-1140(11)70701-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/24/2011] [Indexed: 11/22/2022]
Abstract
The purpose of our experiments was to examine the influence of cholinergic receptor ligands on memory-related behavior in mice using the elevated plus maze (EPM) test. The EPM test allows the exploration of different memory processes (acquisition and consolidation), depending on the time of drug treatment. The time necessary for mice to move from the opened arm to the enclosed arm (i.e., transfer latency, TL) was used as an index of memory. Our findings reveal that for both the processes of acquisition and consolidation, treatment with nicotine (0.035 or 0.175 mg/kg, free base, sc) shortened TL on the second day of the experiments (TL2), thus improving memory processes. Treatment with scopolamine (0.3 or 1.0 mg/kg, ip) significantly increased TL2 values, thus impairing cognitive processes. Moreover, we found that treatment with nicotine, at the non-effective doses used during testing, prevented scopolamine-induced memory impairment by inducing a decrease in TL2 values. Next, we evaluated the influence of bupropion (10 or 20 mg/kg, ip), a drug currently used for smoking cessation in humans, on memory-related behavior induced by treatment with nicotine and scopolamine. An acute injection of bupropion (10 or 20 mg/kg) prior to injection with either nicotine (0.035 mg/kg) or scopolamine (1.0 mg/kg) significantly prevented nicotine-induced memory improvement or scopolamine-induced memory impairment. Bupropion treatment can diminish the rewarding (dependence-producing) effects of nicotine and also the cognitive effects that are related to addiction. Our studies further indicate the great involvement of the cholinergic system in memory processes and the potential for the development of more effective pharmacotherapies for memory impairment-like human disorders in which the cholinergic pathways have been implicated.
Collapse
|
17
|
Loureiro M, Lecourtier L, Engeln M, Lopez J, Cosquer B, Geiger K, Kelche C, Cassel JC, Pereira de Vasconcelos A. The ventral hippocampus is necessary for expressing a spatial memory. Brain Struct Funct 2011; 217:93-106. [PMID: 21667304 DOI: 10.1007/s00429-011-0332-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
Abstract
Current views posit the dorsal hippocampus (DHipp) as contributing to spatial memory processes. Conversely, the ventral hippocampus (VHipp) modulates stress, emotions and affects. Arguments supporting this segregation include differences in (i) connectivity: the DHipp is connected with the entorhinal cortex which receives visuospatial neocortical inputs; the VHipp is connected with both the amygdala and hypothalamus, (ii) electrophysiological characteristics: there is a larger proportion of place cells in the DHipp than in the VHipp, and an increasing dorsoventral gradient in the size of place fields, suggesting less refined spatial coding in the VHipp, and (iii) consequences of lesions: spatial memory is altered after DHipp lesions, less dramatically, sometimes not, after VHipp lesions. Using reversible inactivation, we report in rats, that lidocaine infusions into the DHipp or VHipp right before a probe trial impair retrieval performance in a water-maze task. This impairment was found at two post-acquisition delays compatible with recent memory (1 and 5 days). Pre-training blockade of the VHipp did not prevent task acquisition and drug-free retrieval, on the contrary to pre-training blockade of DHipp, which altered performance in a subsequent drug-free probe trial. Complementary experiments excluded possible locomotor, sensorimotor, motivational or anxiety-related biases from data interpretation. Our conclusion is that a spatial memory can be acquired with the DHipp, less efficiently with the VHipp, and that the retrieval of such a memory and/or the expression of its representation engages the dorsoventral axis of the hippocampus when the task has been learnt with an entirely functional hippocampus.
Collapse
Affiliation(s)
- Michael Loureiro
- Laboratoire d'Imagerie et de Neurosciences Cognitives, UMR 7237, Université de Strasbourg, CNRS, IFR 37 des Neurosciences, GDR CNRS 2905 Neuromem, 12 rue Goethe, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stam R. Electromagnetic fields and the blood–brain barrier. ACTA ACUST UNITED AC 2010; 65:80-97. [DOI: 10.1016/j.brainresrev.2010.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/09/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022]
|
19
|
Whissell PD, Persinger MA. Emerging synergisms between drugs and physiologically-patterned weak magnetic fields: implications for neuropharmacology and the human population in the twenty-first century. Curr Neuropharmacol 2010; 5:278-88. [PMID: 19305744 PMCID: PMC2644491 DOI: 10.2174/157015907782793603] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/30/2007] [Accepted: 09/17/2007] [Indexed: 11/22/2022] Open
Abstract
Synergisms between pharmacological agents and endogenous neurotransmitters are familiar and frequent. The present review describes the experimental evidence for interactions between neuropharmacological compounds and the classes of weak magnetic fields that might be encountered in our daily environments. Whereas drugs mediate their effects through specific spatial (molecular) structures, magnetic fields mediate their effects through specific temporal patterns. Very weak (microT range) physiologically-patterned magnetic fields synergistically interact with drugs to strongly potentiate effects that have classically involved opiate, cholinergic, dopaminergic, serotonergic, and nitric oxide pathways. The combinations of the appropriately patterned magnetic fields and specific drugs can evoke changes that are several times larger than those evoked by the drugs alone. These novel synergisms provide a challenge for a future within an electromagnetic, technological world. They may also reveal fundamental, common physical mechanisms by which magnetic fields and chemical reactions affect the organism from the level of fundamental particles to the entire living system.
Collapse
Affiliation(s)
- P D Whissell
- Neuroscience Research Group, Department of Biology, Laurentian University, Sudbury, Ontario, Canada
| | | |
Collapse
|
20
|
Kuo YC, Chen HH. Effect of electromagnetic field on endocytosis of cationic solid lipid nanoparticles by human brain-microvascular endothelial cells. J Drug Target 2010; 18:447-56. [DOI: 10.3109/10611860903494245] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Fragopoulou AF, Koussoulakos SL, Margaritis LH. Cranial and postcranial skeletal variations induced in mouse embryos by mobile phone radiation. PATHOPHYSIOLOGY 2010; 17:169-77. [DOI: 10.1016/j.pathophys.2009.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/26/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022] Open
|
22
|
Naziroğlu M, Gümral N. Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol 2009; 85:680-9. [PMID: 19637079 DOI: 10.1080/09553000903009530] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Electromagnetic radiation (EMR) from wireless devices may affect biological systems by increasing free radicals. The present study was designed to determine the effects of 2.45 GHz EMR on the brain antioxidant redox system and electroencephalography (EEG) records in rat. The possible protective effects of selenium and L-carnitine were also tested and compared to untreated controls. MATERIALS AND METHODS Thirty rats were equally divided into five different groups, namely Group A(1): Cage control, Group A(2): Sham control, group B: 2.45 GHz EMR, group C: 2.45 GHz EMR + selenium, group D: 2.45 GHz EMR + L-carnitine. Groups B, C and D were exposed to 2.45 GHz EMR during 60 min/day for 28 days. End of the experiments, EEG records and the brain cortex samples were taken. RESULTS The cortex brain vitamin A (p < 0.05), vitamin C (p < 0.01) and vitamin E (p < 0.05) concentrations values were lower in group B than in group A1 and A2 although their concentrations were increased by selenium and L-carnitine supplementation. Lipid peroxidation, levels were lower in group C (p < 0.05) and D (p < 0.01) than in group B where as reduced glutathione levels were higher in group C (p < 0.05) than in group A1, A2 and B. However, B-carotene levels did not change in the five groups. CONCLUSIONS L-carnitine and selenium seem to have protective effects on the 2.45 GHz-induced decrease of the vitamins by supporting antioxidant redox system. L-carnitine on the vitamin concentrations seems to more protective affect than in selenium.
Collapse
Affiliation(s)
- Mustafa Naziroğlu
- Department of Biophysics, Süleyman Demirel University, Isparta, Turkey.
| | | |
Collapse
|
23
|
Sinha RK. Chronic non-thermal exposure of modulated 2450 MHz microwave radiation alters thyroid hormones and behavior of male rats. Int J Radiat Biol 2009; 84:505-13. [DOI: 10.1080/09553000802085441] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Habash RWY, Elwood JM, Krewski D, Lotz WG, McNamee JP, Prato FS. Recent advances in research on radiofrequency fields and health: 2004-2007. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:250-288. [PMID: 20183523 DOI: 10.1080/10937400903094125] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The widespread use of wireless telecommunications devices, particularly mobile phones and wireless networks, has resulted in increased human exposure to radiofrequency (RF) fields. Although national and international agencies have established safety guidelines for exposure to RF fields, concerns remain about the potential for adverse health outcomes to occur in relation to RF field exposure. The extensive literature on RF fields and health was reviewed by a number of authorities, including the Royal Society of Canada (1999). This report is the third in a series of updates to the original report of the Royal Society of Canada, covering the period 2004-2007. In particular, the present study examined new data on (1) dosimetry and exposure assessment, (2) biological effects of RF fields such as enzyme induction, and (3) toxicological effects, including genotoxicity and carcinogenicity. Epidemiological studies of the potential health effects of RF exposure, particularly from mobile phones, were determined, along with human and animal studies of neurological and behavioural effects. Within the last 4 yrs investigators concluded that there is no clear evidence of adverse health effects associated with RF fields, although continued research is recommended to address specific areas of concern, including exposure to RF fields among children using mobile phones. The results of the ongoing 13-country World Health Organization INTERPHONE study of mobile phones may provide important new information on the potential cancer risks associated with mobile phone use.
Collapse
Affiliation(s)
- Riadh W Y Habash
- R. Samuel McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
25
|
Grafström G, Nittby H, Brun A, Malmgren L, Persson BRR, Salford LG, Eberhardt J. Histopathological examinations of rat brains after long-term exposure to GSM-900 mobile phone radiation. Brain Res Bull 2008; 77:257-63. [PMID: 18782606 DOI: 10.1016/j.brainresbull.2008.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 11/17/2022]
Abstract
In order to mimic the real life situation, with often life-long exposure to the electromagnetic fields emitted by mobile phones, we have investigated in a rat model the effects of repeated exposures under a long period to Global System for Mobile Communication-900 MHz (GSM-900) radiation. Out of a total of 56 rats, 32 were exposed once weekly in a 2-h period, for totally 55 weeks, at different average whole-body specific absorption rates (SAR) (of in average 0.6 and 60 mW/kg at the initiation of the experimental period). The animals were exposed in a transverse electromagnetic transmission line chamber (TEM-cell) to radiation emitted by a GSM-900 test phone. Sixteen animals were sham exposed and eight animals were cage controls, which never left the animal house. After behavioural tests, 5-7 weeks after the last exposure, the brains were evaluated for histopathological alterations such as albumin extravasation, dark neurons, lipofuscin aggregation and signs of cytoskeletal and neuritic neuronal changes of the type seen in human ageing. In this study, no significant alteration of any these histopathological parameters was found, when comparing the GSM exposed animals to the sham exposed controls.
Collapse
Affiliation(s)
- Gustav Grafström
- Department of Medical Radiation Physics, Lund University, The Rausing Laboratory and Lund University Hospital, S-22185 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
26
|
Nittby H, Grafström G, Eberhardt JL, Malmgren L, Brun A, Persson BRR, Salford LG. Radiofrequency and extremely low-frequency electromagnetic field effects on the blood-brain barrier. Electromagn Biol Med 2008; 27:103-26. [PMID: 18568929 DOI: 10.1080/15368370802061995] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
During the last century, mankind has introduced electricity and during the very last decades, the microwaves of the modern communication society have spread a totally new entity--the radiofrequency fields--around the world. How does this affect biology on Earth? The mammalian brain is protected by the blood-brain barrier, which prevents harmful substances from reaching the brain tissue. There is evidence that exposure to electromagnetic fields at non thermal levels disrupts this barrier. In this review, the scientific findings in this field are presented. The result is a complex picture, where some studies show effects on the blood-brain barrier, whereas others do not. Possible mechanisms for the interactions between electromagnetic fields and the living organisms are discussed. Demonstrated effects on the blood-brain barrier, as well as a series of other effects upon biology, have caused societal anxiety. Continued research is needed to come to an understanding of how these possible effects can be neutralized, or at least reduced. Furthermore, it should be kept in mind that proven effects on biology also should have positive potentials, e.g., for medical use.
Collapse
Affiliation(s)
- Henrietta Nittby
- Department of Neurosurgery, The Rausing Laboratory, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
27
|
Hours M, Bernard M, Montestrucq L, Arslan M, Bergeret A, Deltour I, Cardis E. Téléphone mobile, risque de tumeurs cérébrales et du nerf vestibuloacoustique: l'étude cas-témoins INTERPHONE en France. Rev Epidemiol Sante Publique 2007; 55:321-32. [PMID: 17851009 DOI: 10.1016/j.respe.2007.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 06/12/2007] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Use of cell phones has increased dramatically since 1992 when they were first introduced in France. Certain electromagnetic fields (at extremely low frequency) have been recognized as possibly carcinogenic by the International Agency for Research on Cancer. Given the use of radiofrequency technology in cell phones, the rapid increase in the number of cell phones has generated concerns about the existence of a potential health hazard. To evaluate the relationship between the use of cell phones and the development of tumors of the head, a multicentric international study (INTERPHONE), coordinated by the International Agency for Research on Cancer, was carried out in 13 countries. This publication reports the results of the French part of the INTERPHONE study. METHODS INTERPHONE is a case-control study focused on tumors of the brain and central nervous system: gliomas, meningiomas and neuromas of cranial nerves. Eligible cases were men and women, residents of Paris or Lyon, aged 30-59, newly diagnosed with a first primary tumor between February 2001 and August 2003. The diagnoses were all either histologically confirmed or based upon unequivocal radiological images. Controls were matched for gender, age (+/-5 years) and place of residence. They were randomly drawn from electoral rolls. Detailed information was collected for all subjects during a computer-assisted face-to-face interview. Conditional logistic regression was used to estimate the odds ratio (OR) for an association between the use of cell phones and risk of each type of cancer. RESULTS Regular cell phone use was not associated with an increased risk of neuroma (OR=0,92; 95% confidence interval=[0.53-1.59]), meningioma (OR=0,74; 95% confidence interval=[0.43-1.28]) or glioma (OR=1.15; 95% confidence interval=[0.65-2.05]). Although these results are not statistically significant, a general tendency was observed for an increased risk of glioma among the heaviest users: long-term users, heavy users, users with the largest numbers of telephones. CONCLUSION No significant increased risk for glioma, meningioma or neuroma was observed among cell phone users participating in Interphone. The statistical power of the study is limited, however. Our results, suggesting the possibility of an increased risk among the heaviest users, therefore need to be verified in the international INTERPHONE analyses.
Collapse
Affiliation(s)
- M Hours
- Unité mixte de recherche épidémiologique et de surveillance transport travail environnement (INRETS/UCBL/InVS), faculté de médecine, domaine Rockefeller, 8, avenue Rockefeller, 69373 Lyon cedex 08, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kumlin T, Iivonen H, Miettinen P, Juvonen A, van Groen T, Puranen L, Pitkäaho R, Juutilainen J, Tanila H. Mobile Phone Radiation and the Developing Brain: Behavioral and Morphological Effects in Juvenile Rats. Radiat Res 2007; 168:471-9. [PMID: 17903040 DOI: 10.1667/rr1002.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 05/22/2007] [Indexed: 11/03/2022]
Abstract
The increasing use of mobile phones by children and teenagers has raised concerns about their safety. Addressing such concerns is difficult, because no data are available on possible effects from long-term exposure to radiofrequency (RF) fields during the development of the nervous system. Possible morphological and functional changes were evaluated in the central nervous system of young male Wistar rats exposed to 900 MHz mobile phone signal for 2 h/day on 5 days/week. After 5 weeks of exposure at whole-body average specific energy absorption rates of 0.3 or 3.0 W/kg or sham exposure, six rats per group were examined histologically, and the remaining 18 rats per group were subjected to behavioral tests. No degenerative changes, dying neurons, or effects on the leakage of the blood-brain barrier were detected. No group differences were observed in the open-field test, plus maze test or acoustic startle response tests. In the water maze test, however, significantly improved learning (P = 0.012) and memory (P = 0.01) were detected in rats exposed to RF fields. The results do not indicate a serious threat to the developing brain from mobile phone radiation at intensities relevant to human exposure. However, the interesting finding of improved learning and memory warrants further studies.
Collapse
Affiliation(s)
- Timo Kumlin
- University of Kuopio, Department of Environmental Science, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sambeth A, Riedel WJ, Smits LT, Blokland A. Cholinergic drugs affect novel object recognition in rats: relation with hippocampal EEG? Eur J Pharmacol 2007; 572:151-9. [PMID: 17659275 DOI: 10.1016/j.ejphar.2007.06.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
This study examined the role of cognitively enhancing cholinergic drugs on both object memory and brain activity in rats, as well as the possible relation between the two measures. A group of twenty-four animals was used for assessing object recognition. In another group of eight rats, an electrode was implanted into the dorsal hippocampus to record an electroencephalogram (EEG) and auditory evoked potentials (AEP). In both groups, animals were treated with saline, 0.1 mg/kg scopolamine, 0.1 mg/kg methylscopolamine, 3 mg/kg donepezil, donepezil combined with scopolamine, 0.1 mg/kg nicotine, and nicotine combined with scopolamine. Scopolamine, but not methylscopolamine, impaired object recognition. Both donepezil and nicotine reversed this impairment. The N1 and N2 components of the AEP became closer to baseline after scopolamine, which was not reversed by donepezil or nicotine. Scopolamine increased the theta frequency in the EEG. When combined with donepezil, theta increased even more. Conversely, nicotine reversed the theta increment to control level. It is suggested that scopolamine caused a decrement in arousal in this study. Furthermore, the current results suggest a relation between EEG and object memory after cholinergic drug treatment. However, there was a clear dissociation between memory performance and EEG after combined treatment with drugs, which makes additional research where EEG and performance measures are co-registered imperative.
Collapse
Affiliation(s)
- Anke Sambeth
- Faculty of Psychology and Brain and Behavior Institute, Maastricht University, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Kainz W, Nikoloski N, Oesch W, Berdiñas-Torres V, Fröhlich J, Neubauer G, Kuster N. Development of novel whole-body exposure setups for rats providing high efficiency, National Toxicology Program (NTP) compatibility and well-characterized exposure. Phys Med Biol 2006; 51:5211-29. [PMID: 17019034 DOI: 10.1088/0031-9155/51/20/009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper presents the design, optimization, realization and verification of novel whole-body exposure setups for rats. The setups operating at 902 MHz and 1747 MHz provide highly efficient, National Toxicology Program (NTP) compatible and well-characterized exposures. They are compared to existing concepts of exposure setups with respect to efficiency, induced field uniformity, good laboratory practice (GLP) compatibility and cost. The novel exposure setup consists of a circular cascade of 17 sectorial waveguides excited by a novel loop antenna placed in the centre. The 70% overall efficiency of the exposure setup surpasses comparable values of existing setups. A field uniformity inside the phantom of more than 86% for the 1g cubical averaged specific absorption rate (SAR) within +/-5 dB of the whole-body SAR (WB-SAR) was attained. The uniformity of the exposure inside the setup, defined as the variation of the WB-SAR between animals, was better than +/-24%. Using only stainless steel, gold and polycarbonate in the vicinity of the animals ensured full GLP compatibility. The entire exposure system features fully automated computer controlled exposure and data monitoring, data storing and failure handling. Therefore, the proposed exposure system can be used to run blinded large scale, long-term exposure studies.
Collapse
Affiliation(s)
- Wolfgang Kainz
- Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), 12725 Twinbrook Parkway, Rockville, MD 20852, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Electrical power and mobile communications deliver enormous benefit to society, but there are concerns whether the electric and magnetic field (EMF) emissions associated with the delivery of this benefit are linked to cancer or other health hazards. This article reviews the strength of the available epidemiological and laboratory evidence and notes that this falls short of what is normally required to establish a causal link. However, because of scientific uncertainty a cautious approach is often advocated, but here, too, there may be a tendency to judge these risks more harshly than those in other areas with similar strength of evidence.
Collapse
Affiliation(s)
- A W Wood
- Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, Vic 3122, Australia.
| |
Collapse
|