1
|
Moschonas EH, Capeci HE, Annas EM, Domyslawski VB, Steber JA, Donald HM, Genkinger NR, Rennerfeldt PL, Bittner RA, Vozzella VJ, Cheng JP, Kline AE, Bondi CO. Evaluating the Efficacy of Chronic Galantamine on Sustained Attention and Cholinergic Neurotransmission in A Pre-Clinical Model of Traumatic Brain Injury. J Neurotrauma 2024; 41:2428-2441. [PMID: 38994598 PMCID: PMC11698658 DOI: 10.1089/neu.2024.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Cholinergic disruptions underlie attentional deficits following traumatic brain injury (TBI). Yet, drugs specifically targeting acetylcholinesterase (AChE) inhibition have yielded mixed outcomes. Therefore, we hypothesized that galantamine (GAL), a dual-action competitive AChE inhibitor and α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator, provided chronically after injury, will attenuate TBI-induced deficits of sustained attention and enhance ACh efflux in the medial prefrontal cortex (mPFC), as assessed by in vivo microdialysis. In Experiment 1, adult male rats (n = 10-15/group) trained in the 3-choice serial reaction time (3-CSRT) test were randomly assigned to controlled cortical impact (CCI) or sham surgery and administered GAL (0.5, 2.0, or 5.0 mg/kg; i.p.) or saline vehicle (VEH; 1 mL/kg; i.p) beginning 24-h post-surgery and once daily thereafter for 27 days. Measures of sustained attention and distractibility were assessed on post-operative days 21-25 in the 3-CSRT, following which cortical lesion volume and basal forebrain cholinergic cells were quantified on day 27. In Experiment 2, adult male rats (n = 3-4/group) received a CCI and 24 h later administered (i.p.) one of the three doses of GAL or VEH for 21 days to quantify the dose-dependent effect of GAL on in vivo ACh efflux in the mPFC. Two weeks after the CCI, a guide cannula was implanted in the right mPFC. On post-surgery day 21, baseline and post-injection dialysate samples were collected in a temporally matched manner with the cohort undergoing behavior. ACh levels were analyzed using reverse phase high-performance liquid chromatography (HPLC) coupled to an electrochemical detector. Cortical lesion volume was quantified on day 22. The data were subjected to ANOVA, with repeated measures where appropriate, followed by Newman-Keuls post hoc analyses. All TBI groups displayed impaired sustained attention versus the pooled SHAM controls (p's < 0.05). Moreover, the highest dose of GAL (5.0 mg/kg) exacerbated attentional deficits relative to VEH and the two lower doses of GAL (p's < 0.05). TBI significantly reduced cholinergic cells in the right basal forebrain, regardless of treatment condition, versus SHAM (p < 0.05). In vivo microdialysis revealed no differences in basal ACh in the mPFC; however, GAL (5.0 mg/kg) significantly increased ACh efflux 30 min following injection compared to the VEH and the other GAL (0.5 and 2.0 mg/kg) treated groups (p's < 0.05). In both experiments, there were no differences in cortical lesion volume across treatment groups (p's > 0.05). In summary, albeit the higher dose of GAL increased ACh release, it did not improve measures of sustained attention or histopathological markers, thereby partially supporting the hypothesis and providing the impetus for further investigations into alternative cholinergic pharmacotherapies such as nAChR positive allosteric modulators.
Collapse
Affiliation(s)
- Eleni H. Moschonas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haley E. Capeci
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ellen M. Annas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Veronica B. Domyslawski
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jade A. Steber
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hailey M. Donald
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nicholas R. Genkinger
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Piper L. Rennerfeldt
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rachel A. Bittner
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vincent J. Vozzella
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeffrey P. Cheng
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Children’s Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Children’s Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Eldridge MAG, Mohanty A, Hines BE, Kaskan PM, Murray EA. Aspiration removal of orbitofrontal cortex disrupts cholinergic fibers of passage to anterior cingulate cortex in rhesus macaques. Brain Struct Funct 2024; 229:1011-1019. [PMID: 38502331 PMCID: PMC11003915 DOI: 10.1007/s00429-024-02776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
The study of anthropoid nonhuman primates has provided valuable insights into frontal cortex function in humans, as these primates share similar frontal anatomical subdivisions (Murray et al. 2011). Causal manipulation studies have been instrumental in advancing our understanding of this area. One puzzling finding is that macaques with bilateral aspiration removals of orbitofrontal cortex (OFC) are impaired on tests of cognitive flexibility and emotion regulation, whereas those with bilateral excitotoxic lesions of OFC are not (Rudebeck et al. 2013). This discrepancy is attributed to the inadvertent disruption of fibers of passage by aspiration lesions but not by excitotoxic lesions. Which fibers of passage are responsible for the impairments observed? One candidate is cholinergic fibers originating in the nucleus basalis magnocellularis (NBM) and passing nearby or through OFC on their way to other frontal cortex regions (Kitt et al. 1987). To investigate this possibility, we performed unilateral aspiration lesions of OFC in three macaques, and then compared cholinergic innervation of the anterior cingulate cortex (ACC) between hemispheres. Histological assessment revealed diminished cholinergic innervation in the ACC of hemispheres with OFC lesions relative to intact hemispheres. This finding indicates that aspiration lesions of the OFC disrupt cholinergic fibers of passage, and suggests the possibility that loss of cholinergic inputs to ACC contributes to the impairments in cognitive flexibility and emotion regulation observed after aspiration but not excitotoxic lesions of OFC.
Collapse
Affiliation(s)
- M A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - A Mohanty
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - B E Hines
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - P M Kaskan
- Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E A Murray
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Poskanzer C, Aly M. Switching between External and Internal Attention in Hippocampal Networks. J Neurosci 2023; 43:6538-6552. [PMID: 37607818 PMCID: PMC10513067 DOI: 10.1523/jneurosci.0029-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Everyday experience requires processing external signals from the world around us and internal information retrieved from memory. To do both, the brain must fluctuate between states that are optimized for external versus internal attention. Here, we focus on the hippocampus as a region that may serve at the interface between these forms of attention and ask how it switches between prioritizing sensory signals from the external world versus internal signals related to memories and thoughts. Pharmacological, computational, and animal studies have identified input from the cholinergic basal forebrain as important for biasing the hippocampus toward processing external information, whereas complementary research suggests the dorsal attention network (DAN) may aid in allocating attentional resources toward accessing internal information. We therefore tested the hypothesis that the basal forebrain and DAN drive the hippocampus toward external and internal attention, respectively. We used data from 29 human participants (17 female) who completed two attention tasks during fMRI. One task (memory-guided) required proportionally more internal attention, and proportionally less external attention, than the other (explicitly instructed). We discovered that background functional connectivity between the basal forebrain and hippocampus was stronger during the explicitly instructed versus memory-guided task. In contrast, DAN-hippocampus background connectivity was stronger during the memory-guided versus explicitly instructed task. Finally, the strength of DAN-hippocampus background connectivity was correlated with performance on the memory-guided but not explicitly instructed task. Together, these results provide evidence that the basal forebrain and DAN may modulate the hippocampus to switch between external and internal attention.SIGNIFICANCE STATEMENT How does the brain balance the need to pay attention to internal thoughts and external sensations? We focused on the human hippocampus, a region that may serve at the interface between internal and external attention, and asked how its functional connectivity varies based on attentional states. The hippocampus was more strongly coupled with the cholinergic basal forebrain when attentional states were guided by the external world rather than retrieved memories. This pattern flipped for functional connectivity between the hippocampus and dorsal attention network, which was higher for attention tasks that were guided by memory rather than external cues. Together, these findings show that distinct networks in the brain may modulate the hippocampus to switch between external and internal attention.
Collapse
Affiliation(s)
- Craig Poskanzer
- Department of Psychology, Columbia University, New York, New York 10027
| | - Mariam Aly
- Department of Psychology, Columbia University, New York, New York 10027
| |
Collapse
|
4
|
BIPOLAR DISORDER, MOOD STABILIZERS AND COGNITIVE FLEXIBILITY: TRANSLATIONALLY DISSECTING ILLNESS FROM DRUG EFFECTS. Behav Brain Res 2022; 424:113799. [PMID: 35181389 DOI: 10.1016/j.bbr.2022.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022]
Abstract
Bipolar disorder (BD) effects on cognition are confounded by the putative cognitive impact of its major pharmacological treatments, given the neurotrophic potential of mood stabilizers, particularly lithium. We examined the area of cognitive flexibility (CF), aiming to disentangle BD from medication effects, using translational methodology. CF was assessed by CANTAB-IED (intra- extra-dimensional shift; Study 1, euthymic BD participants) and its animal analogue (Study 2, rats). Both studies included groups (1) control, (2) lithium, chronic, current treatment (LI-CHRON-C, A: >2 years, N=32; B: 2 months, N=11); (3) valproate, chronic, current treatment (VPA-CHRON-C, A: >2 years, N=30; B: 2 months, N=12). Study 2 included 2 additional groups; Group 4: LI-CHRON-PAST (2 months, stopped 1 month pretest, N=13); Group 5: LI-ACUTE (LI on test days only, N=13). In Study 1, neither total nor stage (discrimination: D; reversal R; intra- extra-dimensional shifts: IED) IED errors differed between groups [(Kruskal-Wallis: H(2, N= 94) 0.95 > p > 0.65]. Similarly in Study 2, errors did not differentiate the 5 pharmacological groups. Differences emerged only between LI-ACUTE and Controls in response latencies (D, R, IED ANOVAS: 0.002 > p > 0.0003; contrasts D, R: p = 0.002, 0.0001). In conclusion, LI and VPA BD patients were indistinguishable from Controls in IED errors, as were animals treated with LI-CHRON, current or past, or VPA-CHRON-C vs Controls. LI-ACUTE treatment produced significant latency deficits vs. Controls. Within the limitations of translational comparisons, our results suggest that the normal CF noted in euthymic BDs is not attributable to mood stabilizer effects.
Collapse
|
5
|
Mitragynine improves cognitive performance in morphine-withdrawn rats. Psychopharmacology (Berl) 2022; 239:313-325. [PMID: 34693456 DOI: 10.1007/s00213-021-05996-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE The treatment of opiate addiction is an unmet medical need. Repeated exposure to opiates disrupts cognitive performance. Opioid substitution therapy, with, e.g., methadone, may further exacerbate the cognitive deficits. Growing evidence suggests that mitragynine, the primary alkaloid from the Kratom (Mitragyna speciosa) leaves, may serve as a promising alternative therapy for opiate addiction. However, the knowledge of its health consequences is still limited. OBJECTIVES We aimed to examine the cognitive effects of mitragynine substitution in morphine-withdrawn rats. Furthermore, we asked whether neuronal addiction markers like the brain-derived neurotrophic factor (BDNF) and Ca2+/calmodulin-dependent kinase II alpha (αCaMKII) might mediate the observed effects. METHODS Male Sprague-Dawley rats were given morphine at escalating doses before treatment was discontinued to induce a spontaneous morphine withdrawal. Then, vehicle or mitragynine (5 mg/kg, 15 mg/kg, or 30 mg/kg) substitution was given for 3 days. A vehicle-treated group was used as a control. Withdrawal signs were scored after 24 h, 48 h, and 72 h, while novel object recognition (NOR) and attentional set-shifting (ASST) were tested during the substitution period. RESULTS Discontinuation of morphine significantly induced morphine withdrawal signs and cognitive deficit in the ASST. The substitution with mitragynine was able to alleviate the withdrawal signs. Mitragynine did not affect the recognition memory in the NOR but significantly improved the reversal learning deficit in the morphine-withdrawn rats. CONCLUSIONS These data support the idea that mitragynine could be used as safe medication therapy to treat opiate addiction with beneficial effects on cognitive deficits.
Collapse
|
6
|
Soma S, Suematsu N, Sato AY, Tsunoda K, Bramian A, Reddy A, Takabatake K, Karube F, Fujiyama F, Shimegi S. Acetylcholine from the nucleus basalis magnocellularis facilitates the retrieval of well-established memory. Neurobiol Learn Mem 2021; 183:107484. [PMID: 34175450 DOI: 10.1016/j.nlm.2021.107484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/31/2023]
Abstract
Retrieval deficit of long-term memory is a cardinal symptom of dementia and has been proposed to associate with abnormalities in the central cholinergic system. Difficulty in the retrieval of memory is experienced by healthy individuals and not limited to patients with neurological disorders that result in forgetfulness. The difficulty of retrieving memories is associated with various factors, such as how often the event was experienced or remembered, but it is unclear how the cholinergic system plays a role in the retrieval of memory formed by a daily routine (accumulated experience). To investigate this point, we trained rats moderately (for a week) or extensively (for a month) to detect a visual cue in a two-alternative forced-choice task. First, we confirmed the well-established memory in the extensively trained group was more resistant to the retrieval problem than recently acquired memory in the moderately trained group. Next, we tested the effect of a cholinesterase inhibitor, donepezil, on the retrieval of memory after a long no-task period in extensively trained rats. Pre-administration of donepezil improved performance and reduced the latency of task initiation compared to the saline-treated group. Finally, we lesioned cholinergic neurons of the nucleus basalis magnocellularis (NBM), which project to the entire neocortex, by injecting the cholinergic toxin 192 IgG-saporin. NBM-lesioned rats showed severely impaired task initiation and performance. These abilities recovered as the trials progressed, though they never reached the level observed in rats with intact NBM. These results suggest that acetylcholine released from the NBM contributes to the retrieval of well-established memory developed by a daily routine.
Collapse
Affiliation(s)
- Shogo Soma
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Naofumi Suematsu
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Center for Sciences Towards Symbiosis Among Human, Machine and Data, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Akinori Y Sato
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Keisuke Tsunoda
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan
| | - Allen Bramian
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Anish Reddy
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Koki Takabatake
- College of Arts & Sciences, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Fuyuki Karube
- Graduate School of Brain Science, Doshisha University, Kyoto 619-0225, Japan; Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Fumino Fujiyama
- Graduate School of Brain Science, Doshisha University, Kyoto 619-0225, Japan; Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Satoshi Shimegi
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
7
|
Moschonas EH, Leary JB, Memarzadeh K, Bou-Abboud CE, Folweiler KA, Monaco CM, Cheng JP, Kline AE, Bondi CO. Disruption of basal forebrain cholinergic neurons after traumatic brain injury does not compromise environmental enrichment-mediated cognitive benefits. Brain Res 2021; 1751:147175. [PMID: 33121921 PMCID: PMC8265469 DOI: 10.1016/j.brainres.2020.147175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022]
Abstract
Environmental enrichment (EE) attenuates traumatic brain injury (TBI)-induced loss of medial septal (MS) choline acetyltransferase (ChAT)-cells and enhances spatial learning and memory vs. standard (STD) housing. Whether basal forebrain cholinergic neurons (BFCNs) are important mediators of EE-induced benefits after TBI requires further investigation. Anesthetized female rats were randomly assigned to intraseptal infusions of the immunotoxin 192-IgG-saporin (SAP; 0.22 μg in 1.0 μL) or vehicle (VEH; 1.0 μL IgG) followed immediately by a cortical impact (2.8 mm deformation depth at 4 m/s) or sham injury and divided into EE and STD housing. Spatial learning and memory retention were assessed on post-operative days 14-19. MS ChAT+ cells were quantified at 3 weeks. SAP significantly reduced ChAT+ cells in both the EE and STD groups. Cognitive performance was improved in the EE groups, regardless of VEH or SAP infusion, vs. the STD-housed groups (p's < 0.05). No cognitive differences were revealed between the TBI + EE + SAP and TBI + EE + VEH groups (p > 0.05) or between the TBI + STD + SAP and TBI + STD + VEH groups (p > 0.05). These data show that despite significant MS ChAT+ cell loss, the EE-mediated benefit in cognitive recovery is not compromised.
Collapse
Affiliation(s)
- Eleni H Moschonas
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jacob B Leary
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kimiya Memarzadeh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carine E Bou-Abboud
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kaitlin A Folweiler
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christina M Monaco
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
8
|
Britten RA, Fesshaye AS, Duncan VD, Wellman LL, Sanford LD. Sleep Fragmentation Exacerbates Executive Function Impairments Induced by Low Doses of Si Ions. Radiat Res 2020; 194:116-123. [PMID: 32845991 DOI: 10.1667/rade-20-00080.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/22/2020] [Indexed: 11/03/2022]
Abstract
Astronauts on deep space missions will be required to work autonomously and thus their ability to perform executive functions could be critical to mission success. Ground-based rodent experiments have shown that low (<25 cGy) doses of several space radiation (SR) ions impair various aspects of executive function. Translating ground-based rodent studies into tangible risk estimates for astronauts remains an enormous challenge, but should similar neurocognitive impairments occur in astronauts exposed to low-SR doses, a Numbers-Needed-to-Harm analysis (of the rodent data) predicts that approximately 30% of the astronauts could develop severe cognitive flexibility decrements. In addition to the health risks associated with SR exposure, astronauts have to contend with other stressors, of which inadequate sleep quantity and quality are considered to be major concerns. We have shown that a single session of fragmented sleep uncovered latent attentional set-shifting (ATSET) performance deficits in rats exposed to protracted neutron radiation that had no obvious defects in performance under rested wakefulness conditions. It is unclear if the exacerbating effect of sleep fragmentation (SF) only occurs in rats receiving protracted low-dose-rate-neutron radiation. In this study, we assessed whether SF also unmasks latent ATSET deficits in rats exposed to 5 cGy 600 MeV/n 28Si ions. Only sham and Si-irradiated rats that had good ATSET performance (passing every stage of the test on their first attempt) were selected for study. Sleep fragmentation selectively impaired performance in the more complex IDR, EDS and EDR stages of the ATSET test in the Si-irradiated rats. Set-shifting performance has rarely been affected by SR exposure in our studies conducted with rats tested under rested wakefulness conditions. The consistent SF-related unmasking of latent set-shifting deficits in both Si- and neutron-irradiated rats suggests that there is a unique interaction between sleep fragmentation and space radiation on the functionality of the brain regions that regulate performance in the IDR, EDS and EDR stages of ATSET. The uncovering of these latent SR-induced ATSET performance deficits in both Si- and neutron-irradiated rats suggests that the true impact of SR-induced cognitive impairment may not be fully evident in normally rested rats, and thus cognitive testing needs to be conducted under both rested wakefulness and sleep fragmentation conditions.
Collapse
Affiliation(s)
- Richard A Britten
- Departments of a Radiation Oncology.,Departments of Microbiology and Molecular Cell Biology.,Center for Integrative Neuroscience and Inflammatory Diseases.,Leroy T. Canoles Jr. Cancer Center
| | | | | | - Laurie L Wellman
- Center for Integrative Neuroscience and Inflammatory Diseases.,Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Larry D Sanford
- Center for Integrative Neuroscience and Inflammatory Diseases.,Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
9
|
McKinnell ZE, Maze T, Ramos A, Challans B, Plakke B. Valproic acid treated female Long-Evans rats are impaired on attentional set-shifting. Behav Brain Res 2020; 397:112966. [PMID: 33053383 DOI: 10.1016/j.bbr.2020.112966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 01/14/2023]
Abstract
Autism spectrum disorder (ASD), is a neurodevelopmental disorder characterized by social deficits, communication impairments, restrictive behaviors, and cognitive flexibility deficits. The valproic acid (VPA) model of autism has been widely used to examine changes in rodent behavior and neurobiology to better understand ASD. This study examined social and anxiety behavior as well as cognitive flexibility in VPA and control offspring. Results for social behavior were consistent with prior studies showing reduced sociability in VPA rats and increased self-grooming, which may be viewed as a repetitive behavior. VPA rats also had deficits in performing the set-shifting task, with female VPA rats demonstrating greater impairment compared to female control rats and male VPA rats. These results support the hypothesis that females diagnosed with ASD may suffer from different symptoms and present a unique behavioral profile compared to males with ASD. Female VPA rats were also less likely to form an attentional set; offering evidence that the VPA model of autism is encompassing executive function deficits similar to those observed in humans with ASD.
Collapse
Affiliation(s)
- Zach E McKinnell
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Tessa Maze
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Alejandro Ramos
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Brandon Challans
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
10
|
Britten RA, Duncan VD, Fesshaye A, Rudobeck E, Nelson GA, Vlkolinsky R. Altered Cognitive Flexibility and Synaptic Plasticity in the Rat Prefrontal Cortex after Exposure to Low (≤15 cGy) Doses of 28Si Radiation. Radiat Res 2020; 193:223-235. [DOI: 10.1667/rr15458.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - Emil Rudobeck
- Department of Basic Sciences, Loma Linda University, Loma Linda, California, 92354
| | - Gregory A. Nelson
- Department of Basic Sciences, Loma Linda University, Loma Linda, California, 92354
| | - Roman Vlkolinsky
- Department of Basic Sciences, Loma Linda University, Loma Linda, California, 92354
| |
Collapse
|
11
|
Britten RA, Duncan VD, Fesshaye AS, Wellman LL, Fallgren CM, Sanford LD. Sleep fragmentation exacerbates executive function impairments induced by protracted low dose rate neutron exposure. Int J Radiat Biol 2019; 97:1077-1087. [PMID: 31724895 DOI: 10.1080/09553002.2019.1694190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/07/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Astronauts on the planned missions to Mars are expected to have to work more autonomously than on previous missions. Thus mission success may be influenced by the astronauts' ability to respond quickly to unexpected problems, processes that require several executive functions. The purpose of this study was to determine the impact that prolonged low dose and low dose rate exposure to neutrons had on two executive functions, and whether the severity and incidence of cognitive impairment was altered by sleep fragmentation. MATERIALS AND METHODS In this study we assessed the impact that prolonged (six month) low dose rate neutron exposure had on the ability of male Wistar rats to perform in two executive function tasks (i.e. attentional set shifting (ATSET) - a constrained cognitive flexibility task and the UCFlex assay - an unconstrained cognitive flexibility task). In recognition of the fact that astronauts also have to contend with inadequate sleep quantity and quality for much of their time in space, we determined the impact that relatively mild sleep disruption had on the ability to perform in the ATSET test in sham and neutron-irradiated rats. RESULTS Chronic low dose (18 cGy) and dose-rate (1 mGy/day) exposure of rats to mixed neutron and photon over the course of six months resulted in significant impairment of simple discrimination (SD) performance. Should similar effects occur in astronauts subjected to low dose rate exposure to Space Radiation, the impairment of SD performance would result in a decreased ability to identify and learn the 'rules' required to respond to a new task or situation. Analysis of the behavioral data by kernel density estimation revealed that 40% of rats had severe ATSET impairments. This value may be a best-case scenario because exposure to neutrons also adversely impacted performance in the UCFlex task. Furthermore, when the good performing rats were reevaluated after they had been subjected to sleep fragmentation, additional ATSET performance decrements were observed in the set shifting stages of the ATSET test, with only 7.4% of the neutron exposed rats able to successfully perform ATSET under normal and sleep fragmented conditions, as opposed to ∼55% of shams. CONCLUSION Protracted low dose and low dose rate neutron exposures impairs executive functions in a high percentage of rats that were normally rested, however further detriments in performance become evident when the rats are subjected to sleep fragmentation.
Collapse
Affiliation(s)
- Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
- Leroy T Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Vania D Duncan
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Arriyam S Fesshaye
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Laurie L Wellman
- Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Christina M Fallgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Larry D Sanford
- Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
12
|
Mantanona CP, Alsiö J, Elson JL, Fisher BM, Dalley JW, Bussey T, Pienaar IS. Altered motor, anxiety-related and attentional task performance at baseline associate with multiple gene copies of the vesicular acetylcholine transporter and related protein overexpression in ChAT::Cre+ rats. Brain Struct Funct 2019; 224:3095-3116. [PMID: 31506825 PMCID: PMC6875150 DOI: 10.1007/s00429-019-01957-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Transgenic rodents expressing Cre recombinase cell specifically are used for exploring mechanisms regulating behavior, including those mediated by cholinergic signaling. However, it was recently reported that transgenic mice overexpressing a bacterial artificial chromosome containing choline acetyltransferase (ChAT) gene, for synthesizing the neurotransmitter acetylcholine, present with multiple vesicular acetylcholine transporter (VAChT) gene copies, resulting in altered cholinergic tone and accompanying behavioral abnormalities. Since ChAT::Cre+ rats, used increasingly for understanding the biological basis of CNS disorders, utilize the mouse ChAT promotor to control Cre recombinase expression, we assessed for similar genotypical and phenotypical differences in such rats compared to wild-type siblings. The rats were assessed for mouse VAChT copy number, VAChT protein expression levels and for sustained attention, response control and anxiety. Rats were also subjected to a contextual fear conditioning paradigm using an unconditional fear-inducing stimulus (electrical foot shocks), with blood samples taken at baseline, the fear acquisition phase and retention testing, for measuring blood plasma markers of hypothalamic-pituitary-adrenal gland (HPA)-axis activity. ChAT::Cre+ rats expressed multiple mouse VAChT gene copies, resulting in significantly higher VAChT protein expression, revealed anxiolytic behavior, hyperlocomotion and deficits in tasks requiring sustained attention. The HPA-axis was intact, with unaltered circulatory levels of acute stress-induced corticosterone, leptin and glucose. Our findings, therefore, reveal that in ChAT::Cre+ rats, VAChT overexpression associates with significant alterations of certain cognitive, motor and affective functions. Although highly useful as an experimental tool, it is essential to consider the potential effects of altered cholinergic transmission on baseline behavior in ChAT::Cre rats.
Collapse
Affiliation(s)
- Craig P Mantanona
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Johan Alsiö
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Beth M Fisher
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Timothy Bussey
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, UK.
| |
Collapse
|
13
|
Speidell A, Asuni GP, Avdoshina V, Scognamiglio S, Forcelli P, Mocchetti I. Reversal of Cognitive Impairment in gp120 Transgenic Mice by the Removal of the p75 Neurotrophin Receptor. Front Cell Neurosci 2019; 13:398. [PMID: 31543761 PMCID: PMC6730486 DOI: 10.3389/fncel.2019.00398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/16/2019] [Indexed: 01/04/2023] Open
Abstract
Activation of the p75 neurotrophin receptor (p75NTR), by the proneurotrophin brain-derived neurotrophic factor (proBDNF), triggers loss of synapses and promotes neuronal death. These pathological features are also caused by the human immunodeficiency virus-1 (HIV) envelope protein gp120, which increases the levels of proBDNF. To establish whether p75NTR plays a role in gp120-mediated neurite pruning, we exposed primary cultures of cortical neurons from p75NTR–/– mice to gp120. We found that the lack of p75NTR expression significantly reduced gp120-mediated neuronal cell death. To determine whether knocking down p75NTR is neuroprotective in vivo, we intercrossed gp120 transgenic (tg) mice with p75NTR heterozygous mice to obtain gp120tg mice lacking one or two p75NTR alleles. The removal of p75NTR alleles inhibited gp120-mediated decrease of excitatory synapses in the hippocampus, as measured by the levels of PSD95 and subunits of the N-methyl-D-Aspartate receptor in synaptosomes. Moreover, the deletion of only one copy of the p75NTR gene was sufficient to restore the cognitive impairment observed in gp120tg mice. Our data suggest that activation of p75NTR is one of the mechanisms crucial for the neurotoxic effect of gp120. These data indicate that p75NTR antagonists could provide an adjunct therapy against synaptic simplification caused by HIV.
Collapse
Affiliation(s)
- Andrew Speidell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Gino Paolo Asuni
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Valeria Avdoshina
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Serena Scognamiglio
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Patrick Forcelli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
14
|
Yegla B, Foster TC, Kumar A. Behavior Model for Assessing Decline in Executive Function During Aging and Neurodegenerative Diseases. Methods Mol Biol 2019; 2011:441-449. [PMID: 31273715 PMCID: PMC8223146 DOI: 10.1007/978-1-4939-9554-7_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Executive dysfunction is a characteristic of several psychiatric and neurodegenerative diseases. Interestingly, executive function, which is mediated by the prefrontal cortex (PFC), commonly declines during aging. The attentional set-shifting task (AST) is commonly and extensively used to assess executive function in rodents, primates, and humans. When properly employed, this task can behaviorally assess attention, response inhibition, and cognitive flexibility. The following section uses research on age-related decline in executive function to demonstrate the methods employed and highlight areas that can confound a study if not employed properly.
Collapse
Affiliation(s)
- Brittney Yegla
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ashok Kumar
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA,Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Jewell JS, Duncan VD, Fesshaye A, Tondin A, Macadat E, Britten RA. Exposure to ≤15 cGy of 600 MeV/n 56Fe Particles Impairs Rule Acquisition but not Long-Term Memory in the Attentional Set-Shifting Assay. Radiat Res 2018; 190:565-575. [DOI: 10.1667/rr15085.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jessica S. Jewell
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Vania D. Duncan
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Arriyam Fesshaye
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Abigail Tondin
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Evangeline Macadat
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Richard A. Britten
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
16
|
5-HT6 receptor agonist EMD386088 impairs behavioral flexibility and working memory. Behav Brain Res 2018; 349:8-15. [DOI: 10.1016/j.bbr.2018.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
|
17
|
Britten RA, Jewell JS, Duncan VD, Hadley MM, Macadat E, Musto AE, Tessa CL. Impaired Attentional Set-Shifting Performance after Exposure to 5 cGy of 600 MeV/n28Si Particles. Radiat Res 2018; 189:273-282. [DOI: 10.1667/rr14627.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Richard A. Britten
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Leroy T Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jessica S. Jewell
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Vania D. Duncan
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Melissa M. Hadley
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Evangeline Macadat
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Alberto E. Musto
- Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Chiara La Tessa
- NSRL Brookhaven National Laboratories, Upton, New York 11973
- University of Trento, Povo Trento 38122, Italy
| |
Collapse
|
18
|
Turnbull MT, Boskovic Z, Coulson EJ. Acute Down-regulation of BDNF Signaling Does Not Replicate Exacerbated Amyloid-β Levels and Cognitive Impairment Induced by Cholinergic Basal Forebrain Lesion. Front Mol Neurosci 2018. [PMID: 29520217 PMCID: PMC5827359 DOI: 10.3389/fnmol.2018.00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Degeneration of basal forebrain cholinergic neurons (BFCNs) precedes hippocampal degeneration and pathological amyloid-beta (Aβ) accumulation, and underpins the development of cognitive dysfunction in sporadic Alzheimer’s disease (AD). We hypothesized that degeneration of BFCNs causes a decrease in neurotrophin levels in innervated brain areas, which in turn promotes the development of Aβ pathology and cognitive impairment. Here we show that lesion of septo-hippocampal BFCNs in a pre-symptomatic transgenic amyloid AD mouse model (APP/PS1 mice) increases soluble Aβ levels in the hippocampus, and induces cognitive deficits in a spatial memory task that are not seen in either unlesioned APP/PS1 or non-transgenic littermate control mice. Furthermore, the BFCN lesion results in decreased levels of brain-derived neurotrophic factor (BDNF). However, viral knockdown of neuronal BDNF in the hippocampus of APP/PS1 mice (in the absence of BFCN loss) neither increased the level of Aβ nor caused cognitive deficits. These results suggest that the cognitive decline and Aβ pathology induced by BFCN loss occur independent of dysfunctional neuronal BDNF signaling, and may therefore be directly underpinned by reduced cholinergic neurotransmission.
Collapse
Affiliation(s)
- Marion T Turnbull
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Zoran Boskovic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth J Coulson
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Tait DS, Bowman EM, Neuwirth LS, Brown VJ. Assessment of intradimensional/extradimensional attentional set-shifting in rats. Neurosci Biobehav Rev 2018; 89:72-84. [PMID: 29474818 DOI: 10.1016/j.neubiorev.2018.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/06/2018] [Accepted: 02/19/2018] [Indexed: 01/07/2023]
Abstract
The rat intradimensional/extradimensional (ID/ED) task, first described by Birrell and Brown 18 years ago, has become the predominant means by which attentional set-shifting is investigated in rodents: the use of rats in the task has been described in over 135 publications by researchers from nearly 90 universities and pharmaceutical companies. There is variation in the protocols used by different groups, including differences in apparatus, stimuli (both stimulus dimensions and exemplars within), and also the methodology. Nevertheless, most of these variations seem to be of little consequence: there is remarkable similarity in the profile of published data, with consistency of learning rates and in the size and reliability of the set-shifting and reversal 'costs'. However, we suspect that there may be inconsistent data that is unpublished or perhaps 'failed experiments' that may have been caused by unintended deviations from effective protocols. The purpose of this review is to describe our approach and the rationale behind certain aspects of the protocol, including common pitfalls that are encountered when establishing an effective local protocol.
Collapse
Affiliation(s)
- David S Tait
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, Fife, KY16 9JP, UK.
| | - Eric M Bowman
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, Fife, KY16 9JP, UK
| | - Lorenz S Neuwirth
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, 11568, USA; SUNY Neuroscience Research Institute, Old Westbury, NY, 11568, USA
| | - Verity J Brown
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, Fife, KY16 9JP, UK
| |
Collapse
|
20
|
Adolescent binge ethanol exposure alters specific forebrain cholinergic cell populations and leads to selective functional deficits in the prefrontal cortex. Neuroscience 2017; 361:129-143. [PMID: 28807788 DOI: 10.1016/j.neuroscience.2017.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 01/06/2023]
Abstract
Adolescence has been identified as a vulnerable developmental time period during which exposure to drugs can have long-lasting, detrimental effects. Although adolescent binge-like ethanol (EtOH) exposure leads to a significant reduction in forebrain cholinergic neurons, EtOH's functional effect on acetylcholine (ACh) release during behavior has yet to be examined. Using an adolescent intermittent ethanol exposure model (AIE), rats were exposed to binge-like levels of EtOH from postnatal days (PD) 25 to 55. Three weeks following the final EtOH exposure, cholinergic functioning was assessed during a spontaneous alternation protocol. During maze testing, ACh levels increased in both the hippocampus and prefrontal cortex. However, selectively in the prefrontal cortex, AIE rats displayed reduced levels of behaviorally relevant ACh efflux. We found no treatment differences in spatial exploration, spatial learning, spatial reversal, or novel object recognition. In contrast, AIE rats were impaired during the first attentional set shift on an operant set-shifting task, indicative of an EtOH-mediated deficit in cognitive flexibility. A unique pattern of cholinergic cell loss was observed in the basal forebrain following AIE: Within the medial septum/diagonal band there was a selective loss (30%) of choline acetyltransferase (ChAT)-positive neurons that were nestin negative (ChAT+/nestin-); whereas in the Nucleus basalis of Meynert (NbM) there was a selective reduction (50%) in ChAT+/nestin+. These results indicate that early adolescent binge EtOH exposure leads to a long-lasting frontocortical functional cholinergic deficit, driven by a loss of ChAT+/nestin+ neurons in the NbM, which was associated with impaired cognitive flexibility during adulthood.
Collapse
|
21
|
Cholinergic circuits in cognitive flexibility. Neuroscience 2017; 345:130-141. [DOI: 10.1016/j.neuroscience.2016.09.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 01/10/2023]
|
22
|
Fernandez GM, Lew BJ, Vedder LC, Savage LM. Chronic intermittent ethanol exposure leads to alterations in brain-derived neurotrophic factor within the frontal cortex and impaired behavioral flexibility in both adolescent and adult rats. Neuroscience 2017; 348:324-334. [PMID: 28257889 DOI: 10.1016/j.neuroscience.2017.02.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 12/18/2022]
Abstract
Chronic intermittent exposure to ethanol (EtOH; CIE) that produces binge-like levels of intoxication has been associated with age-dependent deficits in cognitive functioning. Male Sprague-Dawley rats were exposed to CIE (5g/kg, 25% EtOH, 13 intragastric gavages) beginning at three ages: early adolescence (postnatal day [PD] 28), mid-adolescence (PD35) and adulthood (PD72). In experiment 1, rats were behaviorally tested following CIE. Spatial memory was not affected by CIE, but adult CIE rats were impaired at acquiring a non-spatial discrimination task and subsequent reversal tasks. Rats exposed to CIE during early or mid-adolescence were impaired on the first reversal, demonstrating transient impairment in behavioral flexibility. Blood EtOH concentrations negatively correlated with performance on reversal tasks. Experiment 2 examined changes in brain-derived neurotrophic factor (BDNF) levels within the frontal cortex (FC) and hippocampus (HPC) at four time points: during intoxication, 24 h after the final EtOH exposure (acute abstinence), 3 weeks following abstinence (recovery) and after behavioral testing. HPC BDNF levels were not affected by CIE at any time point. During intoxication, BDNF was suppressed in the FC, regardless of the age of exposure. However, during acute abstinence, reduced FC BDNF levels persisted in early adolescent CIE rats, whereas adult CIE rats displayed an increase in BDNF levels. Following recovery, neurotrophin levels in all CIE rats recovered. Our results indicate that intermittent binge-like EtOH exposure leads to acute disruptions in FC BDNF levels and long-lasting behavioral deficits. However, the type of cognitive impairment and its duration differ depending on the age of exposure.
Collapse
Affiliation(s)
- Gina M Fernandez
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States
| | - Brandon J Lew
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States
| | - Lindsey C Vedder
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States
| | - Lisa M Savage
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States.
| |
Collapse
|
23
|
Chow PKY, Leaver LA, Wang M, Lea SEG. Touch screen assays of behavioural flexibility and error characteristics in Eastern grey squirrels (Sciurus carolinensis). Anim Cogn 2017; 20:459-471. [PMID: 28130606 PMCID: PMC5394141 DOI: 10.1007/s10071-017-1072-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/17/2016] [Accepted: 01/10/2017] [Indexed: 11/08/2022]
Abstract
Behavioural flexibility allows animals to adjust their behaviours according to changing environmental demands. Such flexibility is frequently assessed by the discrimination–reversal learning task. We examined grey squirrels’ behavioural flexibility, using a simultaneous colour discrimination–reversal learning task on a touch screen. Squirrels were trained to select their non-preferred colour in the discrimination phase, and their preferred colour was rewarded in a subsequent reversal phase. We used error rates to divide learning in each phase into three stages (perseveration, chance level and ‘learned’) and examined response inhibition and head-switching during each stage. We found consistent behavioural patterns were associated with each learning stage: in the perseveration stage, at the beginning of each training phase, squirrels showed comparable response latencies to correct and incorrect stimuli, along with a low level of head-switching. They quickly overcame perseveration, typically in one to three training blocks. In the chance-level stage, response latencies to both stimuli were low, but during initial discrimination squirrels showed more head-switches than in the previous stage. This suggests that squirrels were learning the current reward contingency by responding rapidly to a stimulus, but with increased attention to both stimuli. In the learned stage, response latencies to the correct stimulus and the number of head-switches were at their highest, whereas incorrect response latencies were at their lowest, and differed significantly from correct response latencies. These results suggest increased response inhibition and attention allowed the squirrels to minimise errors. They also suggest that errors in the ‘learned’ stage were related to impulsive emission of the pre-potent or previously learned responses.
Collapse
Affiliation(s)
- Pizza Ka Yee Chow
- Centre for Research in Animal Behaviour, Psychology Department, University of Exeter, Exeter, EX4 4QG, UK.
| | - Lisa A Leaver
- Centre for Research in Animal Behaviour, Psychology Department, University of Exeter, Exeter, EX4 4QG, UK
| | - Ming Wang
- Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Stephen E G Lea
- Centre for Research in Animal Behaviour, Psychology Department, University of Exeter, Exeter, EX4 4QG, UK
| |
Collapse
|
24
|
Vedder LC, Hall JM, Jabrouin KR, Savage LM. Interactions between chronic ethanol consumption and thiamine deficiency on neural plasticity, spatial memory, and cognitive flexibility. Alcohol Clin Exp Res 2015; 39:2143-53. [PMID: 26419807 PMCID: PMC4624484 DOI: 10.1111/acer.12859] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many alcoholics display moderate to severe cognitive dysfunction accompanied by brain pathology. A factor confounded with prolonged heavy alcohol consumption is poor nutrition, and many alcoholics are thiamine deficient. Thus, thiamine deficiency (TD) has emerged as a key factor underlying alcohol-related brain damage (ARBD). TD in humans can lead to Wernicke Encephalitis that can progress into Wernicke-Korsakoff syndrome and these disorders have a high prevalence among alcoholics. Animal models are critical for determining the exact contributions of ethanol (EtOH)- and TD-induced neurotoxicity, as well as the interactions of those factors to brain and cognitive dysfunction. METHODS Adult rats were randomly assigned to 1 of 6 treatment conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH over 6 months; severe pyrithiamine-induced TD (PTD-moderate acute stage); moderate PTD (PTD-early acute stage); moderate PTD followed by CET (PTD-CET); moderate PTD during CET (CET-PTD); and pair-fed (PF) control. After recovery from treatment, all rats were tested on spontaneous alternation and attentional set-shifting. After behavioral testing, brains were harvested for determination of mature brain-derived neurotrophic factor (BDNF) and thalamic pathology. RESULTS Moderate TD combined with CET, regardless of treatment order, produced significant impairments in spatial memory, cognitive flexibility, and reductions in brain plasticity as measured by BDNF levels in the frontal cortex and hippocampus. These alterations are greater than those seen in moderate TD alone, and the synergistic effects of moderate TD with CET lead to a unique cognitive profile. However, CET did not exacerbate thalamic pathology seen after moderate TD. CONCLUSIONS These data support the emerging theory that subclinical TD during chronic heavy alcohol consumption is critical for the development of significant cognitive impairment associated with ARBD.
Collapse
Affiliation(s)
- Lindsey C Vedder
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| | - Joseph M Hall
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| | - Kimberly R Jabrouin
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| | - Lisa M Savage
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| |
Collapse
|
25
|
Totah NK, Logothetis NK, Eschenko O. Atomoxetine accelerates attentional set shifting without affecting learning rate in the rat. Psychopharmacology (Berl) 2015. [PMID: 26202614 DOI: 10.1007/s00213-015-4028-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RATIONALE Shifting to a new rule is a form of behavioral flexibility that is impaired in numerous psychiatric and neurological illnesses. Animal studies have revealed that this form of flexibility depends upon norepinephrine (NE) neurotransmission. Atomoxetine, a NE reuptake inhibitor, improves performance of humans in set shifting tasks. OBJECTIVE Our objective was to validate its effects in a rodent set shifting task. METHODS We tested the drug effect using an operant task that required a shift from a visual cue-guided behavior to a novel location-guided rule. RESULTS A 1.0-mg/kg dose significantly accelerated rule shifting without affecting learning strategies, such as win-stay or lose-shift. Fitting behavioral performance with a learning function provided a measure of learning rate. CONCLUSION This novel analysis revealed that atomoxetine accelerated shifting to the new rule without affecting learning rate.
Collapse
Affiliation(s)
- Nelson K Totah
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076, Tuebingen, Germany,
| | | | | |
Collapse
|
26
|
Abstract
Attentional set-shifting, as a measure of executive flexibility, has been a staple of investigations into human cognition for over six decades. Mediated by the frontal cortex in mammals, the cognitive processes involved in forming, maintaining and shifting an attentional set are vulnerable to dysfunction arising from a number of human neurodegenerative diseases (such as Alzheimer's, Parkinson's and Huntington's diseases) and other neurological disorders (such as schizophrenia, depression, and attention deficit/hyperactivity disorder). Our understanding of these diseases and disorders, and the cognitive impairments induced by them, continues to advance, in tandem with an increasing number of tools at our disposal. In this chapter, we review and compare commonly used attentional set-shifting tasks (the Wisconsin Card Sorting Task and Intradimensional/Extradimensional tasks) and their applicability across species. In addition to humans, attentional set-shifting has been observed in a number of other animals, with a substantial body of literature describing performance in monkeys and rodents. We consider the task designs used to investigate attentional set-shifting in these species and the methods used to model human diseases and disorders, and ultimately the comparisons and differences between species-specific tasks, and between performance across species.
Collapse
|
27
|
Abstract
Components of human executive function, like rule generation and selection in response to stimuli (attention set-shifting) or overcoming a habit (reversal learning), can be reliably modelled in rodents. The rodent paradigms are based upon tasks that assess cognitive flexibility in clinical populations and have been effective in distinguishing the neurobiological substrates and the underlying neurotransmitter systems relevant to executive function. A review of the literature on the attentional set-shifting task highlights a prominent role for the medial region of the prefrontal cortex in the ability to adapt to a new rule (extradimensional shift) while the orbitofrontal cortex has been associated with the reversal learning component of the task. In other paradigms specifically developed to examine reversal learning in rodents, the orbitofrontal cortex also plays a prominent role. Modulation of dopamine, serotonin, and glutamatergic receptors can disrupt executive function, a feature commonly exploited to develop concepts underlying psychiatric disorders. While these paradigms do have excellent translational construct validity, they have been less effective as predictive preclinical models for cognitive enhancers, especially for cognition in health subjects. Accordingly, a more diverse battery of tasks may be necessary to model normal human executive function in the rodent for drug development.
Collapse
Affiliation(s)
- John Talpos
- Janssen R&D, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | |
Collapse
|
28
|
Britten RA, Davis LK, Jewell JS, Miller VD, Hadley MM, Sanford LD, Machida M, Lonart G. Exposure to mission relevant doses of 1 GeV/Nucleon (56)Fe particles leads to impairment of attentional set-shifting performance in socially mature rats. Radiat Res 2014; 182:292-8. [PMID: 25029107 DOI: 10.1667/rr3766.1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous ground-based experiments have shown that cranial irradiation with mission relevant (20 cGy) doses of 1 GeV/nucleon (56)Fe particles leads to a significant impairment in Attentional Set Shifting (ATSET) performance, a measure of executive function, in juvenile Wistar rats. However, the use of head only radiation exposure and the biological age of the rats used in that study may not be pertinent to determine the likelihood that ATSET will be impaired in Astronauts on deep space flights. In this study we have determined the impact that whole-body exposure to 10, 15 and 20 cGy of 1 GeV/nucleon (56)Fe particles had on the ability (at three months post exposure) of socially mature (retired breeder) Wistar rats to conduct the attentional set-shifting paradigm. The current study has established that whole-body exposures to 15 and 20 (but not 10) cGy of 1 GeV/nucleon (56)Fe particles results in the impairment of ATSET in both juvenile and socially mature rats. However, the exact nature of the impaired ATSET performance varied depending upon the age of the rats, whether whole-body versus cranial irradiation was used and the dose of 1 GeV/u (56)Fe received. Exposure of juvenile rats to 20 cGy of 1 GeV/nucleon (56)Fe particles led to a decreased ability to perform intra-dimensional shifting (IDS) irrespective of whether the rats received head only or whole-body exposures. Juvenile rats that received whole-body exposure also had a reduced ability to habituate to the assay and to complete intra-dimensional shifting reversal (IDR), whereas juvenile rats that received head only exposure had a reduced ability to complete compound discrimination reversal (CDR). Socially mature rats that received whole-body exposures to 10 cGy of 1 GeV/nucleon (56)Fe particles exhibited no obvious decline in set-shifting performance; however those exposed to 15 and 20 cGy had a reduced ability to perform simple discrimination (SD) and compound discrimination (CD). Exposure to 20 cGy of 1 GeV/nucleon (56)Fe particles also led to a decreased performance in IDR and to ∼25% of rats failing to habituate to the task. Most of these rats started to dig for the food reward but rapidly (within 15 s) gave up digging, suggesting that they had developed appropriate procedural memories about food retrieval, but had an inability to maintain attention on the task. Our preliminary data suggests that whole-body exposure to 20 cGy of 1 GeV/nucleon (56)Fe particles reduced the cholinergic (but not the GABAergic) readily releasable pool (RRP) in nerve terminals of the basal forebrain from socially-mature rats. This perturbation of the cholinergic RRP could directly lead to the loss of CDR and IDR performance, and indirectly [through the metabolic changes in the medial prefrontal cortex (mPFC)] to the loss of SD and CD performance. These findings provide the first evidence that attentional set-shifting performance in socially mature rats is impaired after whole-body exposure to mission relevant doses (15 and 20 cGy) of 1 GeV/nucleon (56)Fe particles, and importantly that a dose reduction down to 10 cGy prevents that impairment. The ability to conduct Discrimination tasks (SD and CD) and reversal learning (CDR) is reduced after exposure to 15 and 20 cGy of 1 GeV/nucleon (56)Fe particles, but at 20 cGy there is an additional decrement, ∼ 25% of rats are unable to maintain attention to task. These behavioral decrements are associated with a reduction in the cholinergic RRP within basal forebrain, which has been shown to play a major role in regulating the activity of the PFC.
Collapse
Affiliation(s)
- Richard A Britten
- a Department of Radiation Oncology; Eastern Virginia Medical School, Norfolk, Virginia 23507
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Amodeo DA, Jones JH, Sweeney JA, Ragozzino ME. Risperidone and the 5-HT2A receptor antagonist M100907 improve probabilistic reversal learning in BTBR T + tf/J mice. Autism Res 2014; 7:555-67. [PMID: 24894823 DOI: 10.1002/aur.1395] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/01/2014] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions with restricted interests and repetitive behaviors (RRBs). RRBs can severely limit daily living and be particularly stressful to family members. To date, there are limited options for treating this feature in ASD. Risperidone, an atypical antipsychotic, is approved to treat irritability in ASD, but less is known about whether it is effective in treating "higher order" RRBs, for example cognitive inflexibility. Risperidone also has multiple receptor targets in which only a subset may be procognitive and others induce cognitive impairment. 5HT2A receptor blockade represents one promising and more targeted approach, as various preclinical studies have shown that 5HT2A receptor antagonists improve cognition. The present study investigated whether risperidone and/or M100907, a 5HT2A receptor antagonist, improved probabilistic reversal learning performance in the BTBR T + tf/J (BTBR) mouse model of autism. The effects of these treatments were also investigated in C57BL/6J (B6) mice as a comparison strain. Using a spatial reversal learning test with 80/20 probabilistic feedback, similar to one in which ASD individuals exhibit impairments, both risperidone (0.125 mg) and M100907 (0.01 and 0.1 mg) improved reversal learning in BTBR mice. Risperidone (0.125 mg) impaired reversal learning in B6 mice. Improvement in probabilistic reversal learning performance resulted from treatments enhancing the maintenance of the newly correct choice pattern. Because risperidone can lead to unwanted side effects, treatment with a specific 5HT2A receptor antagonist may improve cognitive flexibility in individuals with ASD while also minimizing unwanted side effects.
Collapse
Affiliation(s)
- Dionisio A Amodeo
- Department of Psychology, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | |
Collapse
|
30
|
Evidence that aetiological risk factors for psychiatric disorders cause distinct patterns of cognitive deficits. Eur Neuropsychopharmacol 2014; 24:879-89. [PMID: 24377755 DOI: 10.1016/j.euroneuro.2013.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 11/07/2013] [Accepted: 12/02/2013] [Indexed: 12/17/2022]
Abstract
Schizophrenia and bipolar disorder are associated with neurocognitive symptoms including deficits in attentional set shifting (changing attentional focus from one perceptual dimension to another) and reversal learning (learning a reversed stimulus/outcome contingency). Maternal infection during gestation and chronically flattened glucocorticoid rhythm are aetiological risk factors for schizophrenia and bipolar disorder. We hypothesised that these factors are causative in the neurocognitive deficits observed in schizophrenia and bipolar disorder. Here we used maternal immune activation (MIA) as a rat model of maternal infection, and sub-chronic low dose corticosterone treatment as a rat model of flattened glucocorticoid rhythm. For comparison we examined the effects of sub-chronic phencyclidine - a widely used rodent model of schizophrenia pathology. The effects of these three treatments on neurocognition were explored using the attentional set shifting task - a multistage test of executive functions. As expected, phencyclidine treatment selectively impaired set shifting ability. In contrast, MIA caused a marked and selective impairment of reversal learning. Corticosterone treatment impaired reversal learning but in addition also impaired rule abstraction and prevented the animals from forming an attentional set. The reversal learning deficits induced by MIA and corticosterone treatment were due to increases in non-perseverative rather than perseverative errors. Our data indicate that the cognitive deficits of schizophrenia and bipolar disorder may be explained by aetiological factors including maternal infection and glucocorticoid abnormalities and moreover suggest that the particular spectrum of cognitive deficits in individual patients may depend on the specific underlying aetiology of the disorder.
Collapse
|
31
|
Abstract
Cholinergic neurotransmission has been shown to play an important role in modulating attentional processing of visual stimuli. However, it is not yet clear whether the neurochemical acetylcholine (ACh) is necessary exclusively for visual attention, or if it also contributes to attentional functions through some modality-independent (supramodal) mechanism. To answer this question, we examined the effects of reduced cortical cholinergic afferentation on both a traditional visual and a novel olfactory five-choice serial reaction time task (5-CSRTT), the benchmark rodent test of sustained attention in rats. Following the successful acquisition of both modalities of the task, the rats underwent either a cholinergic immunotoxic- or sham-lesion surgery of the nucleus basalis magnocellularis (NBM), the basal forebrain nuclei that provide the majority of neocortical ACh. Reduced cholinergic afferentation to the neocortex was induced by bilaterally infusing the cholinergic immunotoxin 192 IgG-saporin into the NBM. After surgery, ACh-NBM-lesioned rats performed comparably to sham-lesioned rats under the conditions of low attentional demand, but displayed behavioral decrements relative to the sham-lesioned rats when the attentional demands of the task were increased. Moreover, this decrement in attentional functioning correlated significantly with the number of choline acetyltransferase-immunoreactive cells in the NBM. Importantly, the nature of this behavioral decrement was identical in the visual and olfactory 5-CSRTTs. Together, these data suggest the presence of a supramodal attentional modulatory cortical network whose activity is dependent on cholinergic innervation from the NBM.
Collapse
|
32
|
Oros N, Chiba AA, Nitz DA, Krichmar JL. Learning to ignore: a modeling study of a decremental cholinergic pathway and its influence on attention and learning. Learn Mem 2014; 21:105-18. [PMID: 24443744 PMCID: PMC3895228 DOI: 10.1101/lm.032433.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate attention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus basalis region (SI/nBM) to the neocortex are necessary to increase attention to relevant stimuli and have been well studied. Lesser known are ACh projections from the medial septum/vertical limb of the diagonal band (MS/VDB) to the hippocampus and the cingulate that are necessary to reduce attention to irrelevant stimuli. We developed a neural simulation to provide insight into how ACh can decrement attention using this distinct pathway from the MS/VDB. We tested the model in behavioral paradigms that require decremental attention. The model exhibits behavioral effects such as associative learning, latent inhibition, and persisting behavior. Lesioning the MS/VDB disrupts latent inhibition, and drastically increases perseverative behavior. Taken together, the model demonstrates that the ACh decremental pathway is necessary for appropriate learning and attention under dynamic circumstances and suggests a canonical neural architecture for decrementing attention.
Collapse
Affiliation(s)
- Nicolas Oros
- Department of Cognitive Sciences, University of California-Irvine, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
33
|
Forebrain deletion of the vesicular acetylcholine transporter results in deficits in executive function, metabolic, and RNA splicing abnormalities in the prefrontal cortex. J Neurosci 2013; 33:14908-20. [PMID: 24027290 DOI: 10.1523/jneurosci.1933-13.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
One of the key brain regions in cognitive processing and executive function is the prefrontal cortex (PFC), which receives cholinergic input from basal forebrain cholinergic neurons. We evaluated the contribution of synaptically released acetylcholine (ACh) to executive function by genetically targeting the vesicular acetylcholine transporter (VAChT) in the mouse forebrain. Executive function was assessed using a pairwise visual discrimination paradigm and the 5-choice serial reaction time task (5-CSRT). In the pairwise test, VAChT-deficient mice were able to learn, but were impaired in reversal learning, suggesting that these mice present cognitive inflexibility. Interestingly, VAChT-targeted mice took longer to reach criteria in the 5-CSRT. Although their performance was indistinguishable from that of control mice during low attentional demand, increased attentional demand revealed striking deficits in VAChT-deleted mice. Galantamine, a cholinesterase inhibitor used in Alzheimer's disease, significantly improved the performance of control mice, but not of VAChT-deficient mice on the 5-CSRT. In vivo magnetic resonance spectroscopy showed altered levels of two neurochemical markers of neuronal function, taurine and lactate, suggesting altered PFC metabolism in VAChT-deficient mice. The PFC of these mice displayed a drastic reduction in the splicing factor heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1), whose cholinergic-mediated reduction was previously demonstrated in Alzheimer's disease. Consequently, several key hnRNPA2/B1 target transcripts involved in neuronal function present changes in alternative splicing in VAChT-deficient mice, including pyruvate kinase M, a key enzyme involved in lactate metabolism. We propose that VAChT-targeted mice can be used to model and to dissect the neurochemical basis of executive abnormalities.
Collapse
|
34
|
Bissonette GB, Bae MH, Suresh T, Jaffe DE, Powell EM. Prefrontal cognitive deficits in mice with altered cerebral cortical GABAergic interneurons. Behav Brain Res 2013; 259:143-51. [PMID: 24211452 DOI: 10.1016/j.bbr.2013.10.051] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 12/26/2022]
Abstract
Alterations of inhibitory GABAergic neurons are implicated in multiple psychiatric and neurological disorders, including schizophrenia, autism and epilepsy. In particular, interneuron deficits in prefrontal areas, along with presumed decreased inhibition, have been reported in several human patients. The majority of forebrain GABAergic interneurons arise from a single subcortical source before migrating to their final regional destination. Factors that govern the interneuron populations have been identified, demonstrating that a single gene mutation may globally affect forebrain structures or a single area. In particular, mice lacking the urokinase plasminogen activator receptor (Plaur) gene have decreased GABAergic interneurons in frontal and parietal, but not caudal, cortical regions. Plaur assists in the activation of hepatocyte growth factor/scatter factor (HGF/SF), and several of the interneuron deficits are correlated with decreased levels of HGF/SF. In some cortical regions, the interneuron deficit can be remediated by endogenous overexpression of HGF/SF. In this study, we demonstrate decreased parvalbumin-expressing interneurons in the medial frontal cortex, but not in the hippocampus or basal lateral amygdala in the Plaur null mouse. The Plaur null mouse demonstrates impaired medial frontal cortical function in extinction of cued fear conditioning and the inability to form attentional sets. Endogenous HGF/SF overexpression increased the number of PV-expressing cells in medial frontal cortical areas to levels greater than found in wildtype mice, but did not remediate the behavioral deficits. These data suggest that proper medial frontal cortical function is dependent upon optimum levels of inhibition and that a deficit or excess of interneuron numbers impairs normal cognition.
Collapse
Affiliation(s)
- Gregory B Bissonette
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Mihyun H Bae
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tejas Suresh
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David E Jaffe
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elizabeth M Powell
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
35
|
Wu T, Deng S, Li WG, Yu Y, Li F, Mao M. Maternal obesity caused by overnutrition exposure leads to reversal learning deficits and striatal disturbance in rats. PLoS One 2013; 8:e78876. [PMID: 24223863 PMCID: PMC3817091 DOI: 10.1371/journal.pone.0078876] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/17/2013] [Indexed: 11/30/2022] Open
Abstract
Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life.
Collapse
Affiliation(s)
- Ting Wu
- West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China
| | - Shining Deng
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Guang Li
- Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongguo Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (FL); (MM)
| | - Meng Mao
- West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
- Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China
- * E-mail: (FL); (MM)
| |
Collapse
|
36
|
Measuring the construct of executive control in schizophrenia: Defining and validating translational animal paradigms for discovery research. Neurosci Biobehav Rev 2013; 37:2125-40. [DOI: 10.1016/j.neubiorev.2012.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/20/2012] [Accepted: 04/03/2012] [Indexed: 11/20/2022]
|
37
|
Tacrine improves reversal learning in older rats. Neuropharmacology 2013; 73:284-9. [DOI: 10.1016/j.neuropharm.2013.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/02/2013] [Accepted: 05/18/2013] [Indexed: 11/23/2022]
|
38
|
Lindgren HS, Wickens R, Tait DS, Brown VJ, Dunnett SB. Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology 2013; 71:148-53. [DOI: 10.1016/j.neuropharm.2013.03.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 10/26/2022]
|
39
|
Lonart G, Parris B, Johnson AM, Miles S, Sanford LD, Singletary SJ, Britten RA. Executive Function in Rats is Impaired by Low (20 cGy) Doses of 1 GeV/u56Fe Particles. Radiat Res 2012; 178:289-94. [DOI: 10.1667/rr2862.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Zurkovsky L, Bychkov E, Tsakem EL, Siedlecki C, Blakely RD, Gurevich EV. Cognitive effects of dopamine depletion in the context of diminished acetylcholine signaling capacity in mice. Dis Model Mech 2012; 6:171-83. [PMID: 22864020 PMCID: PMC3529349 DOI: 10.1242/dmm.010363] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A subset of patients with Parkinson’s disease acquires a debilitating dementia characterized by severe cognitive impairments (i.e. Parkinson’s disease dementia; PDD). Brains from PDD patients show extensive cholinergic loss as well as dopamine (DA) depletion. We used a mutant mouse model to directly test whether combined cholinergic and DA depletion leads to a cognitive profile resembling PDD. Mice carrying heterozygous deletion of the high-affinity, hemicholinium-3-sensitive choline transporter (CHTHET) show reduced levels of acetylcholine throughout the brain. We achieved bilateral DA depletion in CHTHET and wild-type (WT) littermates via intra-striatal infusion of 6-hydroxydopamine (6-OHDA), or used vehicle as control. Executive function and memory were evaluated using rodent versions of cognitive tasks commonly used with human subjects: the set-shifting task and spatial and novel-object recognition paradigms. Our studies revealed impaired acquisition of attentional set in the set-shifting paradigm in WT-6OHDA and CHTHET-vehicle mice that was exacerbated in the CHTHET-6OHDA mice. The object recognition test following a 24-hour delay was also impaired in CHTHET-6OHDA mice compared with all other groups. Treatment with acetylcholinesterase (AChE) inhibitors physostigmine (0.05 or 0.1 mg/kg) and donepezil (0.1 and 0.3 mg/kg) reversed the impaired object recognition of the CHTHET-6OHDA mice. Our data demonstrate an exacerbated cognitive phenotype with dual ACh and DA depletion as compared with either insult alone, with traits analogous to those observed in PDD patients. The results suggest that combined loss of DA and ACh could be sufficient for pathogenesis of specific cognitive deficits in PDD.
Collapse
Affiliation(s)
- Lilia Zurkovsky
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
41
|
Nicotine improves performance in an attentional set shifting task in rats. Neuropharmacology 2012; 64:314-20. [PMID: 22776507 DOI: 10.1016/j.neuropharm.2012.06.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 11/23/2022]
Abstract
A large number of studies in both humans and experimental animals have demonstrated nicotine-induced improvements in various aspects of cognitive function, including attention and memory. The prefrontal cortex (PFC) is thought to be critically involved in the modulation of executive function and these attentional processes are enhanced by nicotine acting at nicotinic acetylcholine receptors. The involvement of nicotinic processes on cognitive flexibility in particular has not been specifically investigated. The effects of nicotine on attentional flexibility were therefore evaluated using the rodent attentional set shifting task in rats. Nicotine injected both acutely and following repeated pre-exposure significantly improved both intradimensional and extradimensional set shifting performance in the task. Further investigation of the acute effects of nicotine demonstrated this improvement in attentional flexibility to be dose-dependent. These results implicate the nicotinic receptor system in the mediation of processes underlying cognitive flexibility and suggest that nicotine improves attentional flexibility in rats, both within and between perceptual dimensions of a compound stimulus. Nicotine-induced alterations in prefrontal circuitry may underlie these effects on cognitive flexibility. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
|
42
|
Chase EA, Tait DS, Brown VJ. Lesions of the orbital prefrontal cortex impair the formation of attentional set in rats. Eur J Neurosci 2012; 36:2368-75. [PMID: 22672207 DOI: 10.1111/j.1460-9568.2012.08141.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In rats, reversal learning impairments are commonly reported after lesions of the orbital prefrontal cortex (OFC), in contrast to the effect of lesions of the medial prefrontal cortex, which impair attentional set-shifting. Comparable dissociations have also been reported in humans, monkeys and mice. However, these two manifestations of behavioural flexibility may share common cognitive processes. The present study tested the hypothesis that lesions of the OFC (an area that integrates expected and actual outcomes to signal which cues in the environment predict reward) would impair the formation of attentional set as well as impairing reversal learning. We compared the performance of lesioned and control rats on two set-shifting tasks. The first task we used, 'the 4ID task', had no reversal stages, but multiple intradimensional acquisitions before the extradimensional shift stage, to assess set-formation as well as set-shifting. The second task was the standard intradimensional/extradimensional '7-stage task', which includes reversal learning stages after each compound acquisition. Compared with controls, lesioned rats were slower to form attentional set on the 4ID task. When they did form a set, they required more trials to complete the extradimensional shift stage. On the 7-stage task, we replicated our previous finding of impaired reversal learning and reduced shift-costs. We interpret these findings as reflecting a single deficit in identifying relevant cues after unexpected outcomes, which supports recent models of OFC function. Our findings challenge the assumption that the contribution of the OFC to behavioural flexibility is limited to reversal learning.
Collapse
Affiliation(s)
- E Alexander Chase
- School of Psychology, University of St Andrews, St Andrews KY16 9JP, UK
| | | | | |
Collapse
|
43
|
Alexander KS, Wu HQ, Schwarcz R, Bruno JP. Acute elevations of brain kynurenic acid impair cognitive flexibility: normalization by the alpha7 positive modulator galantamine. Psychopharmacology (Berl) 2012; 220:627-37. [PMID: 22038535 PMCID: PMC3666324 DOI: 10.1007/s00213-011-2539-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/04/2011] [Indexed: 12/28/2022]
Abstract
RATIONALE Cognitive deficits represent a core symptom cluster in schizophrenia (SZ) that is predictive of outcome but not effectively treated by current antipsychotics. Thus, there is a need for validated animal models for testing potential pro-cognitive drugs. OBJECTIVE As kynurenic acid levels are increased in prefrontal cortex (PFC) of individuals with SZ, we acutely increased brain levels of this astrocyte-derived, negative modulator of alpha7 nicotinic acetylcholine receptors (α7nAChRs) by administration of its bioprecursor kynurenine and measured the effects on extracellular kynurenic acid and glutamate levels in PFC and also performance in a set-shifting task. RESULTS Injections of kynurenine (100 mg/kg, i.p.) increased extracellular kynurenic acid (1,500%) and decreased glutamate levels (30%) in PFC. Kynurenine also produced selective deficits in set-shifting. Saline- and kynurenine-treated rats similarly acquired the compound discrimination and intra-dimensional shift (saline, 7.0 and 6.3 trials, respectively; kynurenine, 8.0 and 6.7). Both groups required more trials to acquire the initial reversal (saline, 15.3; kynurenine, 22.2). Only kynurenine-treated rats were impaired in acquiring the extra-dimensional shift (saline, 8.2; kynurenine, 21.3). These deficits were normalized by administering the α7nAChR positive allosteric modulator galantamine (3.0 mg/kg, i.p) prior to kynurenine, as trials were comparable between galantamine + kynurenine (7.8) and controls (8.2). Bilateral local perfusion of the PFC with galantamine (5.0 μM) also attenuated kynurenine-induced deficits. CONCLUSIONS These results validate the use of animals with elevated brain kynurenic acid levels in SZ research and support studies of drugs that normalize brain kynurenic acid levels and/or positively modulate α7nAChRs as pro-cognitive treatments for SZ.
Collapse
Affiliation(s)
- Kathleen S Alexander
- Department of Psychology and Neuroscience, The Ohio State University, 1835 Neil Ave., Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
44
|
Nieves-Martinez E, Hayes K, Childers S, Sonntag W, Nicolle MM. Muscarinic receptor/G-protein coupling is reduced in the dorsomedial striatum of cognitively impaired aged rats. Behav Brain Res 2012; 227:258-64. [PMID: 22085876 PMCID: PMC3253526 DOI: 10.1016/j.bbr.2011.10.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
Abstract
Behavioral flexibility, the ability to modify responses due to changing task demands, is detrimentally affected by aging with a shift towards increased cognitive rigidity. The neurobiological basis of this cognitive deficit is not clear although striatal cholinergic neurotransmission has been implicated. To investigate the possible association between striatal acetylcholine signaling with age-related changes in behavioral flexibility, young, middle-aged, and aged F344 X Brown Norway F1 rats were assessed using an attentional set-shifting task that includes two tests of behavioral flexibility: reversal learning and an extra-dimensional shift. Rats were also assessed in the Morris water maze to compare potential fronto-striatal-dependent deficits with hippocampal-dependent deficits. Behaviorally characterized rats were then assessed for acetylcholine muscarinic signaling within the striatum using oxotremorine-M-stimulated [(35)S]GTPγS binding and [(3)H]AFDX-384 receptor binding autoradiography. The results showed that by old age, cognitive deficits were pronounced across cognitive domains, suggesting deterioration of both hippocampal and fronto-striatal regions. A significant decline in oxotremorine-M-stimulated [(35)S]GTPγS binding was limited to the dorsomedial striatum of aged rats when compared to young and middle-aged rats. There was no effect of age on striatal [(3)H]AFDX-384 receptor binding. These results suggest that a decrease in M2/M4 muscarinic receptor coupling is involved in the age-associated decline in behavioral flexibility.
Collapse
Affiliation(s)
- E. Nieves-Martinez
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Katy Hayes
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - S.R. Childers
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - W.E. Sonntag
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - M. M. Nicolle
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Internal Medicine, Section of Gerontology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
45
|
Differences in BTBR T+ tf/J and C57BL/6J mice on probabilistic reversal learning and stereotyped behaviors. Behav Brain Res 2011; 227:64-72. [PMID: 22056750 DOI: 10.1016/j.bbr.2011.10.032] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/14/2011] [Accepted: 10/21/2011] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASD) represent a class of neurodevelopmental disorders characterized by impairments in social interaction, verbal and non-verbal communication, as well as restricted interests and repetitive behavior. This latter class of symptoms often includes features such as compulsive behaviors and resistance to change. The BTBR T+ tf/J mouse strain has been used as an animal model to investigate the social communication and restricted interest features in ASD. Less is known about whether this mouse strain models cognitive flexibility deficits also observed in ASD. The present experiment investigated performance of BTBR T+ tf/J and C57BL/6J on two different spatial reversal learning tests (100% accurate feedback and 80/20 probabilistic feedback), as well as marble burying and grooming behavior. BTBR T+ tf/J and C57BL/6J mice exhibited similar performance on acquisition and reversal learning with 100% accurate feedback. BTBR T+ tf/J mice were impaired in probabilistic reversal learning compared to that of C57BL/6J mice. BTBR T+ tf/J mice also displayed increased stereotyped repetitive behaviors compared to that of C57BL/6J mice as shown by increased marble burying and grooming behavior. The present findings indicate that BTBR T+ tf/J mice exhibit similar features related to "insistence on sameness" in ASD that include not only stereotyped repetitive behaviors, but also alterations in behavioral flexibility. Thus, BTBR T+ tf/J mice can serve as a model to understand the neural mechanisms underlying alterations in behavioral flexibility, as well as to test potential treatments in alleviating these symptoms.
Collapse
|
46
|
Barak S, Weiner I. Putative cognitive enhancers in preclinical models related to schizophrenia: The search for an elusive target. Pharmacol Biochem Behav 2011; 99:164-89. [DOI: 10.1016/j.pbb.2011.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/27/2011] [Accepted: 03/12/2011] [Indexed: 12/12/2022]
|
47
|
Bissonette GB, Powell EM. Reversal learning and attentional set-shifting in mice. Neuropharmacology 2011; 62:1168-74. [PMID: 21439304 DOI: 10.1016/j.neuropharm.2011.03.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 11/16/2022]
Abstract
Schizophrenia is a complex developmental disorder that presents challenges to modern neuroscience in terms of discovering etiology and aiding in effective treatment of afflicted humans. One approach is to divide the constellation of symptoms of human neuropsychiatric disorders into discrete units for study. Multiple animal models are used to study brain ontogeny, response to psychoactive compounds, substrates of defined behaviors. Frontal cortical areas have been found to have abnormal anatomy and neurotransmitter levels in postmortem brains from schizophrenic patients. The mouse model has the advantage of rather straightforward genetic manipulation and offers numerous genetic variations within the same species. However, until recently, the behavioral analyses in the mice lagged behind the primate and rat, especially with respect to testing of frontal cortical regions. Current reports of mouse prefrontal anatomy and function advocate the mouse as a feasible animal model to study prefrontal cortical function. This review highlights the most recent developments from behavioral paradigms for testing orbital and medial prefrontal cortical function in pharmacological and genetic models of human schizophrenia.
Collapse
Affiliation(s)
- Gregory B Bissonette
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
48
|
Abstract
Two new large animal models of Huntington's disease (HD) have been developed recently, an old world monkey (macaque) and a sheep. Macaques, with their large brains and complex repertoire of behaviors are the 'gold-standard' laboratory animals for testing cognitive function, but there are many practical and ethical issues that must be resolved before HD macaques can be used for pre-clinical research. By contrast, despite their comparable brain size, sheep do not enjoy a reputation for intelligence, and are not used for pre-clinical cognitive testing. Given that cognitive decline is a major therapeutic target in HD, the feasibility of testing cognitive function in sheep must be explored if they are to be considered seriously as models of HD. Here we tested the ability of sheep to perform tests of executive function (discrimination learning, reversal learning and attentional set-shifting). Significantly, we found that not only could sheep perform discrimination learning and reversals, but they could also perform the intradimensional (ID) and extradimensional (ED) set-shifting tasks that are sensitive tests of cognitive dysfunction in humans. Their performance on the ID/ED shifts mirrored that seen in humans and macaques, with significantly more errors to reach criterion in the ED than the ID shift. Thus, sheep can perform 'executive' cognitive tasks that are an important part of the primate behavioral repertoire, but which have never been shown previously to exist in any other large animal. Sheep have great potential, not only for use as a large animal model of HD, but also for studying cognitive function and the evolution of complex behaviours in normal animals.
Collapse
Affiliation(s)
- A Jennifer Morton
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
49
|
Coleman LG, He J, Lee J, Styner M, Crews FT. Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice. Alcohol Clin Exp Res 2011; 35:671-88. [PMID: 21223304 DOI: 10.1111/j.1530-0277.2010.01385.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Binge drinking is common in human adolescents. The adolescent brain is undergoing structural maturation and has a unique sensitivity to alcohol neurotoxicity. Therefore, adolescent binge ethanol may have long-term effects on the adult brain that alter brain structure and behaviors that are relevant to alcohol-use disorders. METHODS To determine whether adolescent ethanol (AE) binge drinking alters the adult brain, male C57BL/6 mice were treated with either water or ethanol during adolescence (5 g/kg/d, i.g., postnatal days P28 to P37) and assessed during adulthood (P60 to P88). An array of neurotransmitter-specific genes, behavioral tests (i.e., reversal learning, prepulse inhibition, and open field), and postmortem brain structure using magnetic resonance imaging (MRI) and immunohistochemistry, were employed to assess persistent alterations in adult brain. RESULTS At P38, 24 hours after AE binge, many neurotransmitter genes, particularly cholinergic and dopaminergic, were reduced by ethanol treatment. Interestingly, dopamine receptor type 4 mRNA was reduced and confirmed using immunohistochemistry. Normal control maturation (P38 to P88) resulted in decreased neurotransmitter mRNA, e.g., an average decrease of 56%. Following AE treatment, adults showed greater gene expression reductions than controls, averaging 73%. Adult spatial learning assessed in the Morris water maze was not changed by AE treatment, but reversal learning experiments revealed deficits. Assessment of adult brain region volumes using MRI indicated that the olfactory bulb and basal forebrain were smaller in adults following AE. Immunohistochemical analyses found reduced basal forebrain area and fewer basal forebrain cholinergic neurons. CONCLUSIONS Adolescent binge ethanol treatment reduces adult neurotransmitter gene expression, particularly cholinergic genes, reduces basal forebrain and olfactory bulb volumes, and causes a reduction in the density of basal forebrain acetylcholine neurons. Loss of cholinergic neurons and forebrain structure could underlie adult reversal learning deficits following adolescent binge drinking.
Collapse
Affiliation(s)
- Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
50
|
Localization of pre- and postsynaptic cholinergic markers in rodent forebrain: a brief history and comparison of rat and mouse. Behav Brain Res 2010; 221:356-66. [PMID: 21129407 DOI: 10.1016/j.bbr.2010.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
Abstract
Rat and mouse models are widely used for studies in cognition and pathophysiology, among others. Here, we sought to determine to what extent these two model species differ for cholinergic and cholinoceptive features. For this purpose, we focused on cholinergic innervation patterns based on choline acetyltransferase (ChAT) immunostaining, and the expression of muscarinic acetylcholine receptors (mAChRs) detected immunocytochemically. In this brief review we first place cholinergic and cholinoceptive markers in a historic perspective, and then provide an overview of recent publications on cholinergic studies and techniques to provide a literature survey of current research. Next, we compare mouse (C57Bl/J6) and rat (Wistar) cholinergic and cholinoceptive systems simultaneously stained, respectively, for ChAT (analyzed qualitatively) and mAChRs (analyzed qualitatively and quantitatively). In general, the topographic cholinergic innervation patterns of both rodent species are highly comparable, with only considerable (but region specific) differences in number of detectable cholinergic interneurons, which are more numerous in rat. In contrast, immunolabeling for mAChRs, detected by the monoclonal antibody M35, differs markedly in the forebrain between the two species. In mouse brain, basal levels of activated and/or internalized mAChRs (as a consequence of cholinergic neurotransmission) are significantly higher. This suggests a higher cholinergic tone in mouse than rat, and hence the animal model of choice may have consequences for cholinergic drug testing experiments.
Collapse
|