1
|
Trzesniak C, Biscaro ACL, Sardeli AV, Faria ISL, Sartori CR, Vitorino LM, Faria RS. The influence of classical music on learning and memory in rats: a systematic review and meta-analysis. Cogn Process 2024; 25:1-7. [PMID: 37917245 DOI: 10.1007/s10339-023-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
During the learning process, music can activate important neural areas in the brain, promoting the retention of information and memory formation. However, studies testing music effects on memory had found different improvements, which could be due to the methodological differences across studies. Thus, the purpose of this article was to systematically review the literature and meta-analyze the effects of music on Rattus norvegicus' explicit memory (Maze tests) only in controlled investigations. The seven studies included led to a very homogeneous analysis (I2 = 0%), confirming the consistency of the significant standardized mean difference (SMD) between the memory of animals exposed and not exposed to music (SMD 0.60 (95% CI 0.38; 0.83, p < 0.001)). Exploratory analysis suggests music benefits on memory can be acquired when begun at any age, when tested with the three types of mazes evaluated, with exposure lasting from 8 to 83 days and when the age on test day was either under 30 days or over 30 days. To expand the actual understanding of music effects on memory, future studies should investigate different types of music and animal species, with different sex and health conditions, at different time points.
Collapse
Affiliation(s)
- Clarissa Trzesniak
- Laboratory of Physiology, Faculty of Medicine of Itajubá (FMIT), 368, Av. Renó Júnior, Itajubá, MG, 37502-138, Brazil.
| | - Ana C L Biscaro
- Laboratory of Physiology, Faculty of Medicine of Itajubá (FMIT), 368, Av. Renó Júnior, Itajubá, MG, 37502-138, Brazil
| | - Amanda V Sardeli
- Laboratory of Exercise Physiology (FISEX), State University of Campinas, Campinas, Brazil
| | - Iara S L Faria
- Laboratory of Physiology, Faculty of Medicine of Itajubá (FMIT), 368, Av. Renó Júnior, Itajubá, MG, 37502-138, Brazil
| | - Cesar R Sartori
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | | | - Rodolfo S Faria
- Laboratory of Physiology, Faculty of Medicine of Itajubá (FMIT), 368, Av. Renó Júnior, Itajubá, MG, 37502-138, Brazil
| |
Collapse
|
2
|
Arida RM. Physical Exercise as a Strategy to Reduce Seizure Susceptibility. PHARMACORESISTANCE IN EPILEPSY 2023:453-477. [DOI: 10.1007/978-3-031-36526-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
3
|
A 10-day mild treadmill exercise performed before an epileptic seizure alleviates oxidative injury in the skeletal muscle and brain tissues of the rats. MARMARA MEDICAL JOURNAL 2022. [DOI: 10.5472/marumj.1056192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Arida RM. Physical exercise and seizure activity. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165979. [PMID: 32980461 DOI: 10.1016/j.bbadis.2020.165979] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 09/05/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Neuroprotective and antiepileptogenic therapies have been extensively investigated for epilepsy prevention and treatment. This review gives an overview of the promising contribution of the ketogenic diet, a complementary treatment, on the intestinal microbiota to reduce seizure susceptibility. Next, the relevance of physical exercise is extensively addressed as a complementary therapy to reduce seizure susceptibility, and thereby impact beneficially on the epilepsy condition. In this context, particular attention is given to the potential risks and benefits of physical exercise, possible precipitant factors related to exercise and proposed mechanisms by which exercise can reduce seizures, and its antiepileptogenic effects. Finally, this review points to emerging evidence of exercise reducing comorbidities from epilepsy and improving the quality of life of people with epilepsy. Based on evidence from current literature, physical or sport activities represent a potential non-pharmacological intervention that can be integrated with conventional therapy for epilepsy.
Collapse
Affiliation(s)
- Ricardo Mario Arida
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Sabaghi A, Heirani A, Kiani A, Yousofvand N, Sabaghi S. The Reduction of Seizure Intensity and Attenuation of Memory Deficiency and Anxiety-Like Behavior through Aerobic Exercise by Increasing the BDNF in Mice with Chronic Epilepsy. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Swimming exercise decreases the absence-like epileptic activity in WAG/Rij rats. Behav Brain Res 2019; 363:145-148. [DOI: 10.1016/j.bbr.2019.01.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/03/2019] [Accepted: 01/31/2019] [Indexed: 12/15/2022]
|
7
|
de Almeida AA, Gomes da Silva S, Lopim GM, Vannucci Campos D, Fernandes J, Cabral FR, Arida RM. Physical exercise alters the activation of downstream proteins related to BDNF-TrkB signaling in male Wistar rats with epilepsy. J Neurosci Res 2017; 96:911-920. [DOI: 10.1002/jnr.24196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Alexandre Aparecido de Almeida
- Departamento de Fisiologia; Universidade Federal de São Paulo; São Paulo Brazil
- Instituto Federal Goiano (IF Goiano), Campus Ceres; Ceres Brazil
| | - Sérgio Gomes da Silva
- Hospital Israelita Albert Einstein; São Paulo Brazil
- Universidade de Mogi das Cruzes; Mogi das Cruzes Brazil
| | | | | | - Jansen Fernandes
- Departamento de Fisiologia; Universidade Federal de São Paulo; São Paulo Brazil
| | - Francisco Romero Cabral
- Hospital Israelita Albert Einstein; São Paulo Brazil
- Faculdade de Ciências Médicas da Santa Casa de São Paulo; São Paulo Brazil
| | - Ricardo Mario Arida
- Departamento de Fisiologia; Universidade Federal de São Paulo; São Paulo Brazil
| |
Collapse
|
8
|
Iqbal M, Rahman MS, Zafar S, Chen XL, Liu JX, Liu Y. Systematic review and meta-analysis of the efficacy of different exercise programs in pilocarpine induced status epilepticus models. Epilepsy Behav 2017; 73:256-267. [PMID: 28666249 DOI: 10.1016/j.yebeh.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE To conduct a systematic review and meta-analysis of studies testing exercise in animal models of pilocarpine induced status epilepticus (SE) and to compare the efficacy of different training strategies used in those studies. METHODS We searched 2 online databases (Pubmed and Web of Science) for studies analyzing the efficacy of different trainings in pilocarpine-induced SE models. Training was categorized into forced physical training (PT), voluntary PT and resistance PT. Two reviewers independently extracted data on study quality, behavioral seizures, and histological, chemical and cognitive outcomes. Data were pooled by means of a meta-analysis. RESULTS Among 17 selected studies; 174 animals from 8 studies with 10 comparison groups showed that exercise intervention after induction of SE significantly decreased spontaneous recurrent seizures with [mean difference (MD)=-1.80, 95% confidence interval (CI): -3.22, -0.37, p=0.02] and 60 animals showed statistically significant decrease in latency in Morris water maze (standardized mean difference (SMD)=-2.57, 95% CI: -4.06, -1.08, p=0.0007). Although not statistically significant, still a remarkable increase in number of CA1 neurons and hippocampal BDNF level (MD=2.27, [95% CI: -1.20, 5.73], p=0.19, SMD=1.07, [95% CI: -0.36, 2.51], p=0.14 respectively) and a decrease in mossy fibers sprouting (SMD=-1.03, [95% CI: -3.06, 1.00], p=0.32) were observed. PT interventions in 72 animals before induction of SE showed favorable increase in latency to develop SE (MD=8.34, [95% CI: -3.10, 19.78], p=0.15) but no remarkable improvements in latency for the first motor sign and motor signs intensity. CONCLUSIONS PT after SE reduces the recurrent seizures and improves the morphological, biochemical and cognitive profiles of pilocarpine epileptic models. Resistance PT was identified as particularly effective in reducing behavioral seizures. The efficacy of training was also dependent upon duration.
Collapse
Affiliation(s)
- Muneeb Iqbal
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Md Saidur Rahman
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Salman Zafar
- University Institute of Physical Therapy, University of Lahore, 1 km Defence road, Lahore, Pakistan
| | - Xin-Lin Chen
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China; Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Jian-Xin Liu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Yong Liu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China.
| |
Collapse
|
9
|
de Almeida AA, Gomes da Silva S, Lopim GM, Vannucci Campos D, Fernandes J, Cabral FR, Arida RM. Resistance Exercise Reduces Seizure Occurrence, Attenuates Memory Deficits and Restores BDNF Signaling in Rats with Chronic Epilepsy. Neurochem Res 2017; 42:1230-1239. [DOI: 10.1007/s11064-016-2165-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 01/12/2023]
|
10
|
Hubens CJ, Kaptein PS, ter Horst JP, Voskuyl RA, Schenk GJ. Kainate-induced epileptogenesis alters circular hole board learning strategy but not the performance of C57BL/6J mice. Epilepsy Behav 2014; 41:127-35. [PMID: 25461204 DOI: 10.1016/j.yebeh.2014.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/12/2014] [Indexed: 01/12/2023]
Abstract
Patients with mesial temporal lobe epilepsy (mTLE) frequently show cognitive deficits. However, the relation between mTLE and cognitive impairment is poorly understood. To gain more insight into epilepsy-associated alterations in cognitive performance, we studied the spatial learning of C57BL/6J mice five weeks after kainate-induced status epilepticus (SE). Typically, structural hippocampal rearrangements take place within five weeks after SE. Mice were monitored by exposing them to four tasks with a focus on spatial memory and anxiety: the circular hole board, modified hole board, novel object-placement task, and elevated plus maze. On the circular hole board, animals showed a higher preference for hippocampus-independent strategies after SE. In contrast, no change in strategy was seen on the modified hole board, but animals with SE were able to finish the task more often. Animals did not have an increased preference for a relocated object in the novel object-placement task but showed an increased locomotion after SE. No indications for altered anxiety were found when tested on the elevated plus maze following SE. These data suggest that the circular hole board is a well-suited paradigm to detect subtle SE-induced hippocampal deficits.
Collapse
Affiliation(s)
- Chantal J Hubens
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands; Department of Pharmacology, Leiden Academic Center for Drug Research (LACDR), Leiden, The Netherlands.
| | - Pascale S Kaptein
- Department of Pharmacology, Leiden Academic Center for Drug Research (LACDR), Leiden, The Netherlands
| | - Judith P ter Horst
- Department of Medical Pharmacology, Leiden University Medical Center (LUMC) & LACDR, Leiden, The Netherlands
| | - Rob A Voskuyl
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands; Department of Pharmacology, Leiden Academic Center for Drug Research (LACDR), Leiden, The Netherlands
| | - Geert J Schenk
- Department of Medical Pharmacology, Leiden University Medical Center (LUMC) & LACDR, Leiden, The Netherlands
| |
Collapse
|
11
|
Yang JL, Lin YT, Chuang PC, Bohr VA, Mattson MP. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular Med 2014; 16:161-174. [PMID: 24114393 PMCID: PMC3948322 DOI: 10.1007/s12017-013-8270-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/26/2013] [Indexed: 01/11/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) promotes the survival and growth of neurons during brain development and mediates activity-dependent synaptic plasticity and associated learning and memory in the adult. BDNF levels are reduced in brain regions affected in Alzheimer's, Parkinson's, and Huntington's diseases, and elevation of BDNF levels can ameliorate neuronal dysfunction and degeneration in experimental models of these diseases. Because neurons accumulate oxidative lesions in their DNA during normal activity and in neurodegenerative disorders, we determined whether and how BDNF affects the ability of neurons to cope with oxidative DNA damage. We found that BDNF protects cerebral cortical neurons against oxidative DNA damage-induced death by a mechanism involving enhanced DNA repair. BDNF stimulates DNA repair by activating cyclic AMP response element-binding protein (CREB), which, in turn, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair pathway. Suppression of either APE1 or TrkB by RNA interference abolishes the ability of BDNF to protect neurons against oxidized DNA damage-induced death. The ability of BDNF to activate CREB and upregulate APE1 expression is abolished by shRNA of TrkB as well as inhibitors of TrkB, PI3 kinase, and Akt kinase. Voluntary running wheel exercise significantly increases levels of BDNF, activates CREB, and upregulates APE1 in the cerebral cortex and hippocampus of mice, suggesting a novel mechanism whereby exercise may protect neurons from oxidative DNA damage. Our findings reveal a previously unknown ability of BDNF to enhance DNA repair by inducing the expression of the DNA repair enzyme APE1.
Collapse
Affiliation(s)
- Jenq-Lin Yang
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Center for Translation Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Kaohsiung 83301, Taiwan
| | - Yu-Ting Lin
- Center for Translation Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Kaohsiung 83301, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Kaohsiung Chang Gung, Memorial Hospital, 123 Ta Pei Road, Kaohsiung 83301, Taiwan
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
12
|
Faria R, Sartori C, Canova F, Ferrari E. Classical aversive conditioning induces increased expression of mature-BDNF in the hippocampus and amygdala of pigeons. Neuroscience 2013; 255:122-33. [DOI: 10.1016/j.neuroscience.2013.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
|
13
|
Kwon YJ, Eo J, Choi BH, Choi Y, Gim JA, Kim D, Kim TH, Seong HH, Kim HS. Bioinformatic Analysis of the Canine Genes Related to Phenotypes for the Working Dogs. ACTA ACUST UNITED AC 2013. [DOI: 10.5352/jls.2013.23.11.1325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Prenatal immune challenge in rats increases susceptibility to seizure-induced brain injury in adulthood. Brain Res 2013; 1519:78-86. [DOI: 10.1016/j.brainres.2013.04.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/23/2013] [Accepted: 04/23/2013] [Indexed: 01/22/2023]
|
15
|
Low-intensity physical training recovers object recognition memory impairment in rats after early-life induced Status epilepticus. Int J Dev Neurosci 2013; 31:196-201. [PMID: 23318691 DOI: 10.1016/j.ijdevneu.2013.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 12/18/2022] Open
Abstract
When it occurs early in life, Status epilepticus (SE) can cause behavioural and cognitive impairments in adulthood. Here, we evaluated the putative benefits of low-intensity treadmill training on long-standing cognitive impairment in rats submitted to SE early in life. Wistar rats were submitted to LiCl-pilocarpine-induced SE at P16. Animals from the trained group underwent a low-intensity treadmill protocol for 5 days per week for 4 weeks. At adulthood, rats subjected to early-life SE displayed impairment in long-term memory in an object recognition task, while the training protocol completely reversed this deficit. This result was associated with neither locomotor alterations nor changes in emotional behaviour; there were no differences between groups in the distance travelled, grooming or rearing in the open field test; there were also no differences between groups in the number of risk assessment, time spent in open arms in an elevated plus maze and number of entries into the open arms. These data suggest that physical exercise can ameliorate the long-standing recognition memory deficit induced by early-life SE, suggesting that it may be useful as a putative intervention for patients who suffered SE during infancy.
Collapse
|
16
|
Quirié A, Hervieu M, Garnier P, Demougeot C, Mossiat C, Bertrand N, Martin A, Marie C, Prigent-Tessier A. Comparative effect of treadmill exercise on mature BDNF production in control versus stroke rats. PLoS One 2012; 7:e44218. [PMID: 22962604 PMCID: PMC3433479 DOI: 10.1371/journal.pone.0044218] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/03/2012] [Indexed: 01/15/2023] Open
Abstract
Physical exercise constitutes an innovative strategy to treat deficits associated with stroke through the promotion of BDNF-dependent neuroplasticity. However, there is no consensus on the optimal intensity/duration of exercise. In addition, whether previous stroke changes the effect of exercise on the brain is not known. Therefore, the present study compared the effects of a clinically-relevant form of exercise on cerebral BDNF levels and localization in control versus stroke rats. For this purpose, treadmill exercise (0.3 m/s, 30 min/day, for 7 consecutive days) was started in rats with a cortical ischemic stroke after complete maturation of the lesion or in control rats. Sedentary rats were run in parallel. Mature and proBDNF levels were measured on the day following the last boot of exercise using Western blotting analysis. Total BDNF levels were simultaneously measured using ELISA tests. As compared to the striatum and the hippocampus, the cortex was the most responsive region to exercise. In this region, exercise resulted in a comparable increase in the production of mature BDNF in intact and stroke rats but increased proBDNF levels only in intact rats. Importantly, levels of mature BDNF and synaptophysin were strongly correlated. These changes in BDNF metabolism coincided with the appearance of intense BDNF labeling in the endothelium of cortical vessels. Notably, ELISA tests failed to detect changes in BDNF forms. Our results suggest that control beings can be used to find conditions of exercise that will result in increased mBDNF levels in stroke beings. They also suggest cerebral endothelium as a potential source of BDNF after exercise and highlight the importance to specifically measure the mature form of BDNF to assess BDNF-dependent plasticity in relation with exercise.
Collapse
Affiliation(s)
- Aurore Quirié
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, Dijon, France
- Université de Bourgogne, Dijon, France
| | - Marie Hervieu
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, Dijon, France
- Department of Neurology, University Hospital, Dijon, France
| | - Philippe Garnier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, Dijon, France
- Université de Bourgogne, Dijon, France
| | - Céline Demougeot
- EA 4267 Fonctions et Dysfonctions Epithéliales, Faculté de Médecine-Pharmacie, Besancon, France
| | - Claude Mossiat
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, Dijon, France
- Université de Bourgogne, Dijon, France
| | | | - Alain Martin
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, Dijon, France
- Université de Bourgogne, Dijon, France
| | - Christine Marie
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, Dijon, France
- Université de Bourgogne, Dijon, France
| | - Anne Prigent-Tessier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, Dijon, France
- Université de Bourgogne, Dijon, France
- * E-mail:
| |
Collapse
|
17
|
Arida RM, Cavalheiro EA, Scorza FA. From depressive symptoms to depression in people with epilepsy: Contribution of physical exercise to improve this picture. Epilepsy Res 2012; 99:1-13. [DOI: 10.1016/j.eplepsyres.2011.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/17/2011] [Accepted: 10/09/2011] [Indexed: 10/15/2022]
|
18
|
Wang C, Wu H, He F, Jing X, Liang Q, Heng G, Wang L, Gao G, Zhang H. Alleviation of Ferric Chloride-Induced Seizures and Retarded Behaviour in Epileptic Rats by Cortical Electrical Stimulation Treatment. J Int Med Res 2012; 40:266-81. [PMID: 22429366 DOI: 10.1177/147323001204000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE: To study the effects of low-frequency cortical electrical stimulation (CES) on seizures and behaviour in a rat model of epilepsy induced by ferric chloride (FeCl3). METHODS: Rats were randomly assigned into four groups ( n = 8 per group): normal healthy rats; saline-treated control rats; FeCl3-induced epileptic rats; CES-treated FeCl3-induced epileptic rats. Behavioural tests, analysis of the levels of brain-derived neurotrophic factor (BDNF) protein in brain tissue, and ultrastructural studies using transmission electron microscopy (TEM) were undertaken. RESULTS: CES significantly decreased the number and grade of seizures, and improved rat behaviour, compared with untreated epileptic rats. CES reduced levels of BDNF protein in the forebrain and increased levels of BDNF protein in the hippocampus compared with untreated epileptic rats. TEM showed less damage and ultrastructural changes in the neurons of CES-treated epileptic rats. CONCLUSIONS: CES inhibited seizures in FeCl3-induced epileptic rats and improved their behaviour. These effects might be mediated by altering BDNF protein levels in the brain.
Collapse
Affiliation(s)
- C Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - H Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - F He
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - X Jing
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - Q Liang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - G Heng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - L Wang
- Department of Biomedical Engineering, Fourth Military Medical University, ShanXi, Xi'an, China
| | - G Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - H Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| |
Collapse
|
19
|
Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing. Neuroscience 2011; 192:773-80. [PMID: 21756980 DOI: 10.1016/j.neuroscience.2011.06.032] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/19/2011] [Accepted: 06/09/2011] [Indexed: 11/21/2022]
Abstract
Exercise has been shown to impact brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF); however, mechanisms involved are poorly understood. Two types of BDNF coexist in the brain, the precursor (proBDNF) and its mature product (mBDNF), which preferentially bind specific receptors and exert distinct functions. It is crucial to understand how exercise affects crucial steps in the BDNF processing and signaling to evaluate therapeutic applications. We found that 7 days of voluntary exercise increased both pro and mature BDNF in the rat hippocampus. Exercise also increased the activity of tissue-type plasminogen activator (tPA), a serine proteinase shown to facilitate proBDNF cleavage into mBDNF. The blockade of tPA activity reduced the exercise effects on proBDNF and mBDNF. The tPA blocking also inhibited the activation of TrkB receptor, and the TrkB signaling downstream effectors phospho-ERK, phospho-Akt, and phospho-CaMKII. The blocking of tPA also counteracted the effects of exercise on the plasticity markers phospho-synapsin I and growth-associated protein 43 (GAP-43). These results indicate that the effects of exercise on hippocampal plasticity are dependent on BDNF processing and subsequent TrkB signaling, with important implications for neuronal function.
Collapse
|
20
|
|
21
|
The antidepressive effect of the physical exercise correlates with increased levels of mature BDNF, and proBDNF proteolytic cleavage-related genes, p11 and tPA. Neuroscience 2011; 180:9-18. [DOI: 10.1016/j.neuroscience.2011.02.055] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 01/10/2023]
|
22
|
Wong-Goodrich SJE, Glenn MJ, Mellott TJ, Liu YB, Blusztajn JK, Williams CL. Water maze experience and prenatal choline supplementation differentially promote long-term hippocampal recovery from seizures in adulthood. Hippocampus 2010; 21:584-608. [PMID: 20232399 DOI: 10.1002/hipo.20783] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2010] [Indexed: 12/16/2022]
Abstract
Status epilepticus (SE) in adulthood dramatically alters the hippocampus and produces spatial learning and memory deficits. Some factors, like environmental enrichment and exercise, may promote functional recovery from SE. Prenatal choline supplementation (SUP) also protects against spatial memory deficits observed shortly after SE in adulthood, and we have previously reported that SUP attenuates the neuropathological response to SE in the adult hippocampus just 16 days after SE. It is unknown whether SUP can ameliorate longer-term cognitive and neuropathological consequences of SE, whether repeatedly engaging the injured hippocampus in a cognitive task might facilitate recovery from SE, and whether our prophylactic prenatal dietary treatment would enable the injured hippocampus to more effectively benefit from cognitive rehabilitation. To address these issues, adult offspring from rat dams that received either a control (CON) or SUP diet on embryonic days 12-17 first received training on a place learning water maze task (WM) and were then administered saline or kainic acid (KA) to induce SE. Rats then either remained in their home cage, or received three additional WM sessions at 3, 6.5, and 10 weeks after SE to test spatial learning and memory retention. Eleven weeks after SE, the brains were analyzed for several hippocampal markers known to be altered by SE. SUP attenuated SE-induced spatial learning deficits and completely rescued spatial memory retention by 10 weeks post-SE. Repeated WM experience prevented SE-induced declines in glutamic acid decarboxylase (GAD) and dentate gyrus neurogenesis, and attenuated increased glial fibrilary acidic protein (GFAP) levels. Remarkably, SUP alone was similarly protective to an even greater extent, and SUP rats that were water maze trained after SE showed reduced hilar migration of newborn neurons. These findings suggest that prophylactic SUP is protective against the long-term cognitive and neuropathological effects of KA-induced SE, and that rehabilitative cognitive enrichment may be partially beneficial.
Collapse
|
23
|
Phylogenesis of brain-derived neurotrophic factor (BDNF) in vertebrates. Gene 2010; 450:85-93. [PMID: 19879341 DOI: 10.1016/j.gene.2009.07.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 01/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to neurotrophin family, a class of molecules playing key roles in neuronal development, survival and regeneration, neurite growth and plasticity: memory processes are mainly affected, and mutations of the human BDNF gene are associated to cognitive and behavioural disturbances. All neurotrophins contain a highly conserved C-terminal domain and bind to the same receptor family. Both correct folding and post-translational processing of the entire preproprotein are pivotal for sorting to the extracellular space, dimerization and receptor binding. Evolutionary studies conducted so far demonstrate that a single ancestor gene underwent two independent duplication events at an early stage of vertebrate evolution, leading to the formation of the current neurotrophins. However, works focusing on BDNF evolution are scarce and fragmentary, mainly in lower vertebrates. In this work, we report cloning of eight DNA sequences from amphibians and teleosts, and analysis of the entire coding regions (cDNA sequences) of BDNF from 35 organisms, from teleosts to mammals. A phylogenetic tree was constructed and the analysis of non-synonymous-synonymous substitution rates performed for the different branches. Our results suggest that natural selection is acting on mammals, separating them from other classes. Since preproprotein cleavage and 3D structure of mature protein are important for functional activity of BDNF, we also propose a de novo prediction of the 3D structure of translates in at least one species for each class, in order to get hints about the functional constraints of the protein.
Collapse
|