1
|
Gossman KR, Andrews E, Dykstra B, Ta K, Ashourvan A, Smith AS. Structural connectivity of the fore- and mid-brain in prairie voles. iScience 2025; 28:112065. [PMID: 40144636 PMCID: PMC11938270 DOI: 10.1016/j.isci.2025.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/14/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Mammals live in complex social systems that require higher order cognition to process and display complex social behaviors. It is suggested that brain networks, such as the social decision-making network (SDMN), have evolved to process such information. Recent functional connectivity studies of the SDMN have revealed distinct network dynamics during different social events across several species. However, the structural mapping of this network is incomplete which limits structural-functional modeling. Here, we assess the structural connectivity of an extended SDMN as well as the fore- and mid-brain afferent projections with the use of cholera toxin subunit-B retrograde tracers and the prairie vole (Microtus ochrogaster), a socially monogamous rodent that displays complex social behaviors. This work greatly expands upon the limited structural connectivity of the vole social brain and highlights important regions within the SDMN and other highly innervated regions that may serve as information hubs.
Collapse
Affiliation(s)
- Kyle R. Gossman
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Emalee Andrews
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Ben Dykstra
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Kyle Ta
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Arian Ashourvan
- Department of Psychology, University of Kansas, Lawrence KS, USA
| | - Adam S. Smith
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
- Program in Neuroscience, University of Kansas, Lawrence KS, USA
| |
Collapse
|
2
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
3
|
Kuroda KO, Fukumitsu K, Kurachi T, Ohmura N, Shiraishi Y, Yoshihara C. Parental brain through time: The origin and development of the neural circuit of mammalian parenting. Ann N Y Acad Sci 2024; 1534:24-44. [PMID: 38426943 DOI: 10.1111/nyas.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This review consolidates current knowledge on mammalian parental care, focusing on its neural mechanisms, evolutionary origins, and derivatives. Neurobiological studies have identified specific neurons in the medial preoptic area as crucial for parental care. Unexpectedly, these neurons are characterized by the expression of molecules signaling satiety, such as calcitonin receptor and BRS3, and overlap with neurons involved in the reproductive behaviors of males but not females. A synthesis of comparative ecology and paleontology suggests an evolutionary scenario for mammalian parental care, possibly stemming from male-biased guarding of offspring in basal vertebrates. The terrestrial transition of tetrapods led to prolonged egg retention in females and the emergence of amniotes, skewing care toward females. The nocturnal adaptation of Mesozoic mammalian ancestors reinforced maternal care for lactation and thermal regulation via endothermy, potentially introducing metabolic gate control in parenting neurons. The established maternal care may have served as the precursor for paternal and cooperative care in mammals and also fostered the development of group living, which may have further contributed to the emergence of empathy and altruism. These evolution-informed working hypotheses require empirical validation, yet they offer promising avenues to investigate the neural underpinnings of mammalian social behaviors.
Collapse
Affiliation(s)
- Kumi O Kuroda
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| | - Kansai Fukumitsu
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takuma Kurachi
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Nami Ohmura
- RIKEN Center for Brain Science, Saitama, Japan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Yuko Shiraishi
- RIKEN Center for Brain Science, Saitama, Japan
- Kawamura Gakuen Woman's University, Chiba, Japan
| | - Chihiro Yoshihara
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
4
|
Yoshihara C, Tokita K, Maruyama T, Kaneko M, Tsuneoka Y, Fukumitsu K, Miyazawa E, Shinozuka K, Huang AJ, Nishimori K, McHugh TJ, Tanaka M, Itohara S, Touhara K, Miyamichi K, Kuroda KO. Calcitonin receptor signaling in the medial preoptic area enables risk-taking maternal care. Cell Rep 2021; 35:109204. [PMID: 34077719 DOI: 10.1016/j.celrep.2021.109204] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Maternal mammals exhibit heightened motivation to care for offspring, but the underlying neuromolecular mechanisms have yet to be clarified. Here, we report that the calcitonin receptor (Calcr) and its ligand amylin are expressed in distinct neuronal populations in the medial preoptic area (MPOA) and are upregulated in mothers. Calcr+ MPOA neurons activated by parental care project to somatomotor and monoaminergic brainstem nuclei. Retrograde monosynaptic tracing reveals that significant modification of afferents to Calcr+ neurons occurs in mothers. Knockdown of either Calcr or amylin gene expression hampers risk-taking maternal care, and specific silencing of Calcr+ MPOA neurons inhibits nurturing behaviors, while pharmacogenetic activation prevents infanticide in virgin males. These data indicate that Calcr+ MPOA neurons are required for both maternal and allomaternal nurturing behaviors and that upregulation of amylin-Calcr signaling in the MPOA at least partially mediates risk-taking maternal care, possibly via modified connectomics of Calcr+ neurons postpartum.
Collapse
Affiliation(s)
- Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Kenichi Tokita
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; The Institute of Natural Sciences, Senshu University, Tokyo 101-8425, Japan
| | - Teppo Maruyama
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Misato Kaneko
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Yousuke Tsuneoka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Kansai Fukumitsu
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Eri Miyazawa
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Arthur J Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Katsuhiko Nishimori
- Department of Obesity and Internal Inflammation, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Minoru Tanaka
- Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, Japan Science and Technology Agency, The University of Tokyo, Tokyo 113-8657, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan
| | - Kazunari Miyamichi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan; Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan.
| |
Collapse
|
5
|
Chaibi I, Bennis M, Ba-M'Hamed S. GABA-A receptor signaling in the anterior cingulate cortex modulates aggression and anxiety-related behaviors in socially isolated mice. Brain Res 2021; 1762:147440. [PMID: 33745922 DOI: 10.1016/j.brainres.2021.147440] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 11/19/2022]
Abstract
Dysfunctional modulation of brain circuits that regulate the emotional response to potentially threatening stimuli is associated to an inappropriate representation of the emotional salience. Reduced top-down control by cortical areas is assumed to underlie several behavioral abnormalities including aggression and anxiety related behaviors. Previous studies have identified disrupted GABA signaling in the anterior cingulate cortex (ACC) as a possible mechanism underlying the top-down regulation of aggression and anxiety. In this study, we investigate a role for GABA-A receptor in the ACC in the regulation of aggression and anxiety related behaviors in socially isolated mice. We evaluated the effects of site directed injections of the GABA-A receptor agonist, muscimol or the GABA-A receptor antagonist, bicuculline into the ACC on these behaviors. Results showed that hyper-aggressive behavior, the anxiety and avoidance behavior in socially isolated mice were increased by muscimol microinfusion into ACC, while the sociability was not affected. In contrast, hyper-aggressive behavior in socially isolated mice was inhibited following bicuculline microinfusion without affecting anxiety. Furthermore, microinfusion of bicuculline into ACC decreased avoidance intensity and significantly reinforced social behavior, suggesting that GABA-A receptor inhibition in ACC specifically regulated aggression and sociability. Together, our results confirm a role for GABA-A receptor signaling in the ACC in the regulation of aggressive, social and anxiety related behaviors in socially isolated mice.
Collapse
Affiliation(s)
- Ilias Chaibi
- Lab. Pharmacology, Neurobiology, Anthropology & Environment, Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Bennis
- Lab. Pharmacology, Neurobiology, Anthropology & Environment, Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco.
| | - Saadia Ba-M'Hamed
- Lab. Pharmacology, Neurobiology, Anthropology & Environment, Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
6
|
Abstract
At least one in seven pregnant or recently postpartum women will experience a mental illness such as an anxiety disorder, depressive disorder, or substance use disorder. These mental illnesses have detrimental effects on the health of the mother, child, and family, but little is known about the hypothalamic and other neural correlates of maternal mental health concerns. The transition to parenthood alone is a time of remarkable neural plasticity, so it is perhaps not surprising that current research is showing that maternal mental illness has unique neural profiles. Furthermore, the neural systems affected by peripartum mental illness overlap and interact with the systems involved in maternal caregiving behaviors, and mother-infant interactions are, therefore, highly susceptible to disruption. This review discusses what we know about the unique neural changes occurring during peripartum mental illness and the role of the hypothalamus in these illnesses. With an improved understanding of the neural correlates of maternal mental health and disease, we will be better equipped to predict risk, develop effective treatments, and ultimately prevent suffering for millions of parents during this critical time in life.
Collapse
Affiliation(s)
- Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR S 1085, Rennes, France.
| | - James E Swain
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
7
|
Yu ZX, Li XY, Xu XH. Neural Circuit Mechanisms That Underlie Parental Care. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1284:49-62. [PMID: 32852740 DOI: 10.1007/978-981-15-7086-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In mammals, parental care is essential for the survival of the young; therefore, it is vitally important to the propagation of the species. These behaviors, differing between the two sexes, are innate, stereotyped, and are also modified by an individual's reproductive experience. These characteristics suggest that neural mechanisms underlying parental behaviors are genetically hardwired, evolutionarily conserved as well as sexually differentiated and malleable to experiential changes. Classical lesion studies on neural control of parental behaviors, mostly done in rats, date back to the 1950s. Recent developments of new methods and tools in neuroscience, which allow precise targeting and activation/inhibition of specific populations of neurons and their projections to different brain structures, have afforded fresh opportunities to dissect and delineate the detailed neural circuit mechanisms that govern distinct components of parental behaviors in the genetically tractably organism, the laboratory mouse (Mus musculus). In this review, we summarize recent discoveries using modern neurobiological tools within the context of traditional lesion studies. In addition, we discuss interesting cross talk between neural circuits that govern parent care with those that regulate other innate behaviors such as feeding and mating.
Collapse
Affiliation(s)
- Zi-Xian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Xing-Yu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
8
|
Bouchatta O, Chaibi I, Baba AA, Ba-M'Hamed S, Bennis M. The effects of Topiramate on isolation-induced aggression: a behavioral and immunohistochemical study in mice. Psychopharmacology (Berl) 2020; 237:2451-2467. [PMID: 32430516 DOI: 10.1007/s00213-020-05546-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Topiramate, an antiepileptic drug, has been found to be useful for the treatment of aggression in clinical populations. Most preclinical studies related to Topiramate have been focused exclusively on the quantitative aspects of the aggressive behavior between mice. However, there is still limited knowledge regarding the effects of Topiramate on neuronal mechanisms occurring in aggressive mice. The present work aims to understand further the effects of the antiepileptic drug Topiramate on aggressive behaviors, and on the neural correlates underlying such behaviors. To achieve this, we combined the resident-intruder model of isolation-induced aggression in mice with two drug regimens of Topiramate administration (30.0 mg/kg; acute and sub-chronic treatments). Our data showed that both acute and subchronic treatments decreased the intensity of agonistic encounters and reinforced social behavior. By using C-fos immunoreactivity, we investigated the neuronal activation of several brain regions involved in aggressive behavior following subchronic treatment. We found that Topiramate produced activation in several cortical areas and in the lateral septum of resident brain mice compared with their controls. However, Topiramate induced inhibition in the medial nucleus of the amygdala, the dorsomedial nucleus of the periaqueductal gray, and especially in the anterior hypothalamic nucleus. Finally, we performed microinfusion of Topiramate (0.1 and 0.3 mM) into the lateral septum and anterior hypothalamus on offensive behaviors in isolation-induced-aggression paradigm. Interestingly, the microinfusion of Topiramate into the lateral septum has the capacity to alleviate aggressive behavior, without affecting social behavior. However, the microinfusion of Topiramate into the anterior hypothalamus decreased aggressive behavior and slightly reinforced social behavior. Our observations supported that the dose of 0.1 mM of Topiramate appeared more efficacy to treat aggression in adult mice. These pharmacological characteristics may account for Topiramate efficacy on aggressive symptoms in psychiatric patients.
Collapse
Affiliation(s)
- Otmane Bouchatta
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco
| | - Ilias Chaibi
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco
| | - Abdelfatah Ait Baba
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco
| | - Saadia Ba-M'Hamed
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco.
| |
Collapse
|
9
|
Traumatic Stress Induces Prolonged Aggression Increase through Synaptic Potentiation in the Medial Amygdala Circuits. eNeuro 2020; 7:ENEURO.0147-20.2020. [PMID: 32651265 PMCID: PMC7385664 DOI: 10.1523/eneuro.0147-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022] Open
Abstract
Traumatic stress can lead to heightened aggression which may be a symptom of psychiatric diseases such as PTSD and intermittent explosive disorder. The medial amygdala (MeA) is an evolutionarily conserved subnucleus of the amygdala that regulates attack behavior and behavioral responses to stressors. The precise contribution of the MeA in traumatic stress-induced aggression, however, requires further elucidation. In this study, we used foot shock to induce traumatic stress in mice and examine the mechanisms of prolonged aggression increase associated with it. Foot shock causes a prolonged increase in aggression that lasts at least one week. In vivo electrophysiological recordings revealed that foot shock induces potentiation of synapses formed between the MeA and the ventromedial hypothalamus (VmH) and bed nucleus of the stria terminalis (BNST). This synaptic potentiation lasts at least one week. Induction of synaptic depotentiation with low-frequency photostimulation (LFPS) immediately after foot shock suppresses the prolonged aggression increase without affecting non-aggressive social behavior, anxiety-like and depression-like behaviors, or fear learning. These results show that potentiation of the MeA-VmH and MeA-BNST circuits is essential for traumatic stress to cause a prolonged increase in aggression. These circuits may be potential targets for the development of therapeutic strategies to treat the aggression symptom associated with psychiatric diseases.
Collapse
|
10
|
Pawluski JL, Li M, Lonstein JS. Serotonin and motherhood: From molecules to mood. Front Neuroendocrinol 2019; 53:100742. [PMID: 30878665 PMCID: PMC6541513 DOI: 10.1016/j.yfrne.2019.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Emerging research points to a valuable role of the monoamine neurotransmitter, serotonin, in the display of maternal behaviors and reproduction-associated plasticity in the maternal brain. Serotonin is also implicated in the pathophysiology of numerous affective disorders and likely plays an important role in the pathophysiology of maternal mental illness. Therefore, the main goals of this review are to detail: (1) how the serotonin system of the female brain changes across pregnancy and postpartum; (2) the role of the central serotonergic system in maternal caregiving and maternal aggression; and (3) how the serotonin system and selective serotonin reuptake inhibitor medications (SSRIs) are involved in the treatment of maternal mental illness. Although there is much work to be done, studying the central serotonin system's multifaceted role in the maternal brain is vital to our understanding of the processes governing matrescence and the maintenance of motherhood.
Collapse
Affiliation(s)
- Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| | - Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
11
|
Abstract
Parenting is essential for the survival and wellbeing of mammalian offspring but we lack a circuit-level understanding of how distinct components of this behaviour are orchestrated. Here we investigate how Galanin-expressing neurons in the medial preoptic area (MPOAGal) coordinate motor, motivational, hormonal and social aspects of parenting. These neurons integrate inputs from a large number of brain areas, whose activation depends on the animal’s sex and reproductive state. Subsets of MPOAGal neurons form discrete pools defined by their projection sites. While the MPOAGal population is active during all episodes of parental behaviour, individual pools are tuned to characteristic aspects of parenting. Optogenetic manipulation of MPOAGal projections mirrors this specificity, affecting discrete parenting components. This functional organization, reminiscent of the control of motor sequences by pools of spinal cord neurons, provides a new model for how discrete elements of a social behaviour are generated at the circuit level.
Collapse
|
12
|
Brethel-Haurwitz KM, O'Connell K, Cardinale EM, Stoianova M, Stoycos SA, Lozier LM, VanMeter JW, Marsh AA. Amygdala-midbrain connectivity indicates a role for the mammalian parental care system in human altruism. Proc Biol Sci 2017; 284:20171731. [PMID: 29070724 PMCID: PMC5666102 DOI: 10.1098/rspb.2017.1731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/26/2017] [Indexed: 11/12/2022] Open
Abstract
Costly altruism benefitting a stranger is a rare but evolutionarily conserved phenomenon. This behaviour may be supported by limbic and midbrain circuitry that supports mammalian caregiving. In rodents, reciprocal connections between the amygdala and the midbrain periaqueductal grey (PAG) are critical for generating protective responses toward vulnerable and distressed offspring. We used functional and structural magnetic resonance imaging to explore whether these regions play a role in supporting costly altruism in humans. We recruited a rare population of altruists, all of whom had donated a kidney to a stranger, and measured activity and functional connectivity of the amygdala and PAG as altruists and matched controls responded to care-eliciting scenarios. When these scenarios were coupled with pre-attentive distress cues, altruists' sympathy corresponded to greater activity in the left amygdala and PAG, and functional connectivity analyses revealed increased coupling between these regions in altruists during this epoch. We also found that altruists exhibited greater fractional anisotropy within the left amygdala-PAG white matter tract. These results, coupled with previous evidence of altruists' increased amygdala-linked sensitivity to distress, are consistent with costly altruism resulting from enhanced care-oriented responses to vulnerability and distress that are supported by recruitment of circuitry that supports mammalian parental care.
Collapse
Affiliation(s)
| | - Katherine O'Connell
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Elise M Cardinale
- Department of Psychology, Georgetown University, Washington, DC 20057, USA
| | - Maria Stoianova
- Department of Psychology, Georgetown University, Washington, DC 20057, USA
| | - Sarah A Stoycos
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Leah M Lozier
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - John W VanMeter
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Abigail A Marsh
- Department of Psychology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
13
|
Anderson DJ. Circuit modules linking internal states and social behaviour in flies and mice. Nat Rev Neurosci 2016; 17:692-704. [DOI: 10.1038/nrn.2016.125] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Prenatal exposure to fipronil disturbs maternal aggressive behavior in rats. Neurotoxicol Teratol 2015; 52:11-6. [DOI: 10.1016/j.ntt.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/01/2015] [Accepted: 09/22/2015] [Indexed: 11/20/2022]
|
15
|
Albrecht B, Staiger PK, Hall K, Miller P, Best D, Lubman DI. Benzodiazepine use and aggressive behaviour: a systematic review. Aust N Z J Psychiatry 2014; 48:1096-114. [PMID: 25183003 DOI: 10.1177/0004867414548902] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CONTEXT The relationship between benzodiazepine consumption and subsequent increases in aggressive behaviour in humans is not well understood. OBJECTIVES The current study aimed to identify, via a systematic review, whether there is an association between benzodiazepine consumption and aggressive responding in adults. METHOD A systematic review was conducted and reported in line with the PRISMA statement. English articles within MEDLINE, PsycARTICLES, PsycINFO, Academic Search Complete, and Psychology and Behavioural Sciences Collection databases were searched. Additional studies were identified by searching reference lists of reviewed articles. Only articles that explicitly investigated the relationship between benzodiazepine consumption and subsequent aggressive behaviour, or a lack thereof, in human adults were included. RESULTS Forty-six studies met the inclusion criteria. It was not possible to conduct a meta-analysis due to the heterogeneity of study design and benzodiazepine type and dose. An association between benzodiazepine use and subsequent aggressive behaviour was found in the majority of the more rigorous studies, although there is a paucity of high-quality research with clinical or forensic populations. Diazepam and alprazolam have received the most attention. Dose-related findings are inconsistent: therapeutic doses may be more likely to be associated with aggressive responding when administered as a once-off, whereas higher doses may be more risky following repeated administration. Trait levels of anxiety and hostility may indicate a vulnerability to the experience of benzodiazepine-related aggression. CONCLUSIONS There appears to be a moderate association between some benzodiazepines and subsequent aggressive behaviour in humans. The circumstances under which aggressive responding may be more likely to follow benzodiazepine use remain unclear, although some evidence suggests dose and/or personality factors may influence this effect.
Collapse
Affiliation(s)
- Bonnie Albrecht
- School of Psychology, Deakin University, Melbourne, Australia
| | - Petra K Staiger
- School of Psychology, Deakin University, Melbourne, Australia
| | - Kate Hall
- School of Psychology, Deakin University, Melbourne, Australia Turning Point, Eastern Health, Fitzroy, Australia
| | - Peter Miller
- School of Psychology, Deakin University, Melbourne, Australia
| | - David Best
- Turning Point, Eastern Health, Fitzroy, Australia
| | - Dan I Lubman
- Turning Point, Eastern Health, Fitzroy, Australia Eastern Health Clinical School, Monash University, Clayton, Australia
| |
Collapse
|
16
|
Eisinger BE, Driessen TM, Zhao C, Gammie SC. Medial prefrontal cortex: genes linked to bipolar disorder and schizophrenia have altered expression in the highly social maternal phenotype. Front Behav Neurosci 2014; 8:110. [PMID: 24765068 PMCID: PMC3980118 DOI: 10.3389/fnbeh.2014.00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/15/2014] [Indexed: 11/14/2022] Open
Abstract
The transition to motherhood involves CNS changes that modify sociability and affective state. However, these changes also put females at risk for post-partum depression and psychosis, which impairs parenting abilities and adversely affects children. Thus, changes in expression and interactions in a core subset of genes may be critical for emergence of a healthy maternal phenotype, but inappropriate changes of the same genes could put women at risk for post-partum disorders. This study evaluated microarray gene expression changes in medial prefrontal cortex (mPFC), a region implicated in both maternal behavior and psychiatric disorders. Post-partum mice were compared to virgin controls housed with females and isolated for identical durations. Using the Modular Single-set Enrichment Test (MSET), we found that the genetic landscape of maternal mPFC bears statistical similarity to gene databases associated with schizophrenia (5 of 5 sets) and bipolar disorder (BPD, 3 of 3 sets). In contrast to previous studies of maternal lateral septum (LS) and medial preoptic area (MPOA), enrichment of autism and depression-linked genes was not significant (2 of 9 sets, 0 of 4 sets). Among genes linked to multiple disorders were fatty acid binding protein 7 (Fabp7), glutamate metabotropic receptor 3 (Grm3), platelet derived growth factor, beta polypeptide (Pdgfrb), and nuclear receptor subfamily 1, group D, member 1 (Nr1d1). RT-qPCR confirmed these gene changes as well as FMS-like tyrosine kinase 1 (Flt1) and proenkephalin (Penk). Systems-level methods revealed involvement of developmental gene networks in establishing the maternal phenotype and indirectly suggested a role for numerous microRNAs and transcription factors in mediating expression changes. Together, this study suggests that a subset of genes involved in shaping the healthy maternal brain may also be dysregulated in mental health disorders and put females at risk for post-partum psychosis with aspects of schizophrenia and BPD.
Collapse
Affiliation(s)
- Brian E Eisinger
- Department of Zoology, University of Wisconsin-Madison Madison, WI, USA
| | - Terri M Driessen
- Department of Zoology, University of Wisconsin-Madison Madison, WI, USA
| | - Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison Madison, WI, USA
| | - Stephen C Gammie
- Department of Zoology, University of Wisconsin-Madison Madison, WI, USA ; Neuroscience Training Program, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
17
|
de Almeida RMM, Ferreira A, Agrati D. Sensory, hormonal, and neural basis of maternal aggression in rodents. Curr Top Behav Neurosci 2014; 17:111-130. [PMID: 24841427 DOI: 10.1007/7854_2014_312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We review existing knowledge of the neural, hormonal, and sensory basis of maternal aggression in the female rat. Although females may express different kinds of aggression, such as defense or dominance, the most frequent and conspicuous form of aggressive behavior among females is the one associated with motherhood. Maternal aggression occurs in various vertebrate and invertebrate species; however, our emphasis will be on maternal aggression in rats because most of the physiological investigations have been performed in this species. Firstly, we address those factors that predispose the female to attack, such as the endocrine profile, the maternal state, and the stimulation provided by the pups, as well as those that trigger the aggressive response, as the intruder's characteristics and the context. As the postpartum aggression is a fundamental component of the maternal repertoire, we emphasize its association with maternal motivation and the reduction of fear and anxiety in dams. Finally, we outline the neurocircuitry involved in the control of maternal aggression, stressing the role of the ventro-orbital region of prefrontal cortex and the serotoninergic system.
Collapse
Affiliation(s)
- Rosa Maria Martins de Almeida
- Laboratório de Psicologia Experimental, Neurociências e Comportamento (LPNeC), Instituto de Psicologia do Desenvolvimento e da Personalidade da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil,
| | | | | |
Collapse
|
18
|
Zhao C, Eisinger B, Gammie SC. Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS One 2013; 8:e73750. [PMID: 23967349 PMCID: PMC3742568 DOI: 10.1371/journal.pone.0073750] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/26/2013] [Indexed: 01/02/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) neurotransmission in the lateral septum (LS) is implicated in modulating various behavioral processes, including emotional reactivity and maternal behavior. However, identifying the phenotype of GABAergic neurons in the CNS has been hampered by the longstanding inability to reliably detect somal immunoreactivity for GABA or glutamic acid decarboxylase (GAD), the enzyme that produces GABA. In this study, we designed unique probes for both GAD65 (GAD2) and GAD67 (GAD1), and used fluorescence in Situ hybridization (FISH) with tyramide signal amplification (TSA) to achieve unequivocal detection of cell bodies of GABAergic neurons by GAD mRNAs. We quantitatively characterized the expression and chemical phenotype of GABAergic neurons across each subdivision of LS and in cingulate cortex (Cg) and medial preoptic area (MPOA) in female mice. Across LS, almost all GAD65 mRNA-expressing neurons were found to contain GAD67 mRNA (approximately 95-98%), while a small proportion of GAD67 mRNA-containing neurons did not express GAD65 mRNA (5-14%). Using the neuronal marker NeuN, almost every neuron in LS (> 90%) was also found to be GABA-positive. Interneuron markers using calcium-binding proteins showed that LS GABAergic neurons displayed immunoreactivity for calbindin (CB) or calretinin (CR), but not parvalbumin (PV); almost all CB- or CR-immunoreactive neurons (98-100%) were GABAergic. The proportion of GABAergic neurons immunoreactive for CB or CR varied depending on the subdivisions examined, with the highest percentage of colocalization in the caudal intermediate LS (LSI) (approximately 58% for CB and 35% for CR). These findings suggest that the vast majority of GABAergic neurons within the LS have the potential for synthesizing GABA via the dual enzyme systems GAD65 and GAD67, and each subtype of GABAergic neurons identified by distinct calcium-binding proteins may exert unique roles in the physiological function and neuronal circuitry of the LS.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | |
Collapse
|
19
|
Zhao C, Driessen T, Gammie SC. Glutamic acid decarboxylase 65 and 67 expression in the lateral septum is up-regulated in association with the postpartum period in mice. Brain Res 2012; 1470:35-44. [PMID: 22750123 DOI: 10.1016/j.brainres.2012.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/29/2012] [Accepted: 06/02/2012] [Indexed: 12/31/2022]
Abstract
The postpartum period in mammals undergoes a variety of physiological adaptations, including metabolic, behavioral and neuroendocrine alterations. GABA signaling has been strongly linked to various emotional states, stress responses and offspring protection. However, whether GABA signaling may change in the lateral septum (LS), a core brain region for regulating behavioral, emotional and stress responses in postpartum mice has not previously been examined. In this study, we tested whether the expression of two isoforms of glutamic acid decarboxylase (GAD), GAD65 (GAD2) and GAD67 (GAD1), the rate-limiting enzyme for GABA synthesis, exhibits altered expression in postpartum mice relative to nonmaternal, virgin mice. Using microdissected septal tissue from virgin and age-matched postpartum females, quantitative real-time PCR and Western blotting were carried out to assess GAD mRNA and protein expression, respectively. We found both protein and mRNA expression of GAD67 in the whole septum was up-regulated in postpartum mice. By contrast, no significant difference in the whole septum was observed in GAD65 expression. We then conducted a finer level of analysis using smaller microdissections and found GAD67 to be significantly increased in rostral LS, but not in caudal LS or medial septum (MS). Further, GAD65 mRNA expression in rostral LS, but not in caudal LS or MS was also significantly elevated in postpartum mice. These findings suggest that an increased GABA production in rostral LS of the postpartum mice via elevated GAD65 and GAD67 expression may contribute to multiple alterations in behavioral and emotional states, and responses to stress that occur during the postpartum period. Given that rostral LS contains GABA neurons that are projection neurons or local interneurons, it still needs to be determined whether the function of elevated GABA is for local or distant action or both.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, WI 53706, USA.
| | | | | |
Collapse
|
20
|
Analysis of transcriptional levels of the oxytocin receptor in different areas of the central nervous system and behaviors in high and low licking rats. Behav Brain Res 2012; 228:176-84. [DOI: 10.1016/j.bbr.2011.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 11/21/2022]
|
21
|
Gammie SC, Lee G, Scotti MAL, Stevenson SA, Gessay GM. Neurotensin induced Egr-1 activity is altered in the postpartum period in mice. Brain Res 2011; 1433:47-55. [PMID: 22138429 DOI: 10.1016/j.brainres.2011.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/26/2011] [Accepted: 11/05/2011] [Indexed: 11/19/2022]
Abstract
Neurotensin (NT) is a 13 amino acid neuropeptide that is identical in mice and humans and is released from and acts upon a number of social brain regions. Recent work indicates NT neurotransmission may be altered in postpartum females and support the onset of some maternal behaviors. In a recent study, we highlighted how virgin and postpartum brains from mice selected for high offspring protection differ in response to injected NT (0.1 μg) relative to vehicle when examining c-Fos profiles across the CNS. In this companion study we use a second marker for brain activity, Egr-1, and evaluate multiple brain regions. Common significant increased Egr-1 responses to NT (relative to vehicle) were found in both female groups only in ventromedial hypothalamus. In lateral periaqueductal gray, virgin mice showed a significant Egr-1 increase with NT (relative to vehicle), but maternal mice did not. When comparing NT injections, virgin (relative to maternal) mice had significantly higher activity in five regions, including anterior hypothalamus, lateral hypothalamus, somatosensory cortex, paraventricular nucleus, and zona incerta; no regions were higher in maternal mice. A Principal Components Analysis was also used for data mining and in virgin mice, greater changes in activity hubs were found with NT (relative to vehicle) than for maternal mice. Overall, a lower sensitivity to NT in terms of Egr-1 reactivity in the maternal state was highlighted and this is consistent with previous c-Fos results. These findings provide additional insight into the mechanisms by which NT functions in the CNS.
Collapse
Affiliation(s)
- Stephen C Gammie
- Department of Zoology, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | |
Collapse
|
22
|
Scotti MAL, Lee G, Gammie SC. Maternal defense is modulated by beta adrenergic receptors in lateral septum in mice. Behav Neurosci 2011; 125:434-45. [PMID: 21480688 DOI: 10.1037/a0023184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Maternal defense (offspring protection) is a critical and highly conserved component of maternal care in mammalian systems that involves dramatic shifts in a female's behavioral response to social cues. Numerous changes occur in neuronal signaling and connectivity in the postpartum female, including decreases in norepinephrine (NE) signaling in subregions of the CNS. In this study using a strain of mice selected for maternal defense, we examined whether possible changes in NE signaling in the lateral septum (LS) could facilitate expression of maternal aggression. In separate studies that utilized a repeated measures design, mice were tested for maternal defense following intra-LS injections of either the β-adrenergic receptor agonist isoproterenol (10 μg or 30 μg) or vehicle (Experiment 1), the β-adrenergic receptor antagonist propranolol (2 μg) or vehicle (Experiment 2), or the β1-receptor antagonist, atenolol (Experiment 3). Mice were also evaluated for light-dark performance and pup retrieval. Thirty micrograms of the agonist isoproterenol significantly decreased number of attacks and time aggressive relative to vehicle without affecting pup retrieval or light-dark box performance. In contrast, the antagonist propranolol significantly increased maternal aggression (lowered latency to attack and increased total attack time) without altering light-dark box test. The β1-specific antagonist, atenolol, significantly decreased latency to attack (1 μg vs. vehicle) without altering other measures. Although the findings were identified in a unique strain of mice, the results of these studies support the hypothesis that changes in NE signaling in LS during the postpartum period contribute to the expression of offspring protection.
Collapse
|
23
|
Scotti MAL, Stevenson SA, Gammie SC. Changes in CNS response to neurotensin accompany the postpartum period in mice. Horm Behav 2011; 60:177-84. [PMID: 21554882 DOI: 10.1016/j.yhbeh.2011.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Neurotensin (NT) is a highly conserved neuropeptide in mammals. Recent studies suggest that altered NT neurotransmission in postpartum females could promote the emergence of some maternal behaviors, including offspring protection. Here we evaluated how virgin and postpartum brains from mice selected for high maternal defense differ in response to NT. Virgin and postpartum mice were injected with either vehicle or 0.1 μg NT icv and brains were evaluated for c-Fos immunoreactivity, an indirect marker of neuronal activity. Using ANOVA analysis, common significant responses to NT were found in both female groups in four brain regions, including supraoptic nucleus, ventromedial nucleus, bed nucleus of stria terminalis dorsal, and a subregion of lateral septum (LS). For postpartum mice, only one additional region showed a significant response to NT relative to vehicle, whereas for virgin mice seven unique brain regions showed a significant c-Fos response: nucleus accumbens shell, paraventricular nucleus, central amygdala, and substantia nigra. Using a principal components analysis of c-Fos, we identified regions within each group with highly correlated activity. As expected, virgin and postpartum mice (vehicle conditions) showed different activity hubs and in the postpartum group the hubs matched regions linked to maternal care. The response to injected NT was different in the maternal and virgin groups with maternal mice showing a stronger coordinated activity in periaqueductal gray whereas virgin mice showed a stronger septal and amygdala linking of activity. Together, these results indicate neuronal responses of virgin and postpartum mice to NT and highlight pathways by which NT can alter maternal responses.
Collapse
|