1
|
Acero-Castillo MC, Correia MBM, Caixeta FV, Motta V, Barros M, Maior RS. Is the antidepressant effect of ketamine separate from its psychotomimetic effect? A review of rodent models. Neuropharmacology 2024; 258:110088. [PMID: 39032814 DOI: 10.1016/j.neuropharm.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Ketamine is an NMDA (N-methyl-d-aspartate) glutamate receptor antagonist, which has a myriad of dose-dependent pharmacological and behavioral effects, including anesthetic, sedative, amnestic, analgesic, and anti-inflammatory properties. Intriguingly, ketamine at subanesthetic doses displays a relevant profile both in mimicking symptoms of schizophrenia and also as the first fast-acting treatment for depression. Here, we present an overview of the state-of-the-art knowledge about ketamine as an antidepressant as well as a pharmacological model of schizophrenia in animal models and human participants. Ketamine's dual effect appears to arise from its mechanism of action involving NMDA receptors, with both immediate and downstream consequences being triggered as a result. Finally, we discuss the feasibility of a unified approach linking the glutamatergic hypothesis of schizophrenia to the promising preclinical and clinical success of ketamine in the treatment of refractory depression.
Collapse
Affiliation(s)
- M C Acero-Castillo
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - M B M Correia
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil; Department of Anthropology, Emory University, Atlanta GA, ZIP 30322, USA
| | - F V Caixeta
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - V Motta
- Department of Basic Psychological Processes, Institute of Psychology, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - M Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - R S Maior
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil.
| |
Collapse
|
2
|
Zhong J, Wu F, Wu H, He H, Zhang Z, Fan N. Abnormal resting-state functional connectivity of the right anterior cingulate cortex in chronic ketamine users and its correlation with cognitive impairments. Asian J Psychiatr 2024; 102:104199. [PMID: 39298913 DOI: 10.1016/j.ajp.2024.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chronic ketamine use leads to cognitive impairments, however, the neural mechanisms underpinning these impairments are still unclear. AIMS Many studies showed Anterior cingulate cortex (ACC)is strongly involved in cognition and drug addiction, as supported by our previous studies. The objective of this study was to assess the variations in resting-state functional connectivity (FC) changes in the right anterior cingulate cortex (ACC) of chronic ketamine users (CKUs) and their relationship with cognitive performance. METHODS The study enrolled 28 chronic ketamine users (CKUs) and 30 healthy controls (HCs). Resting-state functional magnetic resonance imaging (fMRI) data were gathered from both groups. Cognitive functions were evaluated using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS CKUs demonstrated significantly poorer cognitive performance than HCs in various cognitive domains, including Visual Learning, Speed of Processing, Working Memory, and the composite score of MCCB. Group-level comparisons revealed that CKUs exhibited enhanced functional connectivity between the right ACC and the right postcentral gyrus (PCG) compared to HCs. There was a positive relationship between the connectivity of right ACC-PCG and reasoning and problem-solving score, but there was no significant association with the characteristics of ketamine use. CONCLUSION CKUs showed enhanced connectivity between the right ACC and the right PCG. This enhanced functional connectivity may indicate functional compensation for cognitive deficits in CKUs, especially for reasoning and problem-solving impairments in CKUs.
Collapse
Affiliation(s)
- Jun Zhong
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Fengchun Wu
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Huawang Wu
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Hongbo He
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Zhaohua Zhang
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Ni Fan
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China.
| |
Collapse
|
3
|
Cizus E, Jasinskyte U, Guzulaitis R. Effects of acute and chronic ketamine administration on spontaneous and evoked brain activity. Brain Res 2024; 1846:149232. [PMID: 39260789 DOI: 10.1016/j.brainres.2024.149232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Schizophrenia is believed to be, at least in part, a dysfunction of the glutamatergic system. In line with anatomical evidence, suppressing N-methyl-D-aspartate (NMDA) neurotransmission leads to symptoms that are characteristic of schizophrenia. Rodent models of schizophrenia often involve the acute application of NMDA antagonists, which produce both behavioural and brain activity changes that closely resemble symptoms observed in schizophrenia. It is, however, important to note that the full spectrum of schizophrenia symptoms may not be manifested following the acute suppression of NMDA receptors. This has led to the proposal of a chronic model where NMDA receptors are suppressed for prolonged periods. Although the chronic model has shown promising results from a behavioural perspective and alterations in metabolic processes in the brain, its impact on brain oscillations remains largely unknown. The aim of this study is to examine the impact of acute and chronic NMDA neurotransmission suppression on brains' oscillatory activity. To achieve this, chronic brain activity recordings in mice of both sexes were used to assess both spontaneous and evoked brain oscillations. The study demonstrates that an acute suppression of NMDA receptors alters brain oscillations across a wide frequency spectrum and diminishes the oscillatory potency in evoked responses, paralleling changes observed in schizophrenia. However, the chronic suppression of NMDA receptors did not have the expected cumulative effect on brain activity. This research highlights the robust yet similar impacts of acute and chronic NMDA receptor suppression on brain activity, contributing to the nuanced understanding of rodent models of schizophrenia.
Collapse
Affiliation(s)
- Ernestas Cizus
- The Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Urte Jasinskyte
- The Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | | |
Collapse
|
4
|
Ciralli B, Malfatti T, Hilscher MM, Leao RN, Cederroth CR, Leao KE, Kullander K. Unraveling the role of Slc10a4 in auditory processing and sensory motor gating: Implications for neuropsychiatric disorders? Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110930. [PMID: 38160852 DOI: 10.1016/j.pnpbp.2023.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Psychiatric disorders, such as schizophrenia, are complex and challenging to study, partly due to the lack of suitable animal models. However, the absence of the Slc10a4 gene, which codes for a monoaminergic and cholinergic associated vesicular transporter protein, in knockout mice (Slc10a4-/-), leads to the accumulation of extracellular dopamine. A major challenge for studying schizophrenia is the lack of suitable animal models that accurately represent the disorder. We sought to overcome this challenge by using Slc10a4-/- mice as a potential model, considering their altered dopamine levels. This makes them a potential animal model for schizophrenia, a disorder known to be associated with altered dopamine signaling in the brain. METHODS The locomotion, auditory sensory filtering and prepulse inhibition (PPI) of Slc10a4-/- mice were quantified and compared to wildtype (WT) littermates. Intrahippocampal electrodes were used to record auditory event-related potentials (aERPs) for quantifying sensory filtering in response to paired-clicks. The channel above aERPs phase reversal was chosen for reliably comparing results between animals, and aERPs amplitude and latency of click responses were quantified. WT and Slc10a4-/- mice were also administered subanesthetic doses of ketamine to provoke psychomimetic behavior. RESULTS Baseline locomotion during auditory stimulation was similar between Slc10a4-/- mice and WT littermates. In WT animals, normal auditory processing was observed after i.p saline injections, and it was maintained under the influence of 5 mg/kg ketamine, but disrupted by 20 mg/kg ketamine. On the other hand, Slc10a4-/- mice did not show significant differences between N40 S1 and S2 amplitude responses in saline or low dose ketamine treatment. Auditory gating was considered preserved since the second N40 peak was consistently suppressed, but with increased latency. The P80 component showed higher amplitude, with shorter S2 latency under saline and 5 mg/kg ketamine treatment in Slc10a4-/- mice, which was not observed in WT littermates. Prepulse inhibition was also decreased in Slc10a4-/- mice when the longer interstimulus interval of 100 ms was applied, compared to WT littermates. CONCLUSION The Slc10a4-/- mice responses indicate that cholinergic and monoaminergic systems participate in the PPI magnitude, in the temporal coding (response latency) of the auditory sensory gating component N40, and in the amplitude of aERPs P80 component. These results suggest that Slc10a4-/- mice can be considered as potential models for neuropsychiatric conditions.
Collapse
Affiliation(s)
- Barbara Ciralli
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Thawann Malfatti
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden; Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Markus M Hilscher
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Richardson N Leao
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Christopher R Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Katarina E Leao
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Spark DL, Ma S, Nowell CJ, Langmead CJ, Stewart GD, Nithianantharajah J. Sex-Dependent Attentional Impairments in a Subchronic Ketamine Mouse Model for Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:229-239. [PMID: 38298794 PMCID: PMC10829638 DOI: 10.1016/j.bpsgos.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 02/02/2024] Open
Abstract
Background The development of more effective treatments for schizophrenia targeting cognitive and negative symptoms has been limited, partly due to a disconnect between rodent models and human illness. Ketamine administration is widely used to model symptoms of schizophrenia in both humans and rodents. In mice, subchronic ketamine treatment reproduces key dopamine and glutamate dysfunction; however, it is unclear how this translates into behavioral changes reflecting positive, negative, and cognitive symptoms. Methods In male and female mice treated with either subchronic ketamine or saline, we assessed spontaneous and amphetamine-induced locomotor activity to measure behaviors relevant to positive symptoms, and used a touchscreen-based progressive ratio task of motivation and the rodent continuous performance test of attention to capture specific negative and cognitive symptoms, respectively. To explore neuronal changes underlying the behavioral effects of subchronic ketamine treatment, we quantified expression of the immediate early gene product, c-Fos, in key corticostriatal regions using immunofluorescence. Results We showed that spontaneous locomotor activity was unchanged in male and female subchronic ketamine-treated animals, and amphetamine-induced locomotor response was reduced. Subchronic ketamine treatment did not alter motivation in either male or female mice. In contrast, we identified a sex-specific effect of subchronic ketamine on attentional processing wherein female mice performed worse than control mice due to increased nonselective responding. Finally, we showed that subchronic ketamine treatment increased c-Fos expression in prefrontal cortical and striatal regions, consistent with a mechanism of widespread disinhibition of neuronal activity. Conclusions Our results highlight that the subchronic ketamine mouse model reproduces a subset of behavioral symptoms that are relevant for schizophrenia.
Collapse
Affiliation(s)
- Daisy L. Spark
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sherie Ma
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cameron J. Nowell
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christopher J. Langmead
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Gregory D. Stewart
- Drug Discovery Biology Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jess Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Gobira PH, LaMar J, Marques J, Sartim A, Silveira K, Santos L, Wegener G, Guimaraes FS, Mackie K, Lu HC, Joca S. CB1 Receptor Silencing Attenuates Ketamine-Induced Hyperlocomotion Without Compromising Its Antidepressant-Like Effects. Cannabis Cannabinoid Res 2023; 8:768-778. [PMID: 36067014 PMCID: PMC10771879 DOI: 10.1089/can.2022.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The antidepressant properties of ketamine have been extensively demonstrated in experimental and clinical settings. However, the psychotomimetic side effects still limit its wider use as an antidepressant. It was recently observed that endocannabinoids are inolved in ketamine induced reward properties. As an increase in endocannabinoid signaling induces antidepressant effects, this study aimed to investigate the involvement of cannabinoid type 1 receptors (CB1R) in the antidepressant and psychostimulant effects induced by ketamine. Methods: We tested the effects of genetic and pharmacological inhibition of CB1R in the hyperlocomotion and antidepressant-like properties of ketamine. The effects of ketamine (10-20 mg/kg) were assessed in the open-field and the forced swim tests (FSTs) in CB1R knockout (KO) and wild-type (WT) mice (male and female), and mice pre-treated with rimonabant (CB1R antagonist, 3-10 mg/kg). Results: We found that the motor hyperactivity elicited by ketamine was impaired in CB1R male and female KO mice. A similar effect was observed upon pharmacological blockade of CB1R in WT mice. However, genetic CB1R deletion did not modify the antidepressant effect of ketamine in male mice submitted to the FST. Surprisingly, pharmacological blockade of CB1R induced an antidepressant-like effect in both male and female mice, which was not further potentiated by ketamine. Conclusions: Our results support the hypothesis that CB1R mediate the psychostimulant side effects induced by ketamine, but not its antidepressant properties.
Collapse
Affiliation(s)
- Pedro Henrique Gobira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jacob LaMar
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Jade Marques
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ariandra Sartim
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kennia Silveira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luana Santos
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | | | - Ken Mackie
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Sâmia Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Wang R, Peterson Z, Balasubramanian N, Khan KM, Chimenti MS, Thedens D, Nickl-Jockschat T, Marcinkiewcz CA. Lateral Septal Circuits Govern Schizophrenia-Like Effects of Ketamine on Social Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552372. [PMID: 37609170 PMCID: PMC10441349 DOI: 10.1101/2023.08.08.552372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Schizophrenia is marked by poor social functioning that can have a severe impact on quality of life and independence, but the underlying neural circuity is not well understood. Here we used a translational model of subanesthetic ketamine in mice to delineate neural pathways in the brain linked to social deficits in schizophrenia. Mice treated with chronic ketamine (30 mg/kg/day for 10 days) exhibit profound social and sensorimotor deficits as previously reported. Using three- dimensional c-Fos immunolabeling and volume imaging (iDISCO), we show that ketamine treatment resulted in hypoactivation of the lateral septum (LS) in response to social stimuli. Chemogenetic activation of the LS rescued social deficits after ketamine treatment, while chemogenetic inhibition of previously active populations in the LS (i.e. social engram neurons) recapitulated social deficits in ketamine-naïve mice. We then examined the translatome of LS social engram neurons and found that ketamine treatment dysregulated genes implicated in neuronal excitability and apoptosis, which may contribute to LS hypoactivation. We also identified 38 differentially expressed genes (DEGs) in common with human schizophrenia, including those involved in mitochondrial function, apoptosis, and neuroinflammatory pathways. Chemogenetic activation of LS social engram neurons induced downstream activity in the ventral part of the basolateral amygdala, subparafascicular nucleus of the thalamus, intercalated amygdalar nucleus, olfactory areas, and dentate gyrus, and it also reduces connectivity of the LS with the piriform cortex and caudate-putamen. In sum, schizophrenia-like social deficits may emerge via changes in the intrinsic excitability of a discrete subpopulation of LS neurons that serve as a central hub to coordinate social behavior via downstream projections to reward, fear extinction, motor and sensory processing regions of the brain.
Collapse
|
8
|
Zaytseva A, Bouckova E, Wiles MJ, Wustrau MH, Schmidt IG, Mendez-Vazquez H, Khatri L, Kim S. Ketamine's rapid antidepressant effects are mediated by Ca 2+-permeable AMPA receptors. eLife 2023; 12:e86022. [PMID: 37358072 PMCID: PMC10319435 DOI: 10.7554/elife.86022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
Ketamine is shown to enhance excitatory synaptic drive in multiple brain areas, which is presumed to underlie its rapid antidepressant effects. Moreover, ketamine's therapeutic actions are likely mediated by enhancing neuronal Ca2+ signaling. However, ketamine is a noncompetitive NMDA receptor (NMDAR) antagonist that reduces excitatory synaptic transmission and postsynaptic Ca2+ signaling. Thus, it is a puzzling question how ketamine enhances glutamatergic and Ca2+ activity in neurons to induce rapid antidepressant effects while blocking NMDARs in the hippocampus. Here, we find that ketamine treatment in cultured mouse hippocampal neurons significantly reduces Ca2+ and calcineurin activity to elevate AMPA receptor (AMPAR) subunit GluA1 phosphorylation. This phosphorylation ultimately leads to the expression of Ca2+-Permeable, GluA2-lacking, and GluA1-containing AMPARs (CP-AMPARs). The ketamine-induced expression of CP-AMPARs enhances glutamatergic activity and glutamate receptor plasticity in cultured hippocampal neurons. Moreover, when a sub-anesthetic dose of ketamine is given to mice, it increases synaptic GluA1 levels, but not GluA2, and GluA1 phosphorylation in the hippocampus within 1 hr after treatment. These changes are likely mediated by ketamine-induced reduction of calcineurin activity in the hippocampus. Using the open field and tail suspension tests, we demonstrate that a low dose of ketamine rapidly reduces anxiety-like and depression-like behaviors in both male and female mice. However, when in vivo treatment of a CP-AMPAR antagonist abolishes the ketamine's effects on animals' behaviors. We thus discover that ketamine at the low dose promotes the expression of CP-AMPARs via reduction of calcineurin activity, which in turn enhances synaptic strength to induce rapid antidepressant actions.
Collapse
Affiliation(s)
- Anastasiya Zaytseva
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Evelina Bouckova
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - McKennon J Wiles
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Madison H Wustrau
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| | - Isabella G Schmidt
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | | | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of MedicineNew YorkUnited States
| | - Seonil Kim
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| |
Collapse
|
9
|
Ebrahimi M, Ahangar N, Zamani E, Shaki F. L-Carnitine Prevents Behavioural Alterations in Ketamine-Induced Schizophrenia in Mice: Possible Involvement of Oxidative Stress and Inflammation Pathways. J Toxicol 2023; 2023:9093231. [PMID: 37363159 PMCID: PMC10289879 DOI: 10.1155/2023/9093231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/10/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Schizophrenia is a chronic mental complaint known as cognitive impairment. There has been evidence that inflammation and oxidative stress play a main role in schizophrenia pathophysiology. This study aimed to investigate the effects of l-carnitine, as a potent antioxidant, on the treatment of behavioural and biochemical disturbances in mice with ketamine-induced schizophrenia. In this study, schizophrenia was induced in mice by ketamine (25 mg/kg/day, i.p). Before induction of schizophrenia, mice were treated with l-carnitine (100, 200, and 400 mg/kg/day, i.p). Then, behavioural impairments were evaluated by open field (OF) assessment and social interaction test (SIT). After brain tissue isolation, reactive oxygen species (ROS), glutathione concentration (GSH), lipid peroxidation (LPO), protein carbonyl oxidation, superoxide dismutase activity (SOD), and glutathione peroxidase activity (GPx) were assessed as oxidative stress markers. Furthermore, inflammatory biomarkers such as tumour necrosis factor alpha (TNF-α) and nitric oxide (NO) were evaluated in brain tissue. Our results showed ketamine increased inflammation and oxidative damage in brain tissue that was similar to behaviour disorders in mice. Interestingly, l-carnitine significantly decreased oxidative stress and inflammatory markers compared with ketamine-treated mice. In addition, l-carnitine prevented and reversed ketamine-induced alterations in the activities of SOD and GPx enzymes in mice's brains. Also, improved performance in OFT (locomotor activity test) and SIT was observed in l-carnitine-treated mice. These data provided evidence that, due to the antioxidant and anti-inflammatory effects of l-carnitine, it has a neuroprotective effect on mice model of schizophrenia.
Collapse
Affiliation(s)
- Mehrasa Ebrahimi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Students Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Omeiza NA, Bakre A, Ben-Azu B, Sowunmi AA, Abdulrahim HA, Chimezie J, Lawal SO, Adebayo OG, Alagbonsi AI, Akinola O, Abolaji AO, Aderibigbe AO. Mechanisms underpinning Carpolobia lutea G. Don ethanol extract's neurorestorative and antipsychotic-like activities in an NMDA receptor antagonist model of schizophrenia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115767. [PMID: 36206872 DOI: 10.1016/j.jep.2022.115767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Persistent ketamine insults to the central nervous system block NMDA receptors and disrupt putative neurotransmission, oxido-nitrosative, and inflammatory pathways, resulting in schizophrenia-like symptoms in animals. Previously, the ethnomedicinal benefits of Carpolobia lutea against insomnia, migraine headache, and insanity has been documented, but the mechanisms of action remain incomplete. AIM OF THE STUDY Presently, we explored the neuro-therapeutic role of Carpolobia lutea ethanol extract (C. lutea) in ketamine-induced schizophrenia-like symptoms in mice. MATERIALS AND METHODS Sixty-four male Swiss (22 ± 2 g) mice were randomly assigned into eight groups (n = 8/group) and exposed to a reversal ketamine model of schizophrenia. For 14 days, either distilled water (10 mL/kg; p.o.) or ketamine (20 mg/kg; i.p.) was administered, following possible reversal treatments with C. lutea (100, 200, 400, and 800 mg/kg; p.o.), haloperidol (1 mg/kg, p.o.), or clozapine (5 mg/kg; p.o.) beginning on days 8-14. During the experiment, a battery of behavioral characterizations defining schizophrenia-like symptoms were obtained using ANY-maze software, followed by neurochemical, oxido-inflammatory and histological assessments in the mice brains. RESULTS A 7-day reversal treatment with C. lutea reversed predictors of positive, negative and cognitive symptoms of schizophrenia. C. lutea also mitigated ketamine-induced neurochemical derangements as evidenced by modulations of dopamine, glutamate, norepinephrine and serotonin neurotransmission. Also, the increased acetylcholinesterase activity, malondialdehyde nitrite, interleukin-6 and tumor necrosis-factor-α concentrations were reversed by C. lutea accompanied with elevated levels of catalase, superoxide dismutase and reduced glutathione. Furthermore, C. lutea reversed ketamine-induced neuronal alterations in the prefrontal cortex, hippocampus and cerebellum sections of the brain. CONCLUSION These findings suggest that C. lutea reverses the cardinal symptoms of ketamine-induced schizophrenia in a dose-dependent fashion by modulating the oxido-inflammatory and neurotransmitter-related mechanisms.
Collapse
Affiliation(s)
- Noah A Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Adewale Bakre
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Abimbola A Sowunmi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Joseph Chimezie
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sodiq O Lawal
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusegun G Adebayo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Neurophysiology Unit, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Abdullateef I Alagbonsi
- Department of Clinical Biology (Physiology), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Southern Province, Rwanda
| | - Olugbenga Akinola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
11
|
Ibrahim WW, Sayed RH, Kandil EA, Wadie W. Niacin mitigates blood-brain barrier tight junctional proteins dysregulation and cerebral inflammation in ketamine rat model of psychosis: Role of GPR109A receptor. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110583. [PMID: 35690118 DOI: 10.1016/j.pnpbp.2022.110583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023]
Abstract
Dysregulated inflammatory responses and blood-brain barrier (BBB) dysfunction are recognized as central factors in the development of psychiatric disorders. The present study was designed to evaluate the effect of niacin on BBB integrity in ketamine-induced model of psychosis. Meanwhile, mepenzolate bromide (MPN), a GPR109A receptor blocker, was used to investigate the role of this receptor on the observed niacin's effect. Male Wistar rats received ketamine (30 mg/kg/day, i.p) for 5 consecutive days and then niacin (40 mg/kg/day, p.o), with or without MPN (5 mg/kg/day, i.p), was given for the subsequent 15 days. Three days before the end of experiment, rats were behaviorally tested using open field, novel object recognition, social interaction, and forced swimming tests. Niacin significantly ameliorated ketamine-induced behavioral deficits, amended gamma aminobutyric acid and glutamate concentration, decreased tumor necrosis factor-α and matrix metallopeptidase 9 levels, and increased netrin-1 contents in the hippocampus of rats. Niacin also augmented the hippocampal expression of ZO-1, occludin, and claudin-5 proteins, indicating the ability of niacin to restore the BBB integrity. Moreover, the histopathologic changes in hippocampal neurons were alleviated. Since all the beneficial effects of niacin in the present investigation were partially abolished by the co-administration of MPN; GPR109A receptor was proven to partially mediate the observed antipsychotic effects of niacin. These data revealed that GPR109A-mediated signaling pathways might represent potential targets for therapeutic interventions to prevent or slow the progression of psychosis.
Collapse
Affiliation(s)
- Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
12
|
Harda Z, Misiołek K, Klimczak M, Chrószcz M, Rodriguez Parkitna J. C57BL/6N mice show a sub-strain specific resistance to the psychotomimetic effects of ketamine. Front Behav Neurosci 2022; 16:1057319. [PMID: 36505728 PMCID: PMC9731130 DOI: 10.3389/fnbeh.2022.1057319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Repeated administration of subanesthetic doses of ketamine is a model of psychosis-like state in rodents. In mice, this treatment produces a range of behavioral deficits, including impairment in social interactions and locomotion. To date, these phenotypes were described primarily in the Swiss and C3H/HeHsd mouse strains. A few studies investigated ketamine-induced behaviors in the C57BL/6J strain, but to our knowledge the C57BL/6N strain was not investigated thus far. This is surprising, as both C57BL/6 sub-strains are widely used in behavioral and neuropsychopharmacological research, and are de facto standards for characterization of drug effects. The goal of this study was to determine if C57BL/6N mice are vulnerable to develop social deficits after 5 days withdrawal from sub-chronic ketamine treatment (5 days, 30 mg/kg, i.p.), an experimental schedule shown before to cause deficits in social interactions in C57BL/6J mice. Our results show that sub-chronic administration of ketamine that was reported to cause psychotic-like behavior in C57BL/6J mice does not induce appreciable behavioral alterations in C57BL/6N mice. Thus, we show that the effects of sub-chronic ketamine treatment in mice are sub-strain specific.
Collapse
|
13
|
Nawwar DA, Zaki HF, Sayed RH. Role of the NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways in the anti-psychotic effects of aripiprazole and sertindole in ketamine-induced schizophrenia-like behaviors in rats. Inflammopharmacology 2022; 30:1891-1907. [PMID: 35876932 PMCID: PMC9499910 DOI: 10.1007/s10787-022-01031-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Schizophrenia is a common mental disorder affecting patients' thoughts, behavior, and cognition. Recently, the NRG1/ErbB4 signaling pathway emerged as a candidate therapeutic target for schizophrenia. This study investigates the effects of aripiprazole and sertindole on the NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways in ketamine-induced schizophrenia in rats. Young male Wistar rats received ketamine (30 mg/kg, intraperitoneally) for 5 consecutive days and aripiprazole (3 mg/kg, orally) or sertindole (2.5 mg/kg, orally) for 14 days. The proposed pathway was investigated by injecting LY294002 (a selective PI3K inhibitor) (25 μg/kg, intrahippocampal injection) 30 min before the drugs. Twenty-four hours after the last injection, animals were subjected to behavioral tests: the open field test, sucrose preference test, novel object recognition task, and social interaction test. Both aripiprazole and sertindole significantly ameliorated ketamine-induced schizophrenic-like behavior, as expected, because of their previously demonstrated antipsychotic activity. Besides, both drugs alleviated ketamine-induced oxidative stress and neurotransmitter level changes in the hippocampus. They also increased the gamma-aminobutyric acid and glutamate levels and glutamate decarboxylase 67 and parvalbumin mRNA expression in the hippocampus. Moreover, aripiprazole and sertindole increased the NRG1 and ErbB4 mRNA expression levels and PI3K, p-Akt, and mTOR protein expression levels. Interestingly, pre-injecting LY294002 abolished all the effects of the drugs. This study reveals that the antipsychotic effects of aripiprazole and sertindole are partly due to oxidative stress reduction as well as NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways activation. The NRG1/ErbB4 and PI3K signaling pathways may offer a new therapeutic approach for treating schizophrenia in humans.
Collapse
Affiliation(s)
- Dalia A Nawwar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| |
Collapse
|
14
|
Omeiza NA, Bakre AG, Abdulrahim HA, Isibor H, Ezurike PU, Sowunmi AA, Ben-Azu B, Aderibigbe AO. Pretreatment with Carpolobia lutea ethanol extract prevents schizophrenia-like behavior in mice models of psychosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115432. [PMID: 35659625 DOI: 10.1016/j.jep.2022.115432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carpolobia lutea decoction is widely used as a phytotherapeutic against central nervous system-related disorders including insomnia, migraine headache, and mental illness in West and Central Tropical Africa. AIM This study was designed to investigate the antipsychotic activity of Carpolobia lutea (EECL) in mice models of psychosis. METHODS Male Swiss mice (n = 5/group) were given EECL (100, 200, 400, and 800 mg/kg), haloperidol (1 mg/kg), clozapine (5 mg/kg) and vehicle (10 mL/kg) orally before amphetamine (5 mg/kg)-induced hyperlocomotion and stereotypy, apomorphine (2 mg/kg)-induced stereotypy, or ketamine (10, 30, and 100 mg/kg)-induced hyperlocomotion, enhancement of immobility and cognitive impairment. RESULTS EECL (200, 400, and 800 mg/kg) prevented amphetamine- and apomorphine-induced stereotypies, as well as reduced hyperlocomotion induced by amphetamine and ketamine, all of which are predictors of positive symptoms. Regardless of the dose administered, EECL prevented the index of negative symptoms induced by ketamine. Furthermore, higher doses of EECL (400 and 800 mg/kg) also prevented ketamine-induced cognitive impairment, a behavioral phenotype of cognitive symptoms. CONCLUSION Pretreatment with EECL demonstrated antipsychotic activity in mice, preventing amphetamine-, apomorphine-, and ketamine-induced schizophrenia-like symptoms, with 800 mg/kg being the most effective dose.
Collapse
Affiliation(s)
- Noah A Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Adewale G Bakre
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Happy Isibor
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Precious U Ezurike
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abimbola A Sowunmi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
15
|
Comprehensive metabolomic characterization of the hippocampus in a ketamine mouse model of schizophrenia. Biochem Biophys Res Commun 2022; 632:150-157. [DOI: 10.1016/j.bbrc.2022.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
|
16
|
Wei Y, Xiao L, Fan W, Zou J, Yang H, Liu B, Ye Y, Wen D, Liao L. Astrocyte Activation, but not Microglia, Is Associated with the Experimental Mouse Model of Schizophrenia Induced by Chronic Ketamine. J Mol Neurosci 2022; 72:1902-1915. [PMID: 35802289 DOI: 10.1007/s12031-022-02046-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
Abstract
Ketamine is a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptors. Many experimental studies have shown that ketamine can induce cognitive impairments and schizophrenia-like symptoms. While much data have demonstrated that glial cells are associated with the pathophysiology of psychiatric disorders, including schizophrenia, the response of glial cells to ketamine and its significance to schizophrenia are not clear. The present study was intended to explore whether chronic ketamine treatment would induce behavioral and glial changes in mice. First, ketamine was used to stimulate behavioral abnormalities similar to schizophrenia evaluated by the open field test, elevated plus-maze test, Y maze test, novel object recognition test, and tail suspension test. Secondly, histopathology and Nissl staining were performed. Meanwhile, immunofluorescence was used to evaluate the expression levels of IBA-1 (a microglial marker) and GFAP (an astrocyte marker) in the mouse hippocampus for any change. Then, ELISA was used to analyze proinflammatory cytokine levels for any change. Our results showed that ketamine (25 mg/kg, i.p., qid, 12 days) induced anxiety, recognition deficits, and neuronal injury in the hippocampus. Moreover, chronic ketamine treatment enhanced GFAP expression in CA1 and DG regions of the hippocampus but did not influence the expression of IBA-1. Ketamine also increased the levels of IL-1β, IL-6, and TNF-α in the mouse hippocampus. Our study created a new procedure for ketamine administration, which successfully induce negative symptoms and cognitive-behavioral defects in schizophrenia by chronic ketamine. This study further revealed that an increase in astrocytosis, but not microglia, is associated with the mouse model of schizophrenia caused by ketamine. In summary, hippocampal astrocytes may be involved in the pathophysiology of ketamine-induced schizophrenia-like phenotypes through reactive transformation and regulation of neuroinflammation.
Collapse
Affiliation(s)
- Ying Wei
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- College of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Li Xiao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Weihao Fan
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jing Zou
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Yang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Bo Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Ye
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Linchuan Liao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Dexter TD, Palmer D, Hashad AM, Saksida LM, Bussey TJ. Decision Making in Mice During an Optimized Touchscreen Spatial Working Memory Task Sensitive to Medial Prefrontal Cortex Inactivation and NMDA Receptor Hypofunction. Front Neurosci 2022; 16:905736. [PMID: 35655752 PMCID: PMC9152442 DOI: 10.3389/fnins.2022.905736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Working memory is a fundamental cognitive process for decision-making and is a hallmark impairment in a variety of neuropsychiatric and neurodegenerative diseases. Spatial working memory paradigms are a valuable tool to assess these processes in rodents and dissect the neurobiology underlying working memory. The trial unique non-match to location (TUNL) task is an automated touchscreen paradigm used to study spatial working memory and pattern separation processes in rodents. Here, animals must remember the spatial location of a stimulus presented on the screen over a delay period; and use this representation to respond to the novel location when the two are presented together. Because stimuli can be presented in a variety of spatial configurations, TUNL offers a trial-unique paradigm, which can aid in combating the development of unwanted mediating strategies. Here, we have optimized the TUNL protocol for mice to reduce training time and further reduce the potential development of mediating strategies. As a result, mice are able to accurately perform an enhanced trial-unique paradigm, where the locations of the sample and choice stimuli can be presented in any configuration on the screen during a single session. We also aimed to pharmacologically characterize this updated protocol, by assessing the roles of the medial prefrontal cortex (mPFC) and N-methyl-D-aspartate (NMDA) receptor (NMDAr) functioning during TUNL. Temporary inactivation of the medial prefrontal cortex (mPFC) was accomplished by directly infusing a mixture of GABA agonists muscimol and baclofen into the mPFC. We found that mPFC inactivation significantly impaired TUNL performance in a delay-dependent manner. In addition, mPFC inactivation significantly increased the susceptibility of mice to proactive interference. Mice were then challenged with acute systemic injections of the NMDAr antagonist ketamine, which resulted in a dose-dependent, delay-dependent working memory impairment. Together, we describe an optimized automated touchscreen task of working memory, which is dependent on the intact functioning of the mPFC and sensitive to acute NMDAr hypofunction. With the vast genetic toolbox available for modeling disease and probing neural circuit functioning in mice, the TUNL task offers a valuable paradigm to pair with these technologies to further investigate the processes underlying spatial working memory.
Collapse
Affiliation(s)
- Tyler D. Dexter
- Graduate Program in Neuroscience, Western University, London, ON, Canada
| | - Daniel Palmer
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Ahmed M. Hashad
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- BrainsCAN, Western University, London, ON, Canada
| | - Lisa M. Saksida
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Tim J. Bussey
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
| |
Collapse
|
18
|
Vines L, Sotelo D, Johnson A, Dennis E, Manza P, Volkow ND, Wang GJ. Ketamine use disorder: preclinical, clinical, and neuroimaging evidence to support proposed mechanisms of actions. INTELLIGENT MEDICINE 2022; 2:61-68. [PMID: 35783539 PMCID: PMC9249268 DOI: 10.1016/j.imed.2022.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ketamine, a noncompetitive NMDA receptor antagonist, has been exclusively used as an anesthetic in medicine and has led to new insights into the pathophysiology of neuropsychiatric disorders. Clinical studies have shown that low subanesthetic doses of ketamine produce antidepressant effects for individuals with depression. However, its use as a treatment for psychiatric disorders has been limited due to its reinforcing effects and high potential for diversion and misuse. Preclinical studies have focused on understanding the molecular mechanisms underlying ketamine's antidepressant effects, but a precise mechanism had yet to be elucidated. Here we review different hypotheses for ketamine's mechanism of action including the direct inhibition and disinhibition of NMDA receptors, AMPAR activation, and heightened activation of monoaminergic systems. The proposed mechanisms are not mutually exclusive, and their combined influence may exert the observed structural and functional neural impairments. Long term use of ketamine induces brain structural, functional impairments, and neurodevelopmental effects in both rodents and humans. Its misuse has increased rapidly in the past 20 years and is one of the most common addictive drugs used in Asia. The proposed mechanisms of action and supporting neuroimaging data allow for the development of tools to identify 'biotypes' of ketamine use disorder (KUD) using machine learning approaches, which could inform intervention and treatment.
Collapse
Affiliation(s)
| | | | - Allison Johnson
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Evan Dennis
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
19
|
de Araújo FYR, Chaves Filho AJM, Nunes AM, de Oliveira GV, Gomes PXL, Vasconcelos GS, Carletti J, de Moraes MO, de Moraes ME, Vasconcelos SMM, de Sousa FCF, de Lucena DF, Macedo DS. Involvement of anti-inflammatory, antioxidant, and BDNF up-regulating properties in the antipsychotic-like effect of the essential oil of Alpinia zerumbet in mice: a comparative study with olanzapine. Metab Brain Dis 2021; 36:2283-2297. [PMID: 34491479 DOI: 10.1007/s11011-021-00821-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022]
Abstract
The current drug therapy for schizophrenia effectively treats acute psychosis and its recurrence; however, this mental disorder's cognitive and negative symptoms are still poorly controlled. Antipsychotics present important side effects, such as weight gain and extrapyramidal effects. The essential oil of Alpinia zerumbet (EOAZ) leaves presents potential antipsychotic properties that need further preclinical investigation. Here, we determined EAOZ effects in preventing and reversing schizophrenia-like symptoms (positive, negative, and cognitive) induced by ketamine (KET) repeated administration in mice and putative neurobiological mechanisms related to this effect. We conducted the behavioral evaluations of prepulse inhibition of the startle reflex (PPI), social interaction, and working memory (Y-maze task), and verified antioxidant (GSH, nitrite levels), anti-inflammatory [interleukin (IL)-6], and neurotrophic [brain-derived neurotrophic factor (BDNF)] effects of this oil in hippocampal tissue. The atypical antipsychotic olanzapine (OLZ) was used as standard drug therapy. EOAZ, similarly to OLZ, prevented and reversed most KET-induced schizophrenia-like behavioral alterations, i.e., sensorimotor gating deficits and social impairment. EOAZ had a modest effect on the prevention of KET-associated working memory deficit. Compared to OLZ, EOAZ showed a more favorable side effects profile, inducing less cataleptic and weight gain changes. EOAZ efficiently protected the hippocampus against KET-induced oxidative imbalance, IL-6 increments, and BDNF impairment. In conclusion, our data add more mechanistic evidence for the anti-schizophrenia effects of EOAZ, based on its antioxidant, anti-inflammatory, and BDNF up-regulating actions. The absence of significant side effects observed in current antipsychotic drug therapy seems to be an essential benefit of the oil.
Collapse
Affiliation(s)
- Fernanda Yvelize Ramos de Araújo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo, 1000, 60431-270, Fortaleza, CE, Brazil
| | - Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo, 1000, 60431-270, Fortaleza, CE, Brazil
| | - Adriana Mary Nunes
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo, 1000, 60431-270, Fortaleza, CE, Brazil
| | - Gersilene Valente de Oliveira
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo, 1000, 60431-270, Fortaleza, CE, Brazil
| | - Patrícia Xavier Lima Gomes
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo, 1000, 60431-270, Fortaleza, CE, Brazil
| | - Germana Silva Vasconcelos
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo, 1000, 60431-270, Fortaleza, CE, Brazil
| | - Jaqueline Carletti
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo, 1000, 60431-270, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Laboratory of Experimental Oncology, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Maria Elisabete de Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo, 1000, 60431-270, Fortaleza, CE, Brazil
| | - Francisca Cléa Florenço de Sousa
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo, 1000, 60431-270, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo, 1000, 60431-270, Fortaleza, CE, Brazil
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo, 1000, 60431-270, Fortaleza, CE, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
20
|
Moghaddam AH, Maboudi K, Bavaghar B, Sangdehi SRM, Zare M. Neuroprotective effects of curcumin-loaded nanophytosome on ketamine-induced schizophrenia-like behaviors and oxidative damage in male mice. Neurosci Lett 2021; 765:136249. [PMID: 34536510 DOI: 10.1016/j.neulet.2021.136249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023]
Abstract
Curcumin as an antioxidant natural herb has shown numerous pharmacological effects. However, the poor bioavailability of curcumin is a significant pharmacological barrier for its antioxidant activities. The present study was conducted to develop curcumin-loaded nanophytosome (CNP) and explore their therapeutic potential in a ketamine (KET)-induced schizophrenia (SCZ) model. The mice in our experiment were treated orally with curcumin and CNP (20 mg/kg) for 30 consecutive days. In addition, the animals received intraperitoneal injection of KET (30 mg/kg/day) from the 16th to the 30th day. SCZ-like behaviors were evaluated employing forced swimming test (FST), open field test (OFT), and novel object recognition test (NORT), and oxidative stress markers in the brain were estimated. Our results revealed that CNP has a greater neuroprotective effect compared to free curcumin. CNP pretreatment significantly ameliorated KET-induced brain injury evidenced by a marked reduction in the depressive and anxiety-like behaviors, memory deficits, and oxidative stress markers in cortical and subcortical tissues. Therefore, CNP, as a suitable drug delivery system, may improve curcumin bioavailability and confer stronger neuroprotective effects against KET-induced behavioral deficits and oxidative damages.
Collapse
Affiliation(s)
| | - Khadijeh Maboudi
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Bita Bavaghar
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mahboobeh Zare
- Faculty of Herbs, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
21
|
Taymouri S, Shahnamnia S, Mesripour A, Varshosaz J. In vitro and in vivo evaluation of an ionic sensitive in situ gel containing nanotransfersomes for aripiprazole nasal delivery. Pharm Dev Technol 2021; 26:867-879. [PMID: 34193009 DOI: 10.1080/10837450.2021.1948571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the current study, a composite in-situ gel formulation containing aripiprazole (APZ) loaded transfersomes (TFS) was developed for the intranasal brain targeting of APZ. APZ loaded TFS were prepared by applying the film hydration method and optimized using an irregular factorial design. The prepared formulations were optimized based on different parameters including particle size, polydispersity index (PdI), zeta potential, encapsulation efficiency (EE) and release efficiency (RE). The optimized APZ-TFS were distributed in an ion-triggered deacetylated gellan gum solution (APZ-TFS-Gel) and evaluated in terms of pH, gelling time, rheological properties and in-vitro release study. The therapeutic efficacy of the best APZ-TFS-Gel was then tested in the mice model of schizophrenia induced by ketamine by evaluating various behavioral parameters. The optimized formulation showed the particle size of 72.12 ± 0.72 nm, the PdI of 0.19 ± 0.07, the zeta potential of -55.56 ± 1.9 mV, the EE of 97.06 ± 0.10%, and the RE of 70.84 ± 1.54%. The in-vivo results showed that compared with the other treatment groups, there was a considerable increase in swimming and climbing time and a decrease in locomotors activity and immobility time in the group receiving APZ-TFS-Gel. Thus, APZ-TFS-Gel was found to have desirable characteristics for therapeutic improvement.
Collapse
Affiliation(s)
- Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shabnam Shahnamnia
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Mesripour
- Department of Pharmacology & Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Silva-Cardoso GK, Nobre MJ. Context-Specific Tolerance and Pharmacological Changes in the Infralimbic Cortex-Nucleus Accumbens Shell Pathway Evoked by Ketamine. Neurochem Res 2021; 46:1686-1700. [PMID: 33786719 DOI: 10.1007/s11064-021-03300-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022]
Abstract
Like other drugs, ketamine is abused due to its ability to act as a positive reinforcer in the control of behavior, just as natural reinforcers do. Besides, through Pavlovian conditioning, tolerance to drug effects can become conditioned to specific contextual cues showing that environmental stimuli can act as powerful mediators of craving and relapse. In the present study, we shall investigate the effects of long-term ketamine administration and withdrawal on behavioral measures and emotionality, the drug-context-specific influence on the tolerance to the sedative effects of an anesthetic dose of ketamine, and the neuropharmacological events underlying this phenomenon, in rats conditioned with 10 mg/kg of ketamine and later challenged with a dose of ketamine of 80 mg/kg in a familiar and non-familiar environment. Variations in dopamine and serotonin efflux in the infralimbic cortex-nucleus accumbens shell circuitry (IL-NAcSh) was further recorded in the same conditions. Our results highlight that besides its well-known reinforcing properties, ketamine also shares the ability to induce behavioral and pharmacological conditioned tolerance, associated with increases in cortical (IL), and decreases in striatal (NAcSh) dopamine release. To our knowledge, we are presenting the first set of behavioral and neurochemical data showing that, like other drugs of abuse, ketamine can induce learned context-specific tolerance.
Collapse
Affiliation(s)
- Gleice Kelli Silva-Cardoso
- Laboratório de Psicobiologia, Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brasil
| | - Manoel Jorge Nobre
- Departamento de Psicologia, Uni-FACEF, Franca, SP, 14401-135, Brasil.
- Laboratório de Psicobiologia, Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brasil.
| |
Collapse
|
23
|
Valvassori SS, Cararo JH, Menegas S, Possamai-Della T, Aguiar-Geraldo JM, Araujo SL, Mastella GA, Quevedo J, Zugno AI. Haloperidol elicits oxidative damage in the brain of rats submitted to the ketamine-induced model of schizophrenia. Brain Res Bull 2021; 170:246-253. [PMID: 33545309 PMCID: PMC10494233 DOI: 10.1016/j.brainresbull.2021.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
The present study aims to evaluate the effects of haloperidol, an important first-generation antipsychotic, on the antioxidant system parameters in the brain of animals subjected to a model of schizophrenia induced by ketamine. Adult rats intraperitoneally received saline (1 mL/kg) or ketamine (25 mg/kg body weight) for 15 days, and saline or haloperidol (0.1 mg/kg body weight) via gavage once a day, between the 9th and 14th days. In the frontal cortex, hippocampus, and striatum, assessments of lipid (4-hydroxy-2-nonenal and 8-isoprostane levels) and protein (protein carbonyl content) oxidative damage were conducted. It was also measured the glutathione peroxidase and glutathione reductase activities in the same cerebral structures. Increases in the 4-hydroxy-2-nonenal and 8-isoprostane levels were detected in rats receiving haloperidol and ketamine. An increase in the carbonyl content was also observed in animals receiving ketamine, haloperidol, or a combination thereof. In animals receiving the antipsychotic, there was a decrease in the activity of the enzymes. Therefore, both ketamine and haloperidol induced oxidative damage. A possible energy dysfunction or a haloperidol effect targeting the glutathione enzymes, and then disrupting the redox homeostasis in neurons, could not be ruled out, although further studies are required to confirm or refute a direct interaction.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - José H Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Samira Menegas
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Simone Lespinasse Araujo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo Antunes Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
24
|
Structure-activity relationships of dually-acting acetylcholinesterase inhibitors derived from tacrine on N-methyl-d-Aspartate receptors. Eur J Med Chem 2021; 219:113434. [PMID: 33892271 DOI: 10.1016/j.ejmech.2021.113434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022]
Abstract
Tacrine is a classic drug whose efficacy against neurodegenerative diseases is still shrouded in mystery. It seems that besides its inhibitory effect on cholinesterases, the clinical benefit is co-determined by NMDAR-antagonizing activity. Our previous data showed that the direct inhibitory effect of tacrine, as well as its 7-methoxy derivative (7-MEOTA), is ensured via a "foot-in-the-door" open-channel blockage, and that interestingly both tacrine and 7-MEOTA are slightly more potent at the GluN1/GluN2A receptors when compared with the GluN1/GluN2B receptors. Here, we report that in a series of 30 novel tacrine derivatives, designed for assessment of structure-activity relationship, blocking efficacy differs among different compounds and receptors using electrophysiology with HEK293 cells expressing the defined types of NMDARs. Selected compounds (4 and 5) potently inhibited both GluN1/GluN2A and GluN1/GluN2B receptors; other compounds (7 and 23) more effectively inhibited the GluN1/GluN2B receptors; or the GluN1/GluN2A receptors (21 and 28). QSAR study revealed statistically significant model for the data obtained for inhibition of GluN1/Glu2B at -60 mV expressed as IC50 values, and for relative inhibition of GluN1/Glu2A at +40 mV caused by a concentration of 100 μM. The models can be utilized for a ligand-based virtual screening to detect potential candidates for inhibition of GluN1/Glu2A and/or GluN1/Glu2B subtypes. Using in vivo experiments in rats we observed that unlike MK-801, the tested novel compounds did not induce hyperlocomotion in open field, and also did not impair prepulse inhibition of startle response, suggesting minimal induction of psychotomimetic side effects. We conclude that tacrine derivatives are promising compounds since they are centrally available subtype-specific inhibitors of the NMDARs without detrimental behavioral side-effects.
Collapse
|
25
|
Ang MJ, Lee S, Kim JC, Kim SH, Moon C. Behavioral Tasks Evaluating Schizophrenia-like Symptoms in Animal Models: A Recent Update. Curr Neuropharmacol 2021; 19:641-664. [PMID: 32798374 PMCID: PMC8573744 DOI: 10.2174/1570159x18666200814175114] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Schizophrenia is a serious mental illness that affects more than 21 million people worldwide. Both genetics and the environment play a role in its etiology and pathogenesis. Symptoms of schizophrenia are mainly categorized into positive, negative, and cognitive. One major approach to identify and understand these diverse symptoms in humans has been to study behavioral phenotypes in a range of animal models of schizophrenia. OBJECTIVE We aimed to provide a comprehensive review of the behavioral tasks commonly used for measuring schizophrenia-like behaviors in rodents together with an update of the recent study findings. METHODS Articles describing phenotypes of schizophrenia-like behaviors in various animal models were collected through a literature search in Google Scholar, PubMed, Web of Science, and Scopus, with a focus on advances over the last 10 years. RESULTS Numerous studies have used a range of animal models and behavioral paradigms of schizophrenia to develop antipsychotic drugs for improved therapeutics. In establishing animal models of schizophrenia, the candidate models were evaluated for schizophrenia-like behaviors using several behavioral tasks for positive, negative, and cognitive symptoms designed to verify human symptoms of schizophrenia. Such validated animal models were provided as rapid preclinical avenues for drug testing and mechanistic studies. CONCLUSION Based on the most recent advances in the field, it is apparent that a myriad of behavior tests are needed to confirm and evaluate the congruency of animal models with the numerous behaviors and clinical signs exhibited by patients with schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Changjong Moon
- Address correspondence to this author at the Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea, Tel: +82-62-530-2838; E-mail:
| |
Collapse
|
26
|
Kätzel D, Wolff AR, Bygrave AM, Bannerman DM. Hippocampal Hyperactivity as a Druggable Circuit-Level Origin of Aberrant Salience in Schizophrenia. Front Pharmacol 2020; 11:486811. [PMID: 33178010 PMCID: PMC7596262 DOI: 10.3389/fphar.2020.486811] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/18/2020] [Indexed: 01/21/2023] Open
Abstract
The development of current neuroleptics was largely aiming to decrease excessive dopaminergic signaling in the striatum. However, the notion that abnormal dopamine creates psychotic symptoms by causing an aberrant assignment of salience that drives maladaptive learning chronically during disease development suggests a therapeutic value of early interventions that correct salience-related neural processing. The mesolimbic dopaminergic output is modulated by several interconnected brain-wide circuits centrally involving the hippocampus and key relays like the ventral and associative striatum, ventral pallidum, amygdala, bed nucleus of the stria terminalis, nucleus reuniens, lateral and medial septum, prefrontal and cingulate cortex, among others. Unraveling the causal relationships between these circuits using modern neuroscience techniques holds promise for identifying novel cellular-and ultimately molecular-treatment targets for reducing transition to psychosis and symptoms of schizophrenia. Imaging studies in humans have implicated a hyperactivity of the hippocampus as a robust and early endophenotype in schizophrenia. Experiments in rodents, in turn, suggested that the activity of its output region-the ventral subiculum-may modulate dopamine release from ventral tegmental area (VTA) neurons in the ventral striatum. Even though these observations suggested a novel circuit-level target for anti-psychotic action, no therapy has yet been developed along this rationale. Recently evaluated treatment strategies-at least in part-target excess glutamatergic activity, e.g. N-acetyl-cysteine (NAC), levetiracetam, and mGluR2/3 modulators. We here review the evidence for the central implication of the hippocampus-VTA axis in schizophrenia-related pathology, discuss its symptom-related implications with a particular focus on aberrant assignment of salience, and evaluate some of its short-comings and prospects for drug discovery.
Collapse
Affiliation(s)
- Dennis Kätzel
- Institute for Applied Physiology, Ulm University, Ulm, Germany
| | - Amy R. Wolff
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Alexei M. Bygrave
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Afonso AC, Pacheco FD, Canever L, Wessler PG, Mastella GA, Godoi AK, Hubbe I, Bischoff LM, Bialecki AVS, Zugno AI. Schizophrenia-like behavior is not altered by melatonin supplementation in rodents. AN ACAD BRAS CIENC 2020; 92:e20190981. [PMID: 32844989 DOI: 10.1590/0001-3765202020190981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022] Open
Abstract
An emerging area in schizophrenia research focuses on the impact of immunomodulatory drugs such as melatonin, which have played important roles in many biological systems and functions, and appears to be promising. The objective was to evaluate the effect of melatonin on behavioral parameters in an animal model of schizophrenia. For this, Wistar rats were divided and used in two different protocols. In the prevention protocol, the animals received 1 or 10mg/kg of melatonin or water for 14 days, and between the 8th and 14th day they received ketamine or saline. In the reversal protocol, the opposite occurred. On the 14th day, the animals underwent behavioral tests: locomotor activity and prepulse inhibition task. In both protocols, the results revealed that ketamine had effects on locomotor activity and prepulse inhibition, confirming the validity of ketamine construction as a good animal model of schizophrenia. However, at least at the doses used, melatonin was not able to reverse/prevent ketamine damage. More studies are necessary to evaluate the role of melatonin as an adjuvant treatment in psychiatric disorders.
Collapse
Affiliation(s)
- Arlindo C Afonso
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Felipe D Pacheco
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lara Canever
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patricia G Wessler
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo A Mastella
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Amanda K Godoi
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Isabela Hubbe
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Laura M Bischoff
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alex Victor S Bialecki
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
28
|
Martínez-Pinteño A, García-Cerro S, Mas S, Torres T, Boloc D, Rodríguez N, Lafuente A, Gassó P, Arnaiz JA, Parellada E. The positive allosteric modulator of the mGlu2 receptor JNJ-46356479 partially improves neuropathological deficits and schizophrenia-like behaviors in a postnatal ketamine mice model. J Psychiatr Res 2020; 126:8-18. [PMID: 32407891 DOI: 10.1016/j.jpsychires.2020.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/30/2022]
Abstract
Current antipsychotics have limited efficacy in controlling cognitive and negative symptoms of schizophrenia (SZ). Glutamatergic dysregulation has been implicated in the pathophysiology of SZ, based on the capacity of N-methyl-D-aspartate receptor (NMDAR) antagonists such as ketamine (KET) to induce SZ-like behaviors. This could be related to their putative neuropathological effect on gamma-aminobutyric (GABAergic) interneurons expressing parvalbumin (PV), which would lead to a hyperglutamatergic condition. Metabotropic glutamate receptor 2 (mGluR2) negatively modulates glutamate release and has been considered a potential clinical target for novel antipsychotics drugs. Our aim was to evaluate the efficacy of JNJ-46356479 (JNJ), a positive allosteric modulator (PAM) of the mGluR2, in reversing neuropathological and behavioral deficits induced in a postnatal KET mice model of SZ. These animals presented impaired spontaneous alternation in the Y-maze test, suggesting deficits in spatial working memory, and a decrease in social motivation and memory, assessed in both the Three-Chamber and the Five Trial Social Memory tests. Interestingly, JNJ treatment of adult mice partially reversed these deficits. Mice treated with KET also showed a reduction in PV+ in the mPFC and dentate gyrus together with an increase in c-Fos expression in this hippocampal area. Compared to the control group, mice treated with KET + JNJ showed a similar PV density and c-Fos activity pattern. Our results suggest that pharmacological treatment with a PAM of the mGluR2 such as JNJ could help improve cognitive and negative symptoms related to SZ.
Collapse
Affiliation(s)
| | - Susana García-Cerro
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Teresa Torres
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Daniel Boloc
- Department of Medicine, University of Barcelona, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Amalia Lafuente
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Patricia Gassó
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Joan Albert Arnaiz
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Clinical Pharmacology Department, Hospital Clínic de Barcelona, Spain.
| | - Eduard Parellada
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Department of Medicine, University of Barcelona, Spain; Barcelona Clinic Schizophrenia Unit (BCSU), Institute of Neuroscience, Hospital Clinic of Barcelona, University of Barcelona, Spain.
| |
Collapse
|
29
|
Schiavone S, Morgese MG, Bove M, Colia AL, Maffione AB, Tucci P, Trabace L, Cuomo V. Ketamine administration induces early and persistent neurochemical imbalance and altered NADPH oxidase in mice. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109750. [PMID: 31446158 DOI: 10.1016/j.pnpbp.2019.109750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Administration in adulthood of subanaesthetic doses of ketamine, an NMDA receptor (NMDA-R) antagonist, is commonly used to induce psychotic-like alterations in rodents. The NADPH oxidase (NOX) derived-oxidative stress has been shown to be implicated in ketamine-induced neurochemical dysfunctions and in the loss of parvalbumin (PV)-positive interneurons associated to the administration of this NMDA receptor antagonist in adult mice. However, very few data are available on the effects of early ketamine administration and its contribution to the development of long-term dysfunctions leading to psychosis. Here, by administering a subanaesthetic dose of ketamine (30 mg/kg i.p.) to mice at postnatal days (PNDs) 7, 9 and 11, we aimed at investigating early neurochemical and oxidative stress-related alterations induced by this NMDA-R antagonist in specific brain regions of mice pups, i.e. prefrontal cortex (PFC) and nucleus accumbens (NAcc) and to assess whether these alterations lasted until the adult period. To this purpose, we evaluated glutamatergic, glutamine and GABAergic tissue levels, as well as PV amount in the PFC, both two hours after the last ketamine injection (PND 11) and at 10 weeks of age. Dopamine (DA) tissue levels and DA turnover were also evaluated in the NAcc at the same time points. Levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a reliable biomarker of oxidative stress, as well as of the free radical producers NOX1 and NOX2 enzymes, were also assessed in both PFC and NAcc of ketamine-treated pups and adult mice. Ketamine-treated pups showed increased cortical levels of glutamate (GLU) and glutamine, as well as similar GABA amount compared to controls, together with an early reduction of cortical PV levels. In the adult period, the same was observed for GLU and PV, whereas GABA levels were increased and no changes in glutamine amount were detected. Ketamine administration in early life induced a decrease in DA tissue levels and an increase of DA turnover which were also detectable at 10 weeks of age. These alterations were accompanied by 8-OHdG elevations in both PFC and NAcc at the two considered life stages. The expression of NOX1 was significantly reduced in these brain regions following ketamine administration at early life stages, while, in the adult period, significant elevation of this enzyme was observed. Levels of NOX2 were found increased at both time points. Our results suggest that an early increase of NOX2-derived oxidative stress may contribute to the development of neurochemical imbalance in PFC and NAcc, induced by ketamine administration. Modifications of NOX1 expression might represent, instead, an early response of the developing brain to a neurotoxic insult, followed by a later attempt to counterbalance ketamine-related detrimental effects.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Anna Laura Colia
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Angela Bruna Maffione
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
30
|
Effects of ketamine on prepubertal Wistar rats: Implications on behavioral parameters for Childhood‐Onset Schizophrenia. Int J Dev Neurosci 2019; 79:49-53. [DOI: 10.1016/j.ijdevneu.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
|
31
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
32
|
Weckmann K, Deery MJ, Howard JA, Feret R, Asara JM, Dethloff F, Filiou MD, Labermaier C, Maccarrone G, Lilley KS, Mueller M, Turck CW. Ketamine's Effects on the Glutamatergic and GABAergic Systems: A Proteomics and Metabolomics Study in Mice. MOLECULAR NEUROPSYCHIATRY 2018; 5:42-51. [PMID: 31019917 DOI: 10.1159/000493425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Abstract
Ketamine, a noncompetitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR) antagonist, has been shown to have a rapid antidepressant effect and is used for patients experiencing treatment-resistant depression. We carried out a time-dependent targeted mass spectrometry-based metabolomics profiling analysis combined with a quantitative based on in vivo 15N metabolic labeling proteome comparison of ketamine- and vehicle-treated mice. The metabolomics and proteomics datasets were used to further elucidate ketamine's mode of action on the gamma-aminobutyric acid (GABA)ergic and glutamatergic systems. In addition, myelin basic protein levels were analyzed by Western Blot. We found altered GABA, glutamate and glutamine metabolite levels and ratios as well as increased levels of putrescine and serine - 2 positive modulators of the NMDAR. In addition, GABA receptor (GABAR) protein levels were reduced, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit Gria2 protein levels were increased upon ketamine treatment. The significantly altered metabolite and protein levels further significantly correlated with the antidepressant-like behavior, which was assessed using the forced swim test. In conclusion and in line with previous research, our data indicate that ketamine impacts the AMPAR subunit Gria2 and results in decreased GABAergic inhibitory neurotransmission leading to increased excitatory neuronal activity.
Collapse
Affiliation(s)
- Katja Weckmann
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany.,Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael J Deery
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Julie A Howard
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Renata Feret
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Frederik Dethloff
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Michaela D Filiou
- Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Christiana Labermaier
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Giuseppina Maccarrone
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Marianne Mueller
- Experimental Psychiatry, Department of Psychiatry and Psychotherapy and Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| |
Collapse
|
33
|
Canever L, Freire TG, Mastella GA, Damázio L, Gomes S, Fachim I, Michels C, Carvalho G, Godói AK, Peterle BR, Gava FF, Valvassori SS, Budni J, Quevedo J, Zugno AI. Changes in behavioural parameters, oxidative stress and neurotrophins in the brain of adult offspring induced to an animal model of schizophrenia: The effects of FA deficient or FA supplemented diet during the neurodevelopmental phase. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:52-64. [PMID: 29782958 DOI: 10.1016/j.pnpbp.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023]
Abstract
A deficiency of maternal folic acid (FA) can compromise the function and development of the brain, and may produce a susceptibility to diseases such as schizophrenia (SZ) in the later life of offspring. The aim of this study was to evaluate the effects of both FA deficient and FA supplemented diets during gestation and lactation on behavioural parameters, the markers of oxidative stress and neurotrophic factors in adult offspring which had been subjected to an animal model of SZ. Female mother rats (Dam's) were separated into experimental maternal groups, which began receiving a special diet (food) consisting of the AIN-93 diet, a control diet, or an FA deficient diet during the periods of pregnancy and lactation. Dam's receiving the control diet were further subdivided into four groups: one group received only control diet, while three groups to receive supplementation with FA at different doses (5, 10 and 50 mg/kg). Adult offspring bred from the Dam's were divided into ten groups for induction of the animal model of SZ through the administration of ketamine (Ket) (25 mg/kg). After the last administration of the drug, the animals were subjected to the behavioural tests and were then euthanized. The frontal cortex (FC) and hippocampus (Hip) were then dissected for later biochemical analysis. Our data demonstrates that Ket induced the model of SZ by altering the behavioural parameters (e.g. hyperlocomotion, social impairment, deficits in the sensory-motor profile and memory damage in the adult animals); and also caused changes in the parameters of oxidative stress (lipid hydroperoxide - LPO; 8-isoprostane - 8-ISO; 4-hydroxynonenal - 4-HNE; protein carbonyl content; superoxide dismutase - SOD and catalase - CAT) as well as in the levels of neurotrophic factors (brain-derived neurotrophic factor - BDNF and nerve growth factor - NGF) particularly within the FC of adult offspring. A deficiency in maternal FA, alone or in combination with ket, was able to induce hyperlocomotion and social impairment in the offspring with increased levels of lipid and protein damage (LPO, 8-ISO, 4-HNE, carbonylation of protein) within the FC, increased activity of antioxidant enzymes (SOD and CAT) in both of the brain structures studied, and also reduced the levels of neurotrophins (BDNF and NGF), particularly within the Hip of the adult offspring. Supplementation of FA (5, 10 and 50 mg/kg) to the Dam's was mostly able to prevent the cognitive damage which was induced by Ket in the adult animals. FA (10 and 50 mg/kg) attenuated the action of Ket in the animals in relation to the biochemical parameters, proving the possible neuroprotective effect of FA in the adulthood of offspring that were subjected to the animal model of SZ. Our study indicates that the intake of maternal FA during pregnancy and lactation plays an important role, particularly in the regulation of markers of oxidative stress and neurotrophins.
Collapse
Affiliation(s)
- L Canever
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - T G Freire
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - G A Mastella
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - L Damázio
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - S Gomes
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - I Fachim
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - C Michels
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - G Carvalho
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - A K Godói
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - B R Peterle
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - F F Gava
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - S S Valvassori
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - J Budni
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - J Quevedo
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - A I Zugno
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.
| |
Collapse
|
34
|
Incrocci RM, Paliarin F, Nobre MJ. Prelimbic NMDA receptors stimulation mimics the attenuating effects of clozapine on the auditory electrophysiological rebound induced by ketamine withdrawal. Neurotoxicology 2018; 69:1-10. [PMID: 30170016 DOI: 10.1016/j.neuro.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 11/26/2022]
Abstract
Ketamine (KET) is a non-competitive N-Methyl-d-aspartate (NMDA) receptors antagonist that intensifies sensory experiences, prompts hallucinations and delusions, exacerbates previously installed psychosis and disrupts physiological evoked potentials (AEPs). Pharmacologically, KET stimulates glutamate efflux in the medial prefrontal cortex, mainly in the prelimbic (PrL) sub-region. Efferences from this region exert a top-down regulatory control of bottom-up sensory processes either directly or indirectly. In the midbrain, the central nucleus of the inferior colliculus (CIC) plays a fundamental role in the processing of auditory ascending information related to sound localization, sensorimotor gating, and preattentive event-related potentials. Auditory hallucinations elicited during a psychotic outbreak are accompanied by CIC neural activation. Thus, it is possible that NMDA-mediated glutamate neurotransmission in the PrL indirectly modulates CIC neuronal firing. The aim of the present study was to assess the effects of KET on the latency and amplitude of AEPs elicited in the CIC of rats tested during KET effects and following withdrawal from the chronic administration. Changes on emotionally induced by KET treatment were evaluated with the use of the elevated zero maze (EZM). Unlike typical neuroleptics, the atypical antipsychotic clozapine (CLZ) potently blocks the disruption of the sensorimotor gating induced by NMDA antagonists. Therefore, the effects of KET withdrawal on AEPs were challenged with a systemic injection of CLZ. In addition, we further investigated the role of NMDA receptors of the PrL on the AEPs expression recorded in the CIC through intra-PrL infusions of NMDA itself. Our results showed that the processing of sensory information in the CIC is under indirect control of PrL. These data suggest that the long-term KET treatment disrupts the collicular auditory field potentials, possibly through influencing PrL glutamate activity on intrinsic 5-HT mechanisms in the dorsal raphe and CIC.
Collapse
Affiliation(s)
- Roberta Monteiro Incrocci
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - Franciely Paliarin
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - Manoel Jorge Nobre
- Departamento de Psicologia, Uni-FACEF, 14401-135, Franca, SP, Brazil; Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
35
|
Kumbol VWA, Abotsi WKM, Ekuadzi E, Woode E. Albizia zygia root extract exhibits antipsychotic-like properties in murine models of schizophrenia. Pharmacotherapy 2018; 106:831-841. [PMID: 30119253 DOI: 10.1016/j.biopha.2018.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The root extract of Albizia zygia (DC.) J.F. Macbr. (Leguminosae) is used to manage mental disorders in African traditional medicine. However, its value, particularly, against negative and cognitive symptoms of schizophrenia have not been evaluated. AIM The aim of this study was to evaluate the antipsychotic properties of the hydroethanolic root extract of Albizia zygia (AZE) against positive, negative and cognitive symptoms of schizophrenia in animal models. MATERIALS AND METHODS The effects of AZE (30-300 mg kg-1) were evaluated against apomorphine-induced cage climbing as well as ketamine -induced hyperlocomotion, -enhanced immobility, -impaired social interaction and novel object recognition. The propensity of AZE to induce catalepsy and to attenuate haloperidol-induced catalepsy were also investigated. RESULTS AZE 30-300 mg kg-1 significantly reduced apomorphine-induced climbing behaviour as well as ketamine-induced hyperlocomotion, immobility and object recognition deficits (at least P < 0.05). Moreover, the extract showed no cataleptic effect but significantly inhibited haloperidol-induced catalepsy at a dose of 30 mg kg-1 (P < 0.05). CONCLUSION The root extract of Albizia zygia exhibited an antipsychotic-like activity in mice with potential to alleviate positive, negative and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Victor Wumbor-Apin Kumbol
- Department of Pharmacology, Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Wonder Kofi Mensah Abotsi
- Department of Pharmacology, Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Edmund Ekuadzi
- Department of Pharmacognosy, Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Eric Woode
- Department of Pharmacology, Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
36
|
Pacheco FD, Silva MLDA, Batista G, Santos W, Castro AADE, Canever L, Zugno AI. Olfactory deficit as a result of clozapine withdrawal syndrome in an animal model of schizophrenia: preliminary results. AN ACAD BRAS CIENC 2018; 90:1659-1663. [PMID: 29898114 DOI: 10.1590/0001-3765201820170103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022] Open
Abstract
Clozapine is an antipsychotic that produces serious withdrawal effects in schizophrenic patients. Olfactory deficits are well known as part of negative symptoms, but it is not known whether antipsychotic use and/or withdrawal are implicated. Then, we tested clozapine withdrawal in association with two widely used schizophrenia models: Neonatal immune challenge by Polycitidilic-polyinosinic acid (polyI:C) and ketamine. PolyI:C (or saline) was injected subcutaneously in neonatal period, dose of 5 mg/kg from 2 to 6 Post Natal Days, and ketamine or saline at the dose 25mg/kg intraperitoneally (i.p.), daily for 7 days from 53 to 60 post natal day. Clozapine 10mg/kg (or saline) was administered i.p. from 46 to 60 post natal day. Olfactory discrimination test (sensorial and cognitive deficit) was performed at 61 post natal day, 24h after the last injections. The association of PolyI:C, ketamine and clozapine disrupted Olfactory Discrimination, equating time in familiar and non-familiar compartments. PolyI:C plus ketamine increased crossings between compartments. It was produced, for the first time, an olfactory deficit induced by clozapine withdrawal in Wistar rats subjected to schizophrenia animal models.
Collapse
Affiliation(s)
- Felipe D Pacheco
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Unidade Acadêmica de Ciências da Saúde, Laboratório de Neurociências, Av. Universitária, 1105, Bloco S, Sala 5/ subsolo, Universitário, 88806-000 Criciúma, SC, Brazil
| | - Mauricio L DA Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Unidade Acadêmica de Ciências da Saúde, Laboratório de Neurociências, Av. Universitária, 1105, Bloco S, Sala 5/ subsolo, Universitário, 88806-000 Criciúma, SC, Brazil
| | - Graziela Batista
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Unidade Acadêmica de Ciências da Saúde, Laboratório de Neurociências, Av. Universitária, 1105, Bloco S, Sala 5/ subsolo, Universitário, 88806-000 Criciúma, SC, Brazil
| | - Witória Santos
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Unidade Acadêmica de Ciências da Saúde, Laboratório de Neurociências, Av. Universitária, 1105, Bloco S, Sala 5/ subsolo, Universitário, 88806-000 Criciúma, SC, Brazil
| | - Adalberto A DE Castro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Unidade Acadêmica de Ciências da Saúde, Laboratório de Neurociências, Av. Universitária, 1105, Bloco S, Sala 5/ subsolo, Universitário, 88806-000 Criciúma, SC, Brazil
| | - Lara Canever
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Unidade Acadêmica de Ciências da Saúde, Laboratório de Neurociências, Av. Universitária, 1105, Bloco S, Sala 5/ subsolo, Universitário, 88806-000 Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Unidade Acadêmica de Ciências da Saúde, Laboratório de Neurociências, Av. Universitária, 1105, Bloco S, Sala 5/ subsolo, Universitário, 88806-000 Criciúma, SC, Brazil
| |
Collapse
|
37
|
Yadav M, Jindal DK, Parle M, Kumar A, Dhingra S. Targeting oxidative stress, acetylcholinesterase, proinflammatory cytokine, dopamine and GABA by eucalyptus oil (Eucalyptus globulus) to alleviate ketamine-induced psychosis in rats. Inflammopharmacology 2018; 27:301-311. [PMID: 29464495 DOI: 10.1007/s10787-018-0455-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/07/2018] [Indexed: 01/02/2023]
Abstract
Essential oil of eucalyptus species is among the most common traded essential oils in the world. There is an increasing interest in the application of eucalyptus oil as a natural additive in food and pharmaceutical industry. The present study was undertaken to identify the phytoconstituents present in the essential oil of Eucalyptus globulus leaves (EO) and ascertain their protective effect against ketamine-induced psychosis in rats. GC-MS technique was used for analysis of phytoconstituents present in EO. Ketamine (50 mg/kg, i.p.) was used to induce psychosis in rats. Photoactometer, forced swim test and pole climb avoidance test were used to evaluate the protective effects of the EO (500, 1000 and 2000 mg/kg, p.o.) on acute and chronic administration. Bar test was used to test the side effect of EO. Biochemical and neurochemical estimations were carried out to explore the possible mechanism of action. GC-MS analysis of EO showed the presence of a number of biologically active compounds. EO at the dose of 500, 1000 and 2000 mg/kg, p.o. on acute and chronic administration, decreased locomotor activity, immobility duration and latency to climb the pole. EO was effective to facilitate the release of GABA, increase GSH levels, inhibit dopamine neurotransmission and decrease TNF-α levels as well as diminish AChE activity in different regions of the brain. EO at the dose of 500, 1000 mg/kg did not produce cataleptic behavior in rats. EO at the dose of 500, 1000 mg/kg produced protective effects against ketamine-induced psychosis and can be further explored clinically against neuropsychiatric disorders.
Collapse
Affiliation(s)
- Monu Yadav
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Deepak Kumar Jindal
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Milind Parle
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study (UGC-CAS) in Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sameer Dhingra
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
38
|
Yadav M, Parle M, Jindal DK, Sharma N. Potential effect of spermidine on GABA, dopamine, acetylcholinesterase, oxidative stress and proinflammatory cytokines to diminish ketamine-induced psychotic symptoms in rats. Biomed Pharmacother 2018; 98:207-213. [DOI: 10.1016/j.biopha.2017.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022] Open
|
39
|
Yadav M, Parle M, Jindal DK, Dhingra S. Protective effects of stigmasterol against ketamine-induced psychotic symptoms: Possible behavioral, biochemical and histopathological changes in mice. Pharmacol Rep 2018; 70:591-599. [PMID: 29679883 DOI: 10.1016/j.pharep.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Stigmasterol, a naturally occurring phytoestrogen has been reported to possess many pharmacological activities. The aim of the present study was to screen the effect of stigmasterol against ketamine-induced mice model of psychosis. METHODS The behavioural studies included an assessment of locomotor activity, stereotypic behaviours, immobility duration, step down latency and effects on catalepsy. Biochemical estimations involved the estimations of GABA, dopamine, GSH, MDA, TNF-α, total protein content and AChE activity. Histopathological changes and effect on androgenic parameters were also evaluated. RESULTS Stigmasterol treated animals showed significant decrease in locomotor activity, stereotypic behaviours, immobility duration and increased step down latency. Biochemical estimations revealed increased GABA, GSH levels and decreased dopamine, MDA, TNF-α levels and AChE activity. These findings were confirmed by histopathological changes in the cortex part of the brain. Further, stigmasterol was not found to cause catalepsy and any adverse effect on the reproductive system. CONCLUSION This study concluded that stigmasterol could ameliorate ketamine-induced behavioral, biochemical and histopathological alterations in mice showing its potential effects in the management of psychotic symptoms.
Collapse
Affiliation(s)
- Monu Yadav
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Milind Parle
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India.
| | - Deepak Kumar Jindal
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Sameer Dhingra
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
40
|
Sherif MA, Cortes-Briones JA, Ranganathan M, Skosnik PD. Cannabinoid-glutamate interactions and neural oscillations: implications for psychosis. Eur J Neurosci 2018; 48:2890-2902. [PMID: 29247465 DOI: 10.1111/ejn.13800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Mohamed A. Sherif
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| | - Jose A. Cortes-Briones
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| | - Mohini Ranganathan
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| | - Patrick D. Skosnik
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| |
Collapse
|
41
|
Advantages of the Alpha-lipoic Acid Association with Chlorpromazine in a Model of Schizophrenia Induced by Ketamine in Rats: Behavioral and Oxidative Stress evidences. Neuroscience 2018; 373:72-81. [PMID: 29337238 DOI: 10.1016/j.neuroscience.2018.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 11/20/2022]
Abstract
Schizophrenia is a chronic mental disorder reported to compromise about 1% of the world's population. Although its pathophysiological process is not completely elucidated, evidence showing the presence of an oxidative imbalance has been increasingly highlighted in the literature. Thus, the use of antioxidant substances may be of importance for schizophrenia treatment. The objective of this study was to evaluate the behavioral and oxidative alterations by the combination of chlorpromazine (CP) and alpha-lipoic acid (ALA), a potent antioxidant, in the ketamine (KET) model of schizophrenia in rats. Male Wistar rats (200-300 g) were treated for 10 days with saline, CP or ALA alone or in combination with CP previous to KET and the behavioral (open field, Y-maze and PPI tests) and oxidative tests were performed on the last day of treatment. The results showed that KET induced hyperlocomotion, impaired working memory and decreased PPI. CP alone or in combination with ALA prevented KET-induced behavioral effects. In addition, the administration of KET decreased GSH and increased nitrite, lipid peroxidation and myeloperoxidase activity. CP alone or combined with ALA prevented the oxidative alterations induced by KET. In conclusion, the treatment with KET in rats induced behavioral impairments accompanied by hippocampal oxidative alterations, possibly related to NMDA receptors hypofunction. Besides that, CP alone or combined with ALA prevented these effects, showing a beneficial activity as antipsychotic agents.
Collapse
|
42
|
Weckmann K, Deery MJ, Howard JA, Feret R, Asara JM, Dethloff F, Filiou MD, Iannace J, Labermaier C, Maccarrone G, Webhofer C, Teplytska L, Lilley K, Müller MB, Turck CW. Ketamine's antidepressant effect is mediated by energy metabolism and antioxidant defense system. Sci Rep 2017; 7:15788. [PMID: 29150633 PMCID: PMC5694011 DOI: 10.1038/s41598-017-16183-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/08/2017] [Indexed: 01/23/2023] Open
Abstract
Fewer than 50% of all patients with major depressive disorder (MDD) treated with currently available antidepressants (ADs) show full remission. Moreover, about one third of the patients suffering from MDD does not respond to conventional ADs and develop treatment-resistant depression (TRD). Ketamine, a non-competitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR) antagonist, has been shown to have a rapid antidepressant effect, especially in patients suffering from TRD. Hippocampi of ketamine-treated mice were analysed by metabolome and proteome profiling to delineate ketamine treatment-affected molecular pathways and biosignatures. Our data implicate mitochondrial energy metabolism and the antioxidant defense system as downstream effectors of the ketamine response. Specifically, ketamine tended to downregulate the adenosine triphosphate (ATP)/adenosine diphosphate (ADP) metabolite ratio which strongly correlated with forced swim test (FST) floating time. Furthermore, we found increased levels of enzymes that are part of the ‘oxidative phosphorylation’ (OXPHOS) pathway. Our study also suggests that ketamine causes less protein damage by rapidly decreasing reactive oxygen species (ROS) production and lend further support to the hypothesis that mitochondria have a critical role for mediating antidepressant action including the rapid ketamine response.
Collapse
Affiliation(s)
- Katja Weckmann
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany.,Institute of Pathobiochemistry, Johannes Gutenberg University, Medical School, Mainz, Germany
| | - Michael J Deery
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, UK
| | - Julie A Howard
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, UK
| | - Renata Feret
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, UK
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - Frederik Dethloff
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Michaela D Filiou
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Munich, Germany
| | - Jamie Iannace
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Christiana Labermaier
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Giuseppina Maccarrone
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Christian Webhofer
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Larysa Teplytska
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Kathryn Lilley
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, UK
| | - Marianne B Müller
- Experimental Psychiatry, Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany.
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany.
| |
Collapse
|
43
|
Onaolapo OJ, Paul TB, Onaolapo AY. Comparative effects of sertraline, haloperidol or olanzapine treatments on ketamine-induced changes in mouse behaviours. Metab Brain Dis 2017; 32:1475-1489. [PMID: 28508340 DOI: 10.1007/s11011-017-0031-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022]
Abstract
Effects of sertraline, haloperidol or olanzapine administration on ketamine-induced behaviours in mice were examined. The aim was to ascertain the degree of reversal of such behaviours by sertraline, and compare its effectiveness to haloperidol and olanzapine. Ten-week old mice (N = 120) were equally divided into main groups; 1 (open-field, radial-arm maze and elevated plus maze {EPM} tests), and 2 (social interaction test). Mice in each main group were assigned into six groups of ten (n = 10) each. Group 1 received intraperitoneal (i.p) injection of vehicle, while groups 2-6 received i.p ketamine at 15 mg/kg daily for 10 days. From day 11 to 24, mice in group 1 (vehicle) were given distilled water (i.p at 2 ml/kg and oral at 10 ml/kg), group 2 (ketamine control) received daily i.p ketamine and oral distilled water; while animals in groups 3-6 received daily i.p. ketamine and oral haloperidol (4 mg/kg), olanzapine (2 mg/kg), or one of two doses of sertraline (SERT) (2.5 or 5 mg/kg), respectively. Treatments were administered daily, and behaviours assessed on days 11 and 24. Results showed that repeated ketamine administration caused hyperlocomotion, increased self-grooming, memory loss and social withdrawal. Administration of sertraline (both doses), haloperidol, and olanzapine reversed ketamine-induced behavioural changes. However, in the EPM, sertraline and olanzapine were anxiolytic, while haloperidol was anxiogenic. Sertraline's effect on behaviours tested was comparable to olanzapine and better than haloperidol. In conclusion, this study shows that sertraline's ability to counteract ketamine-induced behavioural changes in mice is comparable to known antipsychotics.
Collapse
Affiliation(s)
- O J Onaolapo
- Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria.
| | - T B Paul
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - A Y Onaolapo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
44
|
Sampaio LRL, Borges LT, Silva JM, de Andrade FRO, Barbosa TM, Oliveira TQ, Macedo D, Lima RF, Dantas LP, Patrocinio MCA, do Vale OC, Vasconcelos SM. Average spectral power changes at the hippocampal electroencephalogram in schizophrenia model induced by ketamine. Fundam Clin Pharmacol 2017; 32:60-68. [DOI: 10.1111/fcp.12319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Luis Rafael L. Sampaio
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
- Health Science Center; School of Nursing; University of Fortaleza; Fortaleza Brazil
| | - Lucas T.N. Borges
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Joyse M.F. Silva
- Health Science Center; School of Nursing; University of Fortaleza; Fortaleza Brazil
| | | | - Talita M. Barbosa
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Tatiana Q. Oliveira
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Danielle Macedo
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Ricardo F. Lima
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Leonardo P. Dantas
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Manoel Cláudio A. Patrocinio
- Health Science Center; School of Medicine; University Centre Christus; Fortaleza Brazil
- Department of Anesthesiology; Dr. Jose Frota Institute Hospital; Fortaleza Brazil
| | - Otoni C. do Vale
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Silvânia M.M. Vasconcelos
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| |
Collapse
|
45
|
Neves G, Borsoi M, Antonio CB, Pranke MA, Betti AH, Rates SMK. Is Forced Swimming Immobility a Good Endpoint for Modeling Negative Symptoms of Schizophrenia? - Study of Sub-Anesthetic Ketamine Repeated Administration Effects. AN ACAD BRAS CIENC 2017; 89:1655-1669. [PMID: 28832723 DOI: 10.1590/0001-3765201720160844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
Immobility time in the forced swimming has been described as analogous to emotional blunting or apathy and has been used for characterizing schizophrenia animal models. Several clinical studies support the use of NMDA receptor antagonists to model schizophrenia in rodents. Some works describe the effects of ketamine on immobility behavior but there is variability in the experimental design used leading to controversial results. In this study, we evaluated the effects of repeated administration of ketamine sub-anesthetic doses in forced swimming, locomotion in response to novelty and novel object recognition, aiming a broader evaluation of the usefulness of this experimental approach for modeling schizophrenia in mice. Ketamine (30 mg/kg/day i.p. for 14 days) induced a not persistent decrease in immobility time, detected 24h but not 72h after treatment. This same administration protocol induced a deficit in novel object recognition. No change was observed in mice locomotion. Our results confirm that repeated administration of sub-anesthetic doses of ketamine is useful in modeling schizophrenia-related behavioral changes in mice. However, the immobility time during forced swimming does not seem to be a good endpoint to evaluate the modeling of negative symptoms in NMDAR antagonist animal models of schizophrenia.
Collapse
Affiliation(s)
- Gilda Neves
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Milene Borsoi
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Camila B Antonio
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Mariana A Pranke
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Andresa H Betti
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Stela M K Rates
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
46
|
Phensy A, Duzdabanian HE, Brewer S, Panjabi A, Driskill C, Berz A, Peng G, Kroener S. Antioxidant Treatment with N-acetyl Cysteine Prevents the Development of Cognitive and Social Behavioral Deficits that Result from Perinatal Ketamine Treatment. Front Behav Neurosci 2017. [PMID: 28634445 PMCID: PMC5459895 DOI: 10.3389/fnbeh.2017.00106] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alterations of the normal redox state can be found in all stages of schizophrenia, suggesting a key role for oxidative stress in the etiology and maintenance of the disease. Pharmacological blockade of N-methyl-D-aspartic acid (NMDA) receptors can disrupt natural antioxidant defense systems and induce schizophrenia-like behaviors in animals and healthy human subjects. Perinatal administration of the NMDA receptor (NMDAR) antagonist ketamine produces persistent behavioral deficits in adult mice which mimic a range of positive, negative, and cognitive symptoms that characterize schizophrenia. Here we tested whether antioxidant treatment with the glutathione (GSH) precursor N-acetyl-cysteine (NAC) can prevent the development of these behavioral deficits. On postnatal days (PND) 7, 9 and 11, we treated mice with subanesthetic doses (30 mg/kg) of ketamine or saline. Two groups (either ketamine or saline treated) also received NAC throughout development. In adult animals (PND 70-120) we then assessed behavioral alterations in a battery of cognitive and psychomotor tasks. Ketamine-treated animals showed deficits in a task of cognitive flexibility, abnormal patterns of spontaneous alternation, deficits in novel-object recognition, as well as social interaction. Developmental ketamine treatment also induced behavioral stereotypy in response to an acute amphetamine challenge, and it impaired sensorimotor gating, measured as reduced prepulse inhibition (PPI) of the startle response. All of these behavioral abnormalities were either prevented or strongly ameliorated by NAC co-treatment. These results suggest that oxidative stress is a major factor for the development of the ketamine-induced behavioral dysfunctions, and that restoring oxidative balance during the prodromal stage of schizophrenia might be able to ameliorate the development of several major symptoms of the disease.
Collapse
Affiliation(s)
- Aarron Phensy
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - Hasmik E Duzdabanian
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - Samantha Brewer
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - Anurag Panjabi
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - Christopher Driskill
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - Annuska Berz
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - George Peng
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| |
Collapse
|
47
|
Yadav M, Jindal DK, Dhingra MS, Kumar A, Parle M, Dhingra S. Protective effect of gallic acid in experimental model of ketamine-induced psychosis: possible behaviour, biochemical, neurochemical and cellular alterations. Inflammopharmacology 2017; 26:413-424. [PMID: 28577133 DOI: 10.1007/s10787-017-0366-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022]
Abstract
Gallic acid has been reported to possess a number of psychopharmacological activities. These activities are attributed to the antioxidant potential due to the presence of phenolic moeity. The present study was carried out to investigate the protective effects of gallic acid in an experimental model of ketamine-induced psychosis in mice. Ketamine (50 mg/kg, i.p.) was used to induce stereotyped psychotic behavioural symptoms in mice. Behavioural studies (locomotor activity, stereotype behaviour, immobility duration and memory retention) were carried out to investigate the protective of gallic acid on ketamine-induced psychotic symptoms, followed by biochemical and neurochemical changes and cellular alterations in the brain. Chronic treatment with gallic acid for 15 consecutive days significantly attenuated stereotyped behavioural symptoms in mice. Biochemical estimations revealed that gallic acid reduced the lipid peroxidation and restored the total brain proteins. Furthermore, gallic acid remarkably reduced the dopamine levels, AChE activity and inflammatory surge (serum TNF-α), and increased the levels of GABA and increased glutathione in mice. The study revealed that gallic acid could ameliorate psychotic symptoms and biochemical changes in mice, indicating protective effects in psychosis.
Collapse
Affiliation(s)
- Monu Yadav
- Department of Pharmaceutical Sciences, Faculty of Medical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Faculty of Medical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Mamta Sachdeva Dhingra
- University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study (UGC-CAS) in Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study (UGC-CAS) in Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Milind Parle
- Department of Pharmaceutical Sciences, Faculty of Medical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Sameer Dhingra
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
48
|
Onaolapo AY, Aina OA, Onaolapo OJ. Melatonin attenuates behavioural deficits and reduces brain oxidative stress in a rodent model of schizophrenia. Biomed Pharmacother 2017; 92:373-383. [PMID: 28554133 DOI: 10.1016/j.biopha.2017.05.094] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/12/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023] Open
Abstract
Melatonin is a neurohormone that is linked to the aetiopathogenesis of schizophrenia. The aim of this study was to assess the potentials of oral melatonin supplement in the management of induced schizophrenia-like behavioural and brain oxidative status changes, using an animal model. The relative degrees of modulation of ketamine-induced behaviours by haloperidol, olanzapine or melatonin were assessed in the open-field, Y-maze, elevated plus maze and the social interaction tests. 12-week old, male mice were assigned to six groups of ten each (n=10). They were pretreated with daily intraperitoneal ketamine at 15mg/kg (except vehicle) for 10days, before commencement of 14day treatment with standard drug (haloperidol or olanzapine) or melatonin. Ketamine injection also continued alongside melatonin or standard drugs administration for the duration of treatment. Melatonin, haloperidol and olanzapine were administered by gavage. Treatments were given daily, and behaviours assessed on days 11 and 24. On day 24, animals were sacrificed and whole brain homogenates used for the estimation of glutathione, nitric oxide and malondialdehyde levels. Ketamine injection increased open-field behaviours; while it decreased working-memory, social-interaction and glutathione activity. Nitric oxide and malondialdehyde levels also increased after ketamine injection. Administration of melatonin was associated with variable degrees of reversal of these effects. In conclusion, melatonin may have the potential of a possible therapeutic agent and/or adjunct in the management of schizophrenia.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Olufemi A Aina
- Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Olakunle James Onaolapo
- Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria.
| |
Collapse
|
49
|
Increased risk of developing schizophrenia in animals exposed to cigarette smoke during the gestational period. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:199-206. [PMID: 28229913 DOI: 10.1016/j.pnpbp.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/12/2016] [Accepted: 02/12/2017] [Indexed: 11/22/2022]
Abstract
Cigarette smoking during the prenatal period has been investigated as a causative factor of obstetric abnormalities, which lead to cognitive and behavioural changes associated with schizophrenia. The aim of this study was to investigate behaviour and AChE activity in brain structures in adult rats exposed to cigarette smoke during the prenatal period. Pregnant rats were divided into non-PCSE (non-prenatal cigarette smoke exposure) and PCSE (prenatal cigarette smoke exposure) groups. On post-natal day 60, the rats received saline or ketamine for 7days and were subjected to behavioural tasks. In the locomotor activity task, the non-PCSE+ketamine and PCSE+ketamine groups exhibited increased locomotor activity compared with the saline group. In the social interaction task, the non-PCSE+ketamine and PCSE+ketamine groups exhibited an increased latency compared with the control groups. However, the PCSE+ketamine group exhibited a decreased latency compared with the non-PCSE+ketamine group, which indicates that the cigarette exposure appeared to decrease, the social deficits generated by ketamine. In the inhibitory avoidance task, the non-PCSE+ketamine, PCSE, and PCSE+ketamine groups exhibited impairments in working memory, short-term memory, and long-term memory. In the pre-pulse inhibition (PPI) test, cigarette smoke associated with ketamine resulted in impaired PPI in 3 pre-pulse (PP) intensity groups compared with the control groups. In the biochemical analysis, the AChE activity in brain structures increased in the ketamine groups; however, the PCSE+ketamine group exhibited an exacerbated effect in all brain structures. The present study indicates that exposure to cigarette smoke during the prenatal period may affect behaviour and cerebral cholinergic structures during adulthood.
Collapse
|
50
|
Sampaio LRL, Borges LTN, Barbosa TM, Matos NCB, Lima RDF, Oliveira MND, Gularte VN, Patrocínio MCA, Macêdo D, Vale OCD, Vasconcelos SMMD. Electroencephalographic study of chlorpromazine alone or combined with alpha-lipoic acid in a model of schizophrenia induced by ketamine in rats. J Psychiatr Res 2017; 86:73-82. [PMID: 27951451 DOI: 10.1016/j.jpsychires.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 11/20/2016] [Accepted: 12/01/2016] [Indexed: 11/18/2022]
Abstract
Schizophrenia is characterized by behavioral symptoms, brain function impairments and electroencephalographic (EEG) changes. Dysregulation of immune responses and oxidative imbalance underpins this mental disorder. The present study aimed to investigate the effects of the typical antipsychotic chlorpromazine (CP) alone or combined with the natural antioxidant alpha-lipoic acid (ALA) on changes in the hippocampal average spectral power induced by ketamine (KET). Three days after stereotactic implantation of electrodes, male Wistar rats were divided into groups treated for 10 days with saline (control) or KET (10 mg/kg, IP). CP (1 or 5 mg/kg, IP) alone or combined with ALA (100 mg/kg, P.O.) was administered 30 min before KET or saline. Hippocampal EEG recordings were taken on the 1st, 5th and 10th days of treatment immediately after the last drug administration. KET significantly increased average spectral power of delta and gamma-high bands on the 5th and 10th days of treatment when compared to control. Gamma low-band significantly increased on the 1st, 5th and 10th days when compared to control group. This effect of KET was prevented by CP alone or combined with ALA. Indeed, the combination of ALA 100 + CP1 potentiated the inhibitory effects of CP1 on gamma low-band oscillations. In conclusion, our results showed that KET presents excitatory and time-dependent effects on hippocampal EEG bands activity. KET excitatory effects on EEG were prevented by CP alone and in some situations potentiated by its combination with ALA.
Collapse
Affiliation(s)
- Luis Rafael Leite Sampaio
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Health Science Center, School of Nursing, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Lucas Teixeira Nunes Borges
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Health Science Center, School of Nursing, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Talita Matias Barbosa
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Natalia Castelo Branco Matos
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ricardo de Freitas Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Viviane Nóbrega Gularte
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Danielle Macêdo
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Otoni Cardoso do Vale
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Silvânia Maria Mendes de Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|