1
|
Ding W, Wang L, Li L, Li H, Wu J, Zhang J, Wang J. Pathogenesis of depression and the potential for traditional Chinese medicine treatment. Front Pharmacol 2024; 15:1407869. [PMID: 38983910 PMCID: PMC11231087 DOI: 10.3389/fphar.2024.1407869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Depression is a prevalent mental disorder that significantly diminishes quality of life and longevity, ranking as one of the primary causes of disability globally. Contemporary research has explored the potential pathogenesis of depression from various angles, encompassing genetics, neurotransmitter systems, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, inflammation, and intestinal flora, among other contributing factors. In addition, conventional chemical medications are plagued by delayed onset of action, persistent adverse effects, and restricted therapeutic efficacy. In light of these limitations, the therapeutic approach of traditional Chinese medicine (TCM) has gained increasing recognition for its superior effectiveness. Numerous pharmacological and clinical studies have substantiated TCM's capacity to mitigate depressive symptoms through diverse mechanisms. This article attempts to summarize the mechanisms involved in the pathogenesis of depression and to describe the characteristics of herbal medicines (including compounded formulas and active ingredients) for the treatment of depression. It further evaluates their effectiveness by correlating with the multifaceted pathogenesis of depression, thereby furnishing a reference for future research endeavors.
Collapse
Affiliation(s)
- Weixing Ding
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Lulu Wang
- School of Medicine, Changchun Sci-Tech University, Changchun, China
| | - Lei Li
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Hongyan Li
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Jianfa Wu
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, China
| | - Jing Wang
- Jilin Province Faw General Hospital, Changchun, China
| |
Collapse
|
2
|
Hernandez M, Ghislin S, Lalonde R, Strazielle C. Corticosterone effects on postnatal cerebellar development in mice. Neurochem Int 2023; 171:105611. [PMID: 37704081 DOI: 10.1016/j.neuint.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Glucocorticoids administered early in infancy can affect the architectonic organization of brain structures, particularly those with a postnatal development and resulting in long-term deficits of neuromotor function and cognition. The present study was undertaken to study the effects of daily corticosterone (CORT) injections at a pharmacological dose from postnatal days 8-15 on cerebellar and hippocampal development in mouse pups. Gene expression status for trophic factors involved in synaptic development and function as well as measures of layer thickness associated with cytochrome oxidase labelling were analyzed in the hippocampus, hypothalamus, and specific cerebellar lobules involved in motor control. Repeated CORT injections dysregulated the HPA axis with increased Crh and Nr3c1 mRNA levels in the hypothalamus and a resulting higher serum corticosterone level. The CORT treatment altered the morphology of the hippocampus and down-regulated gene transcription for corticotropin-releasing hormone (Crh) and its type-1 receptor (Crhr1), glucocorticoid receptor (Nr3c1), and brain-derived neurotrophic factor Bdnf and its receptor Ntrk2 (neurotrophic receptor tyrosine kinase 2). Similar mRNA expression decreases were found in the cerebellum for Crhr1, Crhr2, Nr3c1, and Grid2 (glutamatergic δ2 receptor). Morphological alterations and metabolic activity variations were observed in specific cerebellar lobules involved in motor control. The paramedian lobule, normally characterized by mitotic activity in the external germinative layer during the second postnatal week, was atrophic but metabolically hyperactive in its granule cell and molecular layers. On the contrary, lobules with an earlier cell proliferation displayed neurogenesis but a hypoactivated granule cell layer, suggesting a developmental delay in synaptogenesis. The results indicate that glucocorticoid, administered daily during the second postnatal week modulated the developmental programming of the hippocampus and cerebellum. These growth and metabolic alterations may lead possibly to morphological and functional changes later in life.
Collapse
Affiliation(s)
- M Hernandez
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| | - S Ghislin
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - R Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - C Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
3
|
Wang YT, Wang XL, Wang ZZ, Lei L, Hu D, Zhang Y. Antidepressant effects of the traditional Chinese herbal formula Xiao-Yao-San and its bioactive ingredients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154558. [PMID: 36610123 DOI: 10.1016/j.phymed.2022.154558] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/06/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Depression is one of the most debilitating and severe psychiatric disorders and a serious public health concern. Currently, many treatments are indicated for depression, including traditional Chinese medicinal formulae such as Xiao-Yao-San (XYS), which has effective antidepressant effects in clinical and animal studies. PURPOSE To summarize current evidence of XYS in terms of the preclinical and clinical studies and to identify the multi-level, multi-approach, and multi-target potential antidepressant mechanisms of XYS and active components of XYS by a comprehensive search of the related electronic databases. METHODS The following electronic databases were searched from the beginning to April 2022: PubMed, MEDLINE, Web of Science, Google Scholar, and China National Knowledge Infrastructure. RESULTS This review summarizes the antidepressant mechanisms of XYS and its active ingredients, which are reportedly correlated with monoamine neurotransmitter regulation, synaptic plasticity, and hypothalamic-pituitary-adrenal axis, etc. CONCLUSION: XYS plays a critical role in the treatment of depression by the regulation of several factors, including the monoaminergic systems, hypothalamic-pituitary-adrenal axis, synaptic plasticity, inflammation, brain-derived neurotrophic factor levels, brain-gut axis, and other pathways. However, more clinical and animal studies should be conducted to further investigate the antidepressant function of XYS and provide more evidence and recommendations for its clinical application. Our review provides an overview of XYS and guidance for future research direction.
Collapse
Affiliation(s)
- Ya-Ting Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao-Le Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lan Lei
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Die Hu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
Wang XL, Wang YT, Guo ZY, Zhang NN, Wang YY, Hu D, Wang ZZ, Zhang Y. Efficacy of paeoniflorin on models of depression: A systematic review and meta-analysis of rodent studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115067. [PMID: 35143936 DOI: 10.1016/j.jep.2022.115067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin, a bioactive compound extracted from the traditional Chinese herb, Paeonia lactiflora Pall, has been demonstrated to possess efficient antidepressant activity in previous studies. AIM OF THE STUDY Our systematic review and meta-analysis aimed to assess the effectiveness of paeoniflorin in relieving depressive-like behaviors in animal models. MATERIALS AND METHODS We searched for in vivo studies on the antidepressant effects of paeoniflorin in rodents using electronic databases from their inception to April 2021. The measurements of animal behavioral tests, including the sucrose consumption, forced swimming, tail suspension, and open field tests, were regarded as the outcomes. RESULTS Fourteen studies involving 416 animals met the inclusion criteria and were included in the meta-analysis. Statistical analysis revealed remarkable differences between the paeoniflorin and control groups. Furthermore, the paeoniflorin group showed great efficiency in improving depressive-like symptoms of animals in the sucrose consumption, forced swimming, tail suspension, and open field tests. CONCLUSIONS Our meta-analysis demonstrates that paeoniflorin can significantly improve depressive-like symptoms in animals and suggests that it can be a potential therapy for patients with depression in the future.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ning-Ning Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuan-Yuan Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
5
|
Noori T, Sureda A, Sobarzo-Sánchez E, Shirooie S. The Role of Natural Products in Treatment of Depressive Disorder. Curr Neuropharmacol 2022; 20:929-949. [PMID: 34979889 PMCID: PMC9881107 DOI: 10.2174/1570159x20666220103140834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Depressive disorder is one of the most common psychiatric syndromes that, if left untreated, can cause many disturbances in a person's life. Numerous factors are involved in depression, including inflammation, brain-derived neurotrophic factor (BDNF), GABAergic system, hypothalamic- pituitary-adrenal (HPA) Axis, monoamine neurotransmitters (serotonin (5-HT), noradrenaline, and dopamine). Common treatments for depression are selective serotonin reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors, but these drugs have several side effects such as anxiety, diarrhea, constipation, weight loss, and sexual dysfunctions. These agents only reduce the symptoms and temporarily reduce the rate of cognitive impairment associated with depression. As a result, extensive research has recently been conducted on the potential use of antidepressant and sedative herbs. According to the available data, herbs used in traditional medicine can be significantly effective in reducing depression, depressive symptoms and improving patients' performance. The present study provides a summary of biomarkers and therapeutic goals of depression and shows that natural products such as saffron or genipin have antidepressant effects. Some of the useful natural products and their mechanisms were evaluated. Data on various herbs and natural isolated compounds reported to prevent and reduce depressive symptoms is also discussed.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de Mallorca E-07122, Balearic Islands, Spain;,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile; Chile;,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;,Address correspondence to this author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; E-mail:
| |
Collapse
|
6
|
Antidepressant-like effects of albiflorin involved the NO signaling pathway in rats model of chronic restraint stress. Chin J Nat Med 2021; 18:872-880. [PMID: 33308610 DOI: 10.1016/s1875-5364(20)60030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Indexed: 01/26/2023]
Abstract
The depressant-like effects of albiflorin (AF) were studied on stressed chronic restraint stress (CRS) rats. Experimental rats were subjected to immobilization stress for a daily 6 h-restraining in a plastic restrainer for continuous 21 d and were treated with 30 or 15 mg·kg-1 of AF for 21 d. Control rats were maintained in completely non stressed conditions. Behavioral tests and biochemical analysis were applied to investigating a regulatory mechanism of anti-stress of AF. Treatment with AF significantly restored the depressant-like behaviors. Besides, AF increased the levels of 5-hydroxytryptophan (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), noradrenaline (NE) and dopamine (DA) in the hippocampus and increased the level of brain-derived neurotrophic factor (BDNF) in serum and protein expression in hippocampus. In addition, AF decreased the levels of hypothalamo-pituitary-adrenal (HPA) cascade, reduced the level of NO and cGMP in serum and inhibited the overexpression of 5-HT2AR mRNA and protein expression. Taken together, AF can modulate the NO-mediated network pathway in the hippocampus against stress-induced depressive-like behaviors. These physiological and behavioral changes allow rats to avoid potential deleterious effects of stress that may result from chronically elevated levels of glucocorticosteroids over days.
Collapse
|
7
|
Li P, Shen J, Wang Z, Liu S, Liu Q, Li Y, He C, Xiao P. Genus Paeonia: A comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113708. [PMID: 33346027 DOI: 10.1016/j.jep.2020.113708] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia, which comprises approximately 52 shrubs or herbaceous perennials around the world, is the only genus of the Paeoniaceae and is pervasively distributed in Asia, southern Europe, and North America. Many species of the genus Paeonia have been used for centuries in ethnomedical medical systems. AIM OF THE REVIEW The present study aims to summarize the traditional uses, clinical applications, and toxicology of the genus Paeonia, to critically evaluate the state-of-the-art phytochemical and pharmacological studies of this genus published between 2011 and 2020, and to suggest directions for further in-depth research on Paeonia medicinal resources. MATERIALS AND METHODS Popular and widely used databases such as PubMed, Scopus, Science Direct, and Google Scholar were searched using the various search strings; from these searches, a number of citations related to the traditional uses, phytochemistry, biological activities, clinical application, and toxicology of the genus Paeonia were retrieved. RESULTS The use of 21 species, 2 subspecies, and 7 varieties of the genus Paeonia as traditional herbal remedies has been reported, and many ethnomedicinal uses, such as the treatment of hematemesis, blood stasis, dysmenorrhea, amenorrhea, epilepsy, spasms, and gastritis, have been recorded. The roots and root bark are the most frequently reported parts of the plants used in medicinal applications. In phytochemical investigations, 451 compounds have been isolated from Paeonia plants to date, which contains monoterpenoid glucosides, flavonoids, tannins, stilbenes, triterpenoids and steroids, and phenols. Studies of their pharmacological activities have revealed the antioxidant, anti-inflammatory, antitumour, antibacterial, antiviral, cardiovascular protective, and neuroprotective properties of the genus Paeonia. In particular, some bioactive extracts and compounds (total glucosides of peony (TGP), paeonol, and paeoniflorin) have been used as therapeutic drugs or tested in clinical trials. In addition to the "incompatibility" of the combined use of "shaoyao" and Veratrum nigrum L. roots in traditional Chinese medicine theory, Paeonia was considered to have no obvious toxicity based on the available toxicological tests. CONCLUSION A large number of phytochemical and pharmacological reports have indicated that Paeonia is an important medicinal herb resource, and some of its traditional uses including the treatment of inflammation and cardiovascular diseases and its use as a neuroprotective agent, have been partially confirmed through modern pharmacological studies. Monoterpenoid glucosides are the main active constituents. Although many compounds have been isolated from Paeonia plants, the biological activities of only a few of these compounds (paeoniflorin, paeonol, and TGP) have been extensively investigated. Some paeoniflorin structural analogues and resveratrol oligomers have been preliminarily studied. With the exception of several species (P. suffruticosa, P. ostii, P. lactiflora, and P. emodi) that are commonly used in folk medicine, many medicinal species within the genus do not receive adequate attention. Conducting phytochemical and pharmacological experiments on these species can provide new clues that may lead to the discovery of medicinal resources. It is necessary to identify the effective phytoconstituents of crude extracts of Paeonia that displayed pharmacological activities by bioactivity-guided isolation. In addition, comprehensive plant quality control, and toxicology and pharmacokinetic studies are needed in the future studies.
Collapse
Affiliation(s)
- Pei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Zhiqiang Wang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Shuangshuang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Qing Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
8
|
Kotańska M, Mika K, Sałaciak K, Wheeler L, Sapa J, Kieć-Kononowicz K, Pytka K. Pitolisant protects mice chronically treated with corticosterone from some behavioral but not metabolic changes in corticosterone-induced depression model. Pharmacol Biochem Behav 2020; 196:172974. [PMID: 32565240 DOI: 10.1016/j.pbb.2020.172974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE Histamine H3 receptor ligands may have antidepressant and anxiolytic effects. They can also compensate for metabolic disorders, which affect glucose or triglyceride levels. In previous studies, we have shown that pitolisant, a histamine H3 receptor antagonist/inverse agonist and σ1 receptor agonist, prevented the development of certain metabolic and depressive-like disorders in mice that have been treated chronically with olanzapine. METHODS As a continuation of our previous experiments, this study aimed to investigate the antidepressant- and anxiolytic-like activity of pitolisant in mice using the corticosterone-induced depression model. The forced swim and the elevated plus maze tests were used as behavioral endpoints. We also studied the effect pitolisant had on the level of acetoacetic acid in the urine as well as the glucose tolerance and body weight of the mice that had been administered corticosterone. RESULTS Pitolisant (10 mg/kg b.w.) did not prevent depressive-like behavior in mice during the chronic corticosterone administration but did counteract anxiety-like behavior, whilst fluoxetine (10 mg/kg) was shown to protect the mice from both of these behaviors. None of the treatments that were used in the study showed an effect on the locomotor activity of the mice. Pitolisant did not prevent an increase in acetoacetic acid levels in the urine, nor did it improve glucose tolerance in the tested mice. CONCLUSION Although literature data indicates that there is significant potential for finding an antidepressant and anti-diabetic drug among the histamine H3 and σ1 receptor ligands, in our study, pitolisant was shown to only slightly compensate for corticosterone-induced abnormalities. However, further research will be required to study pitolisant's anxiolytic-like activity.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland.
| | - Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Lee Wheeler
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
9
|
Li C, Huang J, Cheng YC, Zhang YW. Traditional Chinese Medicine in Depression Treatment: From Molecules to Systems. Front Pharmacol 2020; 11:586. [PMID: 32457610 PMCID: PMC7221138 DOI: 10.3389/fphar.2020.00586] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Depression is a multigenetic or multifactorial syndrome. The central neuron system (CNS)-orientated, single target, and conventional antidepressants are insufficient and far from ideal. Traditional Chinese Medicine (TCM) has historically been used to treat depression up till today, particularly in Asia. Its holistic, multidrug, multitarget nature fits well with the therapeutic idea of systems medicine in depression treatment. Over the past two decades, although efforts have been made to understand TCM herbal antidepressants at the molecular level, many fundamental questions regarding their mechanisms of action remain to be addressed at the systems level in order to better understand the complicated herbal formulations in depression treatment. In this Mini Review, we review and discuss the mechanisms of action of herbal antidepressants and their acting targets in the pathological systems in the brain, such as monoamine neurotransmissions, hypothalamic–pituitary–adrenal (HPA) axis, neurotropic factor brain-derived neurotrophic factor (BDNF) cascade, and glutamate transmission. Some herbal molecules, constituents, and formulas are highlighted as examples to discuss their mechanisms of action and future directions for comprehensive researches at the systems level. Furthermore, we discuss pharmacological approaches to integrate the mechanism of action from the molecular level into the systems level for understanding of systems pharmacology of TCM formulations. Integration of the studies at the molecular level into the systems level not only represents a trend in TCM study but also promotes our understanding of the system-wide mechanism of action of herbal antidepressant formulations.
Collapse
Affiliation(s)
- Chan Li
- School of Life Sciences, Guangzhou University, Guangzhou, China.,Department of Pharmacology, School of Medicine Yale University, New Haven, CT, United States
| | - Junying Huang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yung-Chi Cheng
- Department of Pharmacology, School of Medicine Yale University, New Haven, CT, United States
| | - Yuan-Wei Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, China.,Department of Pharmacology, School of Medicine Yale University, New Haven, CT, United States
| |
Collapse
|
10
|
Timberlake Ii M, Roy B, Dwivedi Y. A Novel Animal Model for Studying Depression Featuring the Induction of the Unfolded Protein Response in Hippocampus. Mol Neurobiol 2019; 56:8524-8536. [PMID: 31267370 DOI: 10.1007/s12035-019-01687-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
Depression is the leading cause of disability worldwide with global distribution of 322 million people suffering from the disease. While much is understood about depression, the underlying pathophysiology is yet to be fully characterized. Recently, the unfolded protein response (UPR) has been shown to be involved in regulating key aspects like inflammation, cell death, and behavioral depression. The UPR is an evolutionarily conserved ancient response system that reacts to the stressful environmental impact on a cell; the net effect of stress to a cell is that the quality of protein folding is diminished. The UPR responds by repairing and removing misfolded proteins and, if necessary, initiates apoptosis. Here, we demonstrate that the UPR is not only involved in depression, but that its activation causes a depressive phenotype. The hippocampi of rats were directly infused with 500 ng of tunicamycin (TM), an agent that initiates the UPR by blocking N-terminal glycosylation. Three to 8 days post-surgery, the rats showed depressive behavior in escape latency, forced swim despair, sucrose preference anhedonia, and also physiological signs of depression like decreased weight. Further, these behavioral changes were associated with enhanced expression of key UPR genes and proteins in the hippocampus. We propose that this model will make an excellent tool for studying depression and for understanding pathways that are affected by the UPR which directly causes depressive behavior.
Collapse
Affiliation(s)
- Matthew Timberlake Ii
- Department of Psychiatry and Behavioral Neurobiology, SC711 Sparks Center, University of Alabama at Birmingham, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, SC711 Sparks Center, University of Alabama at Birmingham, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, SC711 Sparks Center, University of Alabama at Birmingham, 1720 7th Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
Bai Y, Song L, Dai G, Xu M, Zhu L, Zhang W, Jing W, Ju W. Antidepressant effects of magnolol in a mouse model of depression induced by chronic corticosterone injection. Steroids 2018; 135:73-78. [PMID: 29555480 DOI: 10.1016/j.steroids.2018.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/19/2023]
Abstract
Evidence showed that the stress hormone corticosterone (CORT) injection resulted in dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis implicated in major depressive disorder. Magnolol, main constituent identified in the barks of Magnolia officinalis, exerted antidepressant effects in a rat model of depression induced by chronic unpredictable mild stress in previous studies. However, its antidepressant-like effects and mechanisms have never been studied in depression model induced by CORT administration in rodents. This study aimed to investigate the antidepressant-like effects and possible mechanisms of magnolol in CORT-treated mice by utilizing a combination of behavioral and biochemical analysis. The depressive model was developed by subcutaneous injection of CORT for 21 days at a dose of 20 mg/kg. CORT administration formed depressive-like behaviors in mice, as indicated by increased immobility time in the forced swim test (FST) and tail suspension test (TST), as well as decreased sucrose intake in sucrose preference test (SPT). Moreover, we also found that CORT levels in serum were significantly increased, along with the decrease of brain-derived neurotrophic factor (BDNF) mRNA, BDNF protein, 5-hydroxytryptamine (5-HT) and norepinephrine (NE) levels in the hippocampus. Treatment with magnolol alleviated depressive-like behaviors, reduced the levels of CORT, and improved the levels of BDNF protein, 5-HT, and NE compared with those in CORT-treated mice. These findings indicated that magnolol possessed antidepressant effects in mice exposed to CORT, which might be partially related to modulate HPA axis, up-regulate BDNF expression and increase neurotransmitters levels in the hippocampus.
Collapse
Affiliation(s)
- Yongtao Bai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lihua Song
- The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Guoliang Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Meijuan Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lijing Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Weidong Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wen Jing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wenzheng Ju
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
12
|
Khan H, Amin S, Patel S. Targeting BDNF modulation by plant glycosides as a novel therapeutic strategy in the treatment of depression. Life Sci 2018; 196:18-27. [DOI: 10.1016/j.lfs.2018.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/06/2018] [Accepted: 01/12/2018] [Indexed: 12/19/2022]
|
13
|
Zhao L, Zhang Z, Zhou M, Gou X, Zeng Y, Song J, Ma W, Xu Y. A urinary metabolomics (GC-MS) strategy to evaluate the antidepressant-like effect of chlorogenic acid in adrenocorticotropic hormone-treated rats. RSC Adv 2018; 8:9141-9151. [PMID: 35541857 PMCID: PMC9078588 DOI: 10.1039/c8ra00074c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/14/2018] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MDD) is a chronic recurring illness that seriously affects human health. Chlorogenic acid (CGA), an important polyphenol extracted from Eucommia ulmoides Oliver bark, has been reported to have anti-depression, neuroprotection, memory improvement and other pharmacological effects. However, little is known about the underlying mechanisms of CGA on the treatment of depression. Here, we investigated the antidepressant-like effects of CGA on an adrenocorticotropic hormone (ACTH)-treated rat model. Thirty-two male Wistar rats were randomly divided into four groups: normal diet group (N), ACTH-treated model group (M), memantine positive control group (M + Mem) and CGA intervened group (M + CGA). Sucrose preference tests (SPTs) and open-field tests (OFTs) were performed to evaluate depressive-like behaviors. Memantine (30 mg kg−1) and CGA (500 mg kg−1) administration dramatically increased hedonic behaviors of the rats in SPT. The scores of crossing and rearing were significantly increased in the M + Mem group and M + CGA group. These results of the behaviour tests might be suggestive of antidepressant-like effects. Moreover, memantine and CGA reversed the levels of serum 5-hydroxytryptamine (5-HT), ACTH, corticotropin-releasing hormone (CRH), and dopamine (DA) that were altered in ACTH-treated rats. Based on a GC-MS metabolomic approach, significant differences in the metabolic profile were observed in ACTH-treated rats compared with the control group, as well as the M + CGA group and M + Mem group compared with the ACTH-treated group. A total of 19 metabolites were identified for the discrimination of normal rats and ACTH-treated rats, and 12 out of 19 differential metabolites were reversed with CGA intervention. Combined with pattern recognition and bioinformatics, nine perturbed metabolic pathways, including energy metabolism, neurotransmitter metabolism, and amino acid metabolism, were identified based on these metabolites. These integrative studies might give a holistic insight into the pathophysiological mechanism of the ACTH-treated depressive rat model, and also showed that CGA has antidepressant-like activities in ACTH-treated rats, providing an important drug candidate for the prevention and treatment of tricyclic anti-depressant treatment-resistant depression. Chlorogenic acid showed antidepressant-like activity in chronic ACTH-treated rats, providing a potential drug candidate for prevention and treatment of tricyclic antidepressant treatment-resistant depression. Related metabolic pathways were shown.![]()
Collapse
Affiliation(s)
- Le Zhao
- Center for Chinese Medicine Therapy and Systems Biology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Zixu Zhang
- Center for Chinese Medicine Therapy and Systems Biology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
- College of Chinese Pharmacy
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
- Key Laboratory of Medicinal Animal and Plant Resources in Qinghai-Tibet Plateau
| | - Xiaojun Gou
- Central Laboratory
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201999
- China
| | - Yang Zeng
- College of Life Science
- Qinghai Normal University
- Xining
- China
- Key Laboratory of Medicinal Animal and Plant Resources in Qinghai-Tibet Plateau
| | - Jing Song
- Center for Chinese Medicine Therapy and Systems Biology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Weini Ma
- Center for Chinese Medicine Therapy and Systems Biology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Ying Xu
- Department of Physiology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| |
Collapse
|
14
|
Hirshler Y, Doron R. Neuroplasticity-related mechanisms underlying the antidepressant-like effects of traditional herbal medicines. Eur Neuropsychopharmacol 2017; 27:945-958. [PMID: 28807619 DOI: 10.1016/j.euroneuro.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/23/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Traditional herbal medicine can offer efficacious and safe alternative pharmacotherapies for depression. The ability of an herbal medicine to produce neuroadaptive processes, that enhance neuroplasticity and cellular resilience in response to chronic stress, may point to its antidepressant potential. We suggest that among many investigated herbal medicines, those that can enhance neuroplasticity may have stronger therapeutic potential. The current article presents a summary of traditional herbal medicines, which are thought to exert antidepressant-like effects in chronic stress models via neuroplasticity enhancement. Brain-derived neurotrophic factor (BDNF) is a biomarker for neuroplasticity-related mechanisms compromised in depression and recovered by conventional antidepressants, including synaptic plasticity, cell survival, neurogenesis and spine formation. We therefore presumed that if an herbal medicine up-regulates BDNF in the hippocampus and/or prefrontal cortex (PFC), its antidepressant-like effect is mediated, at least partially, via neuroplasticity-related mechanisms. Literature search was performed using the general terms depression, stress, neuroplasticity and herbal medicines. Screening of retrieved preclinical studies revealed 30 traditional herbal medicines: 8 single herbs, 15 bioactive constituents, and 7 herbal formulas. The antidepressant-like effects of these medicines were associated with reversal of chronic stress-induced impairment in neuroplasticity, most notably by BDNF up-regulation, activation of BDNF downstream signaling pathways and increase in neurogenesis in the hippocampus and/or PFC/frontal cortex. In light of the ability of these medicines to enhance neuroplasticity, we suggest that they may be suitable candidates for clinical investigation in depressed individuals. Once their efficacy, tolerability and safety will be substantiated, they may serve as natural alternatives to conventional antidepressants.
Collapse
Affiliation(s)
- Yafit Hirshler
- Department of Education and Psychology, The Open University of Israel, Ra'anana, Israel
| | - Ravid Doron
- Department of Education and Psychology, The Open University of Israel, Ra'anana, Israel; School of Behavioral Sciences, The Academic College Tel Aviv Yaffo, Tel Aviv, Israel.
| |
Collapse
|
15
|
Lui E, Salim M, Chahal M, Puri N, Marandi E, Quadrilatero J, Satvat E. Chronic corticosterone-induced impaired cognitive flexibility is not due to suppressed adult hippocampal neurogenesis. Behav Brain Res 2017; 332:90-98. [DOI: 10.1016/j.bbr.2017.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
|
16
|
Gong MJ, Han B, Wang SM, Liang SW, Zou ZJ. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats. J Pharm Biomed Anal 2016; 123:63-73. [DOI: 10.1016/j.jpba.2016.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/21/2022]
|
17
|
Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: relevance to depression pathophysiology. Transl Psychiatry 2015; 5:e682. [PMID: 26575223 PMCID: PMC5068767 DOI: 10.1038/tp.2015.175] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/24/2022] Open
Abstract
Stress plays a major role in inducing depression, which may arise from interplay between complex cascades of molecular and cellular events that influence gene expression leading to altered connectivity and neural plasticity. In recent years, microRNAs (miRNAs) have carved their own niche owing to their innate ability to induce disease phenotype by regulating expression of a large number of genes in a cohesive and coordinated manner. In this study, we examined whether miRNAs and associated gene networks have a role in chronic corticosterone (CORT; 50 mg kg(-1) × 21 days)-mediated depression in rats. Rats given chronic CORT showed key behavioral features that resembled depression phenotype. Expression analysis revealed differential regulation of 26 miRNAs (19 upregulated, 7 downregulated) in prefrontal cortex of CORT-treated rats. Interaction between altered miRNAs and target genes showed dense interconnected molecular network, in which multiple genes were predicated to be targeted by the same miRNA. A majority of altered miRNAs showed binding sites for glucocorticoid receptor element, suggesting that there may be a common regulatory mechanism of miRNA regulation by CORT. Functional clustering of predicated target genes yielded disorders such as developmental, inflammatory and psychological that could be relevant to depression. Prediction analysis of the two most prominently affected miRNAs miR-124 and miR-218 resulted into target genes that have been shown to be associated with depression and stress-related disorders. Altogether, our study suggests miRNA-mediated novel mechanism by which chronic CORT may be involved in depression pathophysiology.
Collapse
|
18
|
Ali SH, Madhana RM, K V A, Kasala ER, Bodduluru LN, Pitta S, Mahareddy JR, Lahkar M. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice. Steroids 2015; 101:37-42. [PMID: 26048446 DOI: 10.1016/j.steroids.2015.05.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 11/24/2022]
Abstract
A mouse model of depression has been recently developed by exogenous corticosterone (CORT) administration, which has shown to mimic HPA-axis induced depression-like state in animals. The present study aimed to examine the antidepressant-like effect and the possible mechanisms of resveratrol, a naturally occurring polyphenol of phytoalexin family, on depressive-like behavior induced by repeated corticosterone injections in mice. Mice were injected subcutaneously (s.c.) with 40mg/kg corticosterone (CORT) chronically for 21days. Resveratrol and fluoxetine were administered 30min prior to the CORT injection. After 21-days treatment with respective drugs, behavioral and biochemical parameters were estimated. Since brain derived neurotrophic factor (BDNF) has been implicated in antidepressant activity of many drugs, we also evaluated the effect of resveratrol on BDNF in the hippocampus. Three weeks of CORT injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test and tail suspension test. Further, there was a significant increase in serum corticosterone level and a significant decrease in hippocampus BDNF level in CORT-treated mice. Treatment of mice with resveratrol significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. These results suggest that resveratrol produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of hippocampal BDNF levels.
Collapse
Affiliation(s)
- Syed Hamid Ali
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bhangagarh, Guwahati 781032, Assam, India
| | - Rajaram Mohanrao Madhana
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bhangagarh, Guwahati 781032, Assam, India
| | - Athira K V
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bhangagarh, Guwahati 781032, Assam, India
| | - Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bhangagarh, Guwahati 781032, Assam, India.
| | - Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bhangagarh, Guwahati 781032, Assam, India
| | - Sathish Pitta
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bhangagarh, Guwahati 781032, Assam, India
| | - Jalandhar Reddy Mahareddy
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bhangagarh, Guwahati 781032, Assam, India
| | - Mangala Lahkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bhangagarh, Guwahati 781032, Assam, India; Department of Pharmacology, Gauhati Medical College, Bhangagarh, Guwahati 781032, Assam, India
| |
Collapse
|
19
|
Lee B, Sur B, Shim I, Lee H, Hahm DH. Angelica gigas ameliorate depression-like symptoms in rats following chronic corticosterone injection. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:210. [PMID: 26138544 PMCID: PMC4490640 DOI: 10.1186/s12906-015-0746-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Repeated injection of corticosterone (CORT) induces dysregulation in the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depression. We examined the effects of Angelica gigas extract (AGN) treatment in a rat model of depressive and anxiety-like behaviors, induced by chronic CORT exposure. METHODS Male rats received 10, 20, or 50 mg/kg AGN (i.p.) 30 min prior to a daily injection of CORT for 21 consecutive days. Activation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotropin-releasing factor in the hypothalamus. RESULTS Daily AGN administration significantly reversed the depression and anxiety-like behavioral abnormalities. It also blocked increases in tyrosine hydroxylase expression in the locus coeruleus, and suppressed the decreased expression levels of brain-derived neurotrophic factor (BDNF) and its receptor TrkB mRNAs in the hippocampus. CONCLUSIONS These findings indicate that administration of AGN prior to high-dose exogenous CORT significantly improved helpless behaviors, possibly by modulating the central noradrenergic system and regulation of BDNF expression in rats. Thus, AGN may be a useful agent for the treatment or alleviation of psychiatric disorders associated with depression and anxiety disorders.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| | - Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
- BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
- BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea.
| |
Collapse
|
20
|
Fenton EY, Fournier NM, Lussier AL, Romay-Tallon R, Caruncho HJ, Kalynchuk LE. Imipramine protects against the deleterious effects of chronic corticosterone on depression-like behavior, hippocampal reelin expression, and neuronal maturation. Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:52-9. [PMID: 25681757 DOI: 10.1016/j.pnpbp.2015.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
Abstract
We have hypothesized that a downregulation of reelin and deficient maturation of adult-born hippocampal neurons are important factors in the pathogenesis of depression. This hypothesis is based on previous work showing that depression-like behavior in rats treated with protracted corticosterone develops in concert with decreased dendritic complexity in newborn hippocampal granule neurons and decreased reelin expression in the proliferative subgranular zone of the dentate gyrus. In addition, heterozygous reeler mice with approximately 50% of normal brain levels of reelin are more vulnerable to the depressogenic effects of corticosterone than wild-type mice. The purpose of this experiment was to provide pharmacological validation for the link between reelin, neuronal maturation, and depression by examining whether the deleterious effects of corticosterone on these measures could be prevented by co-administration of the antidepressant imipramine. Rats received corticosterone injections, corticosterone injections plus either 10 or 15mg/kg imipramine injections, or vehicle injections for 21 consecutive days. They were then subjected to the forced swim test to assess depression-like behavior and sacrificed for immunohistochemical examination of immature neuron number and dendritic complexity and the presence of reelin+cells. We found that corticosterone increases depression-like behavior, decreases the number of reelin+cells in the subgranular zone, and decreases the number and complexity of immature neurons in the granule cell layer. All of these behavioral and cellular phenotypes were prevented by imipramine, providing further support for the idea that reelin is involved in the pathogenesis of depression.
Collapse
Affiliation(s)
- Erin Y Fenton
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Neil M Fournier
- Department of Psychology, Trent University, Peterborough, Ontario, Canada
| | - April L Lussier
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Raquel Romay-Tallon
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hector J Caruncho
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lisa E Kalynchuk
- Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
21
|
Vasconcelos AS, Oliveira IC, Vidal LT, Rodrigues GC, Gutierrez SJ, Barbosa-Filho JM, Vasconcelos SM, de França Fonteles MM, Gaspar DM, de Sousa FC. Subchronic administration of riparin III induces antidepressive-like effects and increases BDNF levels in the mouse hippocampus. Fundam Clin Pharmacol 2015; 29:394-403. [DOI: 10.1111/fcp.12120] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Auriana S. Vasconcelos
- Department of Physiology and Pharmacology; Medicine College; Federal University of Ceara; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza Ceara Brazil
| | - Iris C.M. Oliveira
- Department of Physiology and Pharmacology; Medicine College; Federal University of Ceara; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza Ceara Brazil
| | - Laura T.M. Vidal
- Department of Physiology and Pharmacology; Medicine College; Federal University of Ceara; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza Ceara Brazil
| | - Gabriel C. Rodrigues
- Department of Physiology and Pharmacology; Medicine College; Federal University of Ceara; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza Ceara Brazil
| | - Stanley J.C. Gutierrez
- Laboratory of Pharmaceutics Technology; Federal University of Paraiba; Caixa Postal 5009 58051-970 João Pessoa Paraiba PB Brazil
| | - José M. Barbosa-Filho
- Laboratory of Pharmaceutics Technology; Federal University of Paraiba; Caixa Postal 5009 58051-970 João Pessoa Paraiba PB Brazil
| | - Silvânia M.M. Vasconcelos
- Department of Physiology and Pharmacology; Medicine College; Federal University of Ceara; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza Ceara Brazil
| | - Marta M. de França Fonteles
- Department of Physiology and Pharmacology; Medicine College; Federal University of Ceara; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza Ceara Brazil
| | - Danielle M. Gaspar
- Department of Physiology and Pharmacology; Medicine College; Federal University of Ceara; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza Ceara Brazil
| | - Francisca C.F. de Sousa
- Department of Physiology and Pharmacology; Medicine College; Federal University of Ceara; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza Ceara Brazil
| |
Collapse
|
22
|
Effects of brief pulse and ultrabrief pulse electroconvulsive stimulation on rodent brain and behaviour in the corticosterone model of depression. Int J Neuropsychopharmacol 2014; 17:1477-86. [PMID: 24607259 DOI: 10.1017/s1461145714000200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Brief pulse electroconvulsive therapy (BP ECT; pulse width 0.5-1.5 ms) is the most effective treatment available for severe depression. However, its use is associated with side-effects. The stimulus in ultrabrief pulse ECT (UBP ECT; pulse width 0.25-0.3 ms) is more physiological and has been reported to be associated with less cognitive side-effects, but its antidepressant effectiveness is not yet well established. Using electroconvulsive stimulation (ECS), the animal model of ECT, we previously reported UBP ECS to be significantly less effective than well-established BP ECS in eliciting behavioural, molecular and cellular antidepressant-related effects in naïve rats. We have now compared the effects of BP and UBP ECS in an animal model of depression related to exogenous supplementation with the stress-induced glucocorticoid hormone, corticosterone. Corticosterone administration resulted in an increase in immobility time in the forced swim test (FST) (p < 0.01) and decreases in the expression of brain-derived neurotrophic factor (BDNF) (p < 0.05) and glial fibrillary acidic protein (GFAP) (p < 0.001) in the hippocampus and frontal cortex. There was no significant difference in the duration or type of seizure induced by BP (0.5 ms) or UBP (0.3 ms) ECS. UBP ECS proved to be as effective as BP ECS at inducing a behavioural antidepressant response in the FST with a significant decrease (p < 0.001) in immobility seen following administration of ECS. Both forms of ECS also induced significant increases in BDNF protein (p < 0.01) expression in the hippocampus. BP ECS (p < 0.05) but not UBP ECS induced a significant increase in GFAP levels in the hippocampus and frontal cortex. Overall, UBP ECS effectively induced antidepressant-related behavioural and molecular responses in the corticosterone supplementation model, providing the first preclinical data on the potential role of this form of ECS to treat a depression phenotype related to elevated corticosterone.
Collapse
|
23
|
Mao QQ, Huang Z, Zhong XM, Xian YF, Ip SP. Piperine reverses the effects of corticosterone on behavior and hippocampal BDNF expression in mice. Neurochem Int 2014; 74:36-41. [DOI: 10.1016/j.neuint.2014.04.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 01/02/2023]
|
24
|
Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH. Alpha-Asarone, a Major Component of Acorus gramineus, Attenuates Corticosterone-Induced Anxiety-Like Behaviours via Modulating TrkB Signaling Process. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:191-200. [PMID: 24976758 PMCID: PMC4071171 DOI: 10.4196/kjpp.2014.18.3.191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/18/2014] [Accepted: 04/12/2014] [Indexed: 11/27/2022]
Abstract
We investigated the anxiolytic-like activity of α-asarone (AAS) from Acorus gramineus in an experimental rat model of anxiety induced by repeated administration of the exogenous stress hormone corticosterone (CORT). The putative anxiolytic effect of AAS was studied in behavioral tests of anxiety, such as the elevated plus maze (EPM) test and the hole-board test (HBT) in rats. For 21 consecutive days, male rats received 50, 100, or 200 mg/kg AAS (i.p.) 30 min prior to a daily injection of CORT. Dysregulation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Daily AAS (200 mg/kg) administration increased open-arm exploration significantly in the EPM test, and it increased the duration of head dipping activity in the HBT. It also blocked the increase in tyrosine hydroxylase (TH) expression in the locus coeruleus (LC) and decreased mRNA expression of brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, in the hippocampus. These results indicated that the administration of AAS prior to high-dose exogenous CORT significantly improved anxiety-like behaviors, which are associated with modification of the central noradrenergic system and with BDNF function in rats. The current finding may improve understanding of the neurobiological mechanisms responsible for changes in emotions induced by repeated administration of high doses of CORT or by elevated levels of hormones associated with chronic stress. Thus, AAS did exhibit an anxiolytic-like effects in animal models of anxiety.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Bongjun Sur
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea. ; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea. ; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea. ; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
25
|
Dimatelis JJ, Russell VA, Stein DJ, Daniels WM. Methamphetamine reversed maternal separation-induced decrease in nerve growth factor in the ventral hippocampus. Metab Brain Dis 2014; 29:433-9. [PMID: 24407463 DOI: 10.1007/s11011-014-9481-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
Abstract
Stress has been suggested to predispose individuals to drug abuse. The early life stress of maternal separation (MS) is known to alter the response to drugs of abuse later in life. Exposure to either stress or methamphetamine has been shown to alter neurotrophic factors in the brain. Changes in neurotrophin levels may contribute to the underlying molecular mechanisms responsible for drug use- and stress-induced behaviours. The purpose of the present study was to investigate the individual effects of MS and methamphetamine administration during adolescence and the combined effects of both stressors on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels in the dorsal and ventral hippocampus (HC) in adulthood. Methamphetamine administration (1 mg/kg, daily from postnatal day (PND) 33 to 36 and from PND 39 to 42), MS and the combination of the two stressors resulted in decreased BDNF levels in both the dorsal and ventral HC. MS decreased NGF levels in the ventral HC which was restored by methamphetamine administration in adolescence. In the dorsal HC, NGF remained unaltered by either stressor alone or in combination. We propose that the restoration of NGF levels in the ventral HC may reflect a possible compensatory mechanism in response to methamphetamine exposure in adolescence following the early life stress of MS.
Collapse
Affiliation(s)
- J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa, 7925,
| | | | | | | |
Collapse
|
26
|
Mao QQ, Huang Z, Zhong XM, Xian YF, Ip SP. Piperine reverses chronic unpredictable mild stress-induced behavioral and biochemical alterations in rats. Cell Mol Neurobiol 2014; 34:403-8. [PMID: 24401942 PMCID: PMC11488929 DOI: 10.1007/s10571-014-0025-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/01/2014] [Indexed: 12/25/2022]
Abstract
Previous studies in our laboratory have demonstrated that piperine produced antidepressant-like action in various mouse models of behavioral despair, which was related to the serotonergic system. The present study aimed to examine the behavioral and biochemical effects of piperine in rats exposed to chronic unpredictable mild stress (CUMS). The results showed that CUMS caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. In addition, it was found that serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) contents in the hippocampus and frontal cortex were significantly decreased in CUMS-treated rats. Treating the animals with piperine significantly suppressed behavioral and biochemical changes induced by CUMS. The results suggest that piperine produces an antidepressant-like effect in CUMS-treated rats, which is possibly mediated by increasing 5-HT and BDNF contents in selective brain tissues.
Collapse
Affiliation(s)
- Qing-Qiu Mao
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, 310053 Zhejiang China
| | - Zhen Huang
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, 310053 Zhejiang China
| | - Xiao-Ming Zhong
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, 310053 Zhejiang China
| | - Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong
| | - Siu-Po Ip
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong
| |
Collapse
|
27
|
Wang G, Cheng Y, Gong M, Liang B, Zhang M, Chen Y, Zhang C, Yuan X, Xu J. Systematic correlation between spine plasticity and the anxiety/depression-like phenotype induced by corticosterone in mice. Neuroreport 2014; 24:682-7. [PMID: 23839258 DOI: 10.1097/wnr.0b013e32836384db] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Unraveling the pathophysiological basis for the development of and recovery from depression is a unique challenge. Dendritic plasticity has been reported to be involved in the development of depression. We modeled an anxiety/depression-like phenotype by chronic corticosterone exposure in mice and reversed this anxiety/depression-like phenotype by long-term treatment with fluoxetine (FLX). Spine density in the hippocampus was detected by Golgi-Cox staining at five time points. The data showed that 35 days of corticosterone exposure led to a decrease in spine density in CA1, concomitant with the onset of depression. Following 25 days of treatment with FLX, the decrease in both the dendritic spine density in the hippocampus and the anxiety/depression-like phenotype induced by chronic corticosterone recovered to normal levels concomitantly. Interestingly, the total spine density changes are all mainly driven by changes in thin and stubby spines, not mushroom spines, following chronic corticosterone or FLX treatment. Our results suggest that the changes in dendritic spine density in the hippocampus may be one of the pathophysiological mechanisms underlying the development of and recovery from depression, and the neuronal plasticity of CA1 is first impaired during the development of depression.
Collapse
Affiliation(s)
- Guohua Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu W, Zhai X, Li H, Ji L. Depression-like behaviors in mice subjected to co-treatment of high-fat diet and corticosterone are ameliorated by AICAR and exercise. J Affect Disord 2014; 156:171-177. [PMID: 24388462 DOI: 10.1016/j.jad.2013.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/30/2013] [Accepted: 11/30/2013] [Indexed: 12/20/2022]
Abstract
Major depressive disorder (MDD) and type II diabetes mellitus (T2DM) are highly co-morbid, and there may be a bi-directional connection between the two. Herein, we have described a mouse model of a depression-like and insulin-resistant (DIR) state induced by the co-treatment of high-fat diet (HFD) and corticosterone (CORT). 5-Aminoimidazole-4-carboxamide-1-β-d- ribofuranoside (AICAR), a pharmacological activator of AMP-activated protein kinase (AMPK), was originally used to improve insulin resistance (IR). Interestingly, our results show a clear potential for AICAR as a putative antidepressant with a chronic action on the DIR mice. In contrast to the traditional antidepressants, AICAR as a promising antidepressant avoids reducing insulin actions of skeletal muscle in the context of long-term HFD. Exercise also produced antidepressant effects. Our data suggest that the effects of AICAR and exercise on DIR may further increase our understanding on the link between depression and diabetes.
Collapse
Affiliation(s)
- Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| | - Xiaofeng Zhai
- Department of Traditional Chinese Medicine, Changhai Hospital, Shanghai 200438, China
| | - Haipeng Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Liu Ji
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
29
|
Oka T, Okumi H, Nishida S, Ito T, Morikiyo S, Kimura Y, Murakami M. Effects of Kampo on functional gastrointestinal disorders. Biopsychosoc Med 2014; 8:5. [PMID: 24447839 PMCID: PMC3906900 DOI: 10.1186/1751-0759-8-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/30/2013] [Indexed: 12/14/2022] Open
Abstract
This article reviews the effectiveness of Kampo (traditional Japanese herbal medicine) in the treatment of functional gastrointestinal disorders, especially functional dyspepsia (FD) and irritable bowel syndrome (IBS). The results of four randomized, controlled trials (RCTs) suggested the usefulness of rikkunshito in relieving the subjective symptoms of patients with FD. Rikkunshito significantly improved not only gastric symptoms, such as epigastiric discomfort, but also extra-gastric symptoms, such as general fatigue, when compared with control drugs. The therapeutic effects of rikkunshito were more evident when it was prescribed to patients with “kyosho”, i.e., low energy. Two RCTs suggested the efficacy of keishikashakuyakuto for IBS. Basic research studies have demonstrated that these Kampo medicines have multiple sites of action to improve subjective symptoms. For example, rikkunshito improves gastric motility dysfunction, including impaired adaptive relaxation and delayed gastric emptying, gastric hypersensitivity, and anorexia via facilitation of ghrelin secretion. It also exhibits anti-stress effects, i.e., it attenuates stress-induced exacerbation of gastric sensation and anorexia, as well as the hypothalamic-pituitary-adrenocortical axis and sympathetic activation. Keishikashakuyakuto exhibited not only an antispasmodic effect on intestinal smooth muscle, but also antidepressant-like effects. Case series suggest that other Kampo prescriptions are also effective for FD and IBS. However, further studies are necessary to evaluate their efficacy.
Collapse
Affiliation(s)
- Takakazu Oka
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Metabonomics Combined with UPLC-MS Chemical Profile for Discovery of Antidepressant Ingredients of a Traditional Chinese Medicines Formula, Chaihu-Shu-Gan-San. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:487158. [PMID: 23662139 PMCID: PMC3638638 DOI: 10.1155/2013/487158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 12/30/2022]
Abstract
This study proposed a new strategy for uncovering the active chemical constituents of a traditional Chinese medicines (TCMs) formula, Chaihu-Shu-Gan-San (CSGS). Metabonomics and chemical profile were integrated in combination with the multivariate statistical analysis (MVA) to discover the chemical constituents which contribute to the antidepressant effect of CSGS. Based upon the difference between CSGS and QZ (CSGS without Zhi-Qiao) extracts in the chemical profiles and the regulations of metabolic disturbances induced by CUMS, synephrine, naringin, hesperidin, and neohesperidin were recognized as the active constituents of CSGS from Zhi-qiao responsible for those missing regulations of CSGS when Zhi-Qiao was subtracted from the whole formula. They participated in the regulations of the deviated metabolites 2-4, 10-14, and 22-25, involved in metabolic pathways of ketone bodies synthesis, phenylalanine, tyrosine and tryptophan biosynthesis, valine, aspartate, glutamate metabolism, and glycolysis/gluconeogenesis. Furthermore, the assay of MAO-A activity confirmed the potential antidepressant effect of naringin and its active sites on the MAO-A was inferred by molecular docking study. The integration of metabonomics and chemical profile was proved to be a useful strategy for uncovering what the active chemical constituents in TCM formula are and how they make contributions for the efficacy of the formula.
Collapse
|
31
|
Nobiletin Ameliorates the Deficits in Hippocampal BDNF, TrkB, and Synapsin I Induced by Chronic Unpredictable Mild Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:359682. [PMID: 23573124 PMCID: PMC3613093 DOI: 10.1155/2013/359682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/11/2022]
Abstract
Background. Our previous study has demonstrated that nobiletin could reverse the behavioral alterations in stressed mice. However, the relation of its antidepressant-like action with neurotrophic molecular expression remains unknown. This study aimed to explore the antidepressant-like mechanism of nobiletin related to the neurotrophic system in rats exposed to chronic unpredictable mild stress (CUMS). Methods. Depressive-like anhedonia (assessed by sucrose preference) and serum corticosterone secretion were evaluated in the CUMS, followed by brain-derived neurotrophic factor (BDNF), its tropomyosin-related kinase receptor B (TrkB), and the downstream target synapsin I expressions in the hippocampus. Results. Anhedonia, which occurred within week 2, was rapidly ameliorated by nobiletin. While fluoxetine needed additional 2 weeks to improve the anhedonia. In addition, nobiletin administration for 5 weeks significantly ameliorated CUMS-induced increase in serum corticosterone levels. Furthermore, we also found that CUMS-induced deficits of hippocampal BDNF, TrkB, and synapsin I were ameliorated by nobiletin.
Conclusions. Taken together, these findings suggest that nobiletin produces rapidly acting antidepressant-like responses in the CUMS and imply that BDNF-TrkB pathway may play an important role in the antidepressant-like effect of nobiletin.
Collapse
|
32
|
Yi LT, Li J, Li HC, Zhou Y, Su BF, Yang KF, Jiang M, Zhang YT. Ethanol extracts from Hemerocallis citrina attenuate the decreases of brain-derived neurotrophic factor, TrkB levels in rat induced by corticosterone administration. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:328-34. [PMID: 22995443 DOI: 10.1016/j.jep.2012.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/27/2012] [Accepted: 09/06/2012] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemerocallis citrina, a traditional herbal medicine, has been used for the improvement of behavioral and emotional status in Eastern-Asia countries. AIM OF THE STUDY Our previous studies have demonstrated that the ethanol extracts of H. citrina flowers (HCE) reversed the behavioral alterations and monoamine neurotransmitter dysfunctions in stressed mice. However, the relation of its antidepressant-like action with neurotrophic molecular expressions remains unknown. MATERIALS AND METHODS To clarify this, we explored the effect of HCE (32.5, 65, 130mg/kg, p.o.) on the behavior, brain-derived neurotrophic factor (BDNF) and its receptor (TrkB) in depression-like rats induced by exogenous administration of the stress hormone corticosterone (40mg/kg, s.c.). RESULTS It was observed that repeated administration of corticosterone induced an elevation on the serum corticosterone levels, which caused the abnormalities observed in the sucrose preference test and forced swimming test (FST). Administration of HCE (65 and 130mg/kg) reversed the changes above and up-regulated the BDNF and TrkB receptor protein expressions in the brain region of frontal cortex and hippocampus. CONCLUSION These findings confirm that HCE produce an antidepressant-like effect in corticosterone-induced depression-like model of rats and this effect is at least partly mediated by BDNF-TrkB signaling in the frontal cortex and hippocampus.
Collapse
Affiliation(s)
- Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian province, PR China.
| | | | | | | | | | | | | | | |
Collapse
|