1
|
Dumitru C, Iacob CI, Zamfirache F, Folostina R, Radu BM. Sleep deprivation and memory consolidation in rats: A meta-analysis of experimental studies. Behav Brain Res 2025; 487:115591. [PMID: 40216163 DOI: 10.1016/j.bbr.2025.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Sleep deprivation (SD) continues to be used today to examine the role of sleep across diverse cognitive domains. Extensive research has been conducted to investigate the impact of SD on memory, though findings across studies have been inconsistent. This meta-analysis systematically assessed the effects of SD on memory performance in rats and identified the factors that may moderate these effects. PubMed, PsychInfo, Google scholar, and Scopus databases were used to search for studies. Out of 128 identified studies, 25 studies with 78 reports were included in the final analysis. A random effects meta-analysis was performed, along with subgroup analysis and meta-regression. The results showed that overall, SD has a negative impact on memory in rats. Additionally, sex, memory response type, and number of learning trials for spatial tasks can act as moderators of the relationship between SD and memory. The type of memory task and assessment method used contributed to variability in observed outcomes, with hippocampus-dependent tasks showing the most pronounced memory impairments. The number of learning trials for spatial tasks also moderated the effects, with more trials mitigating the impact of SD. These findings reinforce the role of sleep in memory, particularly for hippocampus-dependent tasks.
Collapse
Affiliation(s)
- Cristina Dumitru
- Department of Educational Sciences, Faculty of Educational Sciences, Social Sciences and Psychology, The National University of Science and Technology POLITEHNICA Bucharest, Pitesti University Center, Targul din Vale, nr.1, Pitesti, Romania.
| | - Claudia Iuliana Iacob
- Department of Applied Psychology and Psychotherapy, Faculty of Psychology and Educational Sciences, University of Bucharest, Panduri Street no. 90, sector 5, Bucharest, Romania.
| | - Florin Zamfirache
- Department of Anatomy, Animal Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei, no. 91-95, Bucharest, Romania.
| | - Ruxandra Folostina
- Department of Special Education, Faculty of Psychology and Educational Sciences, University of Bucharest, Panduri Street no. 90, sector 5, Bucharest, Romania.
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei, no. 91-95, Bucharest, Romania.
| |
Collapse
|
2
|
Hadjimarkou MM, Mong JA. Editorial: Sex differences in sleep and circadian rhythms. Front Neurosci 2025; 19:1583842. [PMID: 40201192 PMCID: PMC11976463 DOI: 10.3389/fnins.2025.1583842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Affiliation(s)
| | - Jessica A. Mong
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Zhang Y, Chen F, Yu M, Li Y, Chen S, Choudhary MI, Liu X, Jiang N. Sex differences in reward-based operant conditioning performance and neurotransmitter changes following chronic sleep restriction stress in rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:3. [PMID: 40022197 PMCID: PMC11871611 DOI: 10.1186/s12993-025-00268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Sleep deprivation significantly impairs cognitive function, which disrupts daily life. However, sex differences in these impairments are not well understood, as most preclinical studies primarily use male animals, neglecting potential differences between sexes. This study aims to investigate sex-specific differences in cognitive function under sleep deprivation using reward-based operant conditioning tasks. RESULTS Sprague-Dawley rats were pre-trained on a lever-press task and subsequently divided into control and chronic sleep restriction (CSR) groups. The CSR group underwent 14 days of sleep restriction. After CSR modeling, rats were assessed using the open field test, retraining on the lever-pressing task, signal discrimination task, and extinction task to evaluate motor abilities, memory formation, learning, and cognitive flexibility. CSR significantly impaired task performance in both sexes, with rats requiring more time and exhibiting lower accuracy. In the signal discrimination task, male rats showed longer feeding latency and lower accuracy compared to females. CSR also specifically increased the frequency of operant responses in male rats. In the extinction task, CSR enhanced exploration time and frequency in both sexes, with females exhibiting significantly higher exploration frequencies than males. Biochemically, CSR induced sex-specific alterations, including elevated serum MDA and MAO levels in males and increased serotonin, dopamine, and epinephrine in both sexes. Although activation was observed in metabolites of the tryptophan-kynurenine pathway, sex differences were evident in the kynurenic acid metabolism levels in the prefrontal cortex. CONCLUSIONS CSR impairs cognitive function in both male and female rats, with significant sex differences observed. Male CSR rats exhibited impaired signal discrimination, while CSR impaired extinction learning in female rats. These impairments are accompanied by CSR-induced oxidative stress, neurotransmitter dysregulation, and disturbances in the tryptophan metabolic pathway. These findings underscore the importance of considering sex differences in understanding the effects of sleep deprivation on cognitive function and developing targeted intervention strategies.
Collapse
Affiliation(s)
- Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Chen
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mubiao Yu
- Testing Center, SHINVA Medical Instrument Co., Ltd, Shandong, China
| | - Yinghui Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Shanguang Chen
- National Laboratory of Human Factors Engineering, State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Muhammad Iqbal Choudhary
- International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Xinmin Liu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China.
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Balsamo F, Meneo D, Berretta E, Baglioni C, Gelfo F. Could sleep be a brain/cognitive/neural reserve-builder factor? A systematic review on the cognitive effects of sleep modulation in animal models. Neurosci Biobehav Rev 2025; 169:106015. [PMID: 39828234 DOI: 10.1016/j.neubiorev.2025.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The brain/cognitive/neural reserve concept suggests that lifelong experiences, from early life through adulthood, make the brain more resilient to neuronal damage. Modifiable lifestyle factors, such as sleep, can support the development and enhance such a reserve, helping to counteract age- or disease-related brain changes and their impact on cognition. Sleep plays a crucial role in cognitive functioning, and disruptions or disorders may increase neurodegenerative risks. This systematic review aims to explore how functional and disturbed sleep impacts cognitive functions and neuromorphological mechanisms in rodents, aiming to better understand its role in brain/cognitive/neural reserve development. This systematic review, registered on PROSPERO (ID: CRD42023423901) and conducted according to PRISMA-P guidelines, searched PubMed, Scopus, Web of Science, and Embase databases for studies up to June 2022, with terms related to sleep, rodents, and cognitive functions. Of the 28,666 articles identified, 142 met the inclusion criteria. Main results showed significant cognitive decline after sleep deprivation, especially in memory performance. These findings supports the importance of sleep as a critical factor in modulating brain/cognitive/neural reserve.
Collapse
Affiliation(s)
- Francesca Balsamo
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy; IRCCS Fondazione Santa Lucia, Rome 00179, Italy.
| | - Debora Meneo
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy
| | | | - Chiara Baglioni
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy; Department of Clinical Psychology and Psychophysiology/Sleep, Medicine, Centre for Mental Disorders, University Medical Centre, Freiburg, Germany
| | - Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy; IRCCS Fondazione Santa Lucia, Rome 00179, Italy.
| |
Collapse
|
5
|
Martínez-Magaña CJ, Murbartián J. Estrogen receptor α regulates the IKKs/NF-kB activity involved in the development of mechanical allodynia induced by REM sleep deprivation in rats. Brain Res 2024; 1845:149269. [PMID: 39384127 DOI: 10.1016/j.brainres.2024.149269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Several signaling pathways that converge in NF-kB activation have been linked to developing and maintaining different types of pathological pain. In addition, some mechanisms implied in the establishment of chronic pain have been demonstrated to have a sex-dependent correlation. This study aimed to determine if the IKKs/NF-kB signaling pathway is involved in establishing REM sleep deprivation (REMSD) induced mechanical allodynia in rats and its possible regulation depending on estradiol and estrogen receptors. Intrathecal administration of BMS-345541 or minocycline, two drugs that reduce the IKKs/NF-kB activity, avoided the development of mechanical allodynia in female but not in male rats subjected to 48 h of REMSD. Ovariectomy in female rats abolished the effect of BMS-345541 and minocycline. Meanwhile, the 17-β-estradiol restitution restored it. Intrathecal administration of MPP, a selective ERα antagonist, but not PHTPP, a selective ERβ antagonist, avoided the effect of BMS-345541 in female rats without hormonal manipulation. In addition, the transient run-down of ERα in female rats abolished the effect of BMS-345541. All data suggest an important role of ERα as a regulator of the IKKs/NF-kB activity. REMSD increased the ERα protein expression in the dorsal root ganglia and the dorsal spinal cord in females but not in male rats. Interestingly, ERα activation or ERα overexpression allowed the effect of BMS-345541 in male rats. Data suggest an important regulatory role of ERα in the IKKs/NF-kB activity on establishing mechanical allodynia induced by REMSD in female rats.
Collapse
Affiliation(s)
| | - Janet Murbartián
- Pharmacobiology Department, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
6
|
Li G, Zhong D, Zhang N, Dong J, Yan Y, Xu Q, Xu S, Yang L, Hao D, Li CSR. The inter-related effects of alcohol use severity and sleep deficiency on semantic processing in young adults. Neuroscience 2024; 555:116-124. [PMID: 39059740 DOI: 10.1016/j.neuroscience.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Both alcohol misuse and sleep deficiency are associated with deficits in semantic processing. However, alcohol misuse and sleep deficiency are frequently comorbid and their inter-related effects on semantic processing as well as the underlying neural mechanisms remain to be investigated. METHODS We curated the Human Connectome Project data of 973 young adults (508 women) to examine the neural correlates of semantic processing in link with the severity of alcohol use and sleep deficiency. The latter were each evaluated using the first principal component (PC1) of principal component analysis of all drinking metrics and the Pittsburgh Sleep Quality Index (PSQI). We employed path modeling to elucidate the interplay among clinical, behavioral, and neural variables. RESULTS Among women, we observed a significant negative correlation between the left precentral gyrus (PCG) and PSQI scores. Mediation analysis revealed that the left PCG activity fully mediated the relationship between PSQI scores and word comprehension in language tasks. In women alone also, the right middle frontal gyrus (MFG) exhibited a significant negative correlation with PC1. The best path model illustrated the associations among PC1, PSQI scores, PCG activity, and MFG activation during semantic processing in women. CONCLUSIONS Alcohol misuse may lead to reduced MFG activation while sleep deficiency hinder semantic processing by suppressing PCG activity in women. The pathway model underscores the influence of sleep quality and alcohol consumption severity on semantic processing in women, suggesting that sex differences in these effects need to be further investigated.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Dandan Zhong
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Sleep Center, Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Dong
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Sleep Center, Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Yan
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qixiao Xu
- Physical Education Department, Beijing University of Technology, Beijing, China
| | - Shuchun Xu
- Traditional Chinese Medicine Department, the University Hospital of Beijing University of Technology, Beijing, China
| | - Lin Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Dongmei Hao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Deng Q, Li Y, Sun Z, Gao X, Zhou J, Ma G, Qu WM, Li R. Sleep disturbance in rodent models and its sex-specific implications. Neurosci Biobehav Rev 2024; 164:105810. [PMID: 39009293 DOI: 10.1016/j.neubiorev.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Sleep disturbances, encompassing altered sleep physiology or disorders like insomnia and sleep apnea, profoundly impact physiological functions and elevate disease risk. Despite extensive research, the underlying mechanisms and sex-specific differences in sleep disorders remain elusive. While polysomnography serves as a cornerstone for human sleep studies, animal models provide invaluable insights into sleep mechanisms. However, the availability of animal models of sleep disorders is limited, with each model often representing a specific sleep issue or mechanism. Therefore, selecting appropriate animal models for sleep research is critical. Given the significant sex differences in sleep patterns and disorders, incorporating both male and female subjects in studies is essential for uncovering sex-specific mechanisms with clinical relevance. This review provides a comprehensive overview of various rodent models of sleep disturbance, including sleep deprivation, sleep fragmentation, and circadian rhythm dysfunction. We evaluate the advantages and disadvantages of each model and discuss sex differences in sleep and sleep disorders, along with potential mechanisms. We aim to advance our understanding of sleep disorders and facilitate sex-specific interventions.
Collapse
Affiliation(s)
- Qi Deng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiang Gao
- Shanxi Bethune Hospital, Shanxi, China
| | | | - Guangwei Ma
- Peking University Sixth Hospital, Beijing, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Martínez-Magaña CJ, Muñoz-Castillo PA, Murbartián J. Spinal bestrophin-1 and anoctamin-1 channels have a pronociceptive role in the tactile allodynia induced by REM sleep deprivation in rats. Brain Res 2024; 1834:148915. [PMID: 38582414 DOI: 10.1016/j.brainres.2024.148915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.
Collapse
Affiliation(s)
| | | | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Sede sur, Mexico City, Mexico.
| |
Collapse
|
9
|
Peng B, Foilb AR, Manasian Y, Li Y, Deng X, Meloni EG, Ressler KJ, Carlezon WA, Bolshakov VY. Intra-amygdala circuits of sleep disruption-induced anxiety in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594863. [PMID: 38798391 PMCID: PMC11118584 DOI: 10.1101/2024.05.19.594863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Combining mouse genetics, electrophysiology, and behavioral training and testing, we explored how sleep disruption may affect the function of anxiety-controlling circuits, focusing on projections from the basolateral nucleus of the amygdala (BLA) to CRF-positive cells in the lateral division of the central amygdala (CeL). We found in Crh-IRES-Cre::Ai14(tdTomato) reporter female mice that 6 hours of sleep disruption during their non-active (light) cycle may be anxiogenic. Notably, the AMPAR/NMDAR EPSC amplitude ratio at the BLA inputs to CRF-CeL cells (CRF CeL ), assessed with whole-cell recordings in ex vivo experiments, was enhanced in slices from sleep-disrupted mice, whereas paired-pulse ratio (PPR) of the EPSCs induced by two closely spaced presynaptic stimuli remained unchanged. These findings indicate that sleep disruption-associated synaptic enhancements in glutamatergic projections from the BLA to CRF-CeL neurons may be postsynaptically expressed. We found also that the excitation/inhibition (E/I) ratio in the BLA to CRF CeL inputs was increased in sleep-disrupted mice, suggesting that the functional efficiency of excitation in BLA inputs to CRF CeL cells has increased following sleep disruption, thus resulting in their enhanced activation. The latter could be translated into enhanced anxiogenesis as activation of CRF cells in the CeL was shown to promote anxiety-like behaviors.
Collapse
|
10
|
Shi T, Shah I, Dang Q, Taylor L, Jagannath A. Sex-specific regulation of the cortical transcriptome in response to sleep deprivation. Front Neurosci 2024; 17:1303727. [PMID: 38504908 PMCID: PMC10948409 DOI: 10.3389/fnins.2023.1303727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/07/2023] [Indexed: 03/21/2024] Open
Abstract
Multiple studies have documented sex differences in sleep behaviour, however, the molecular determinants of such differences remain unknown. Furthermore, most studies addressing molecular mechanisms have been performed only in males, leaving the current state of knowledge biased towards the male sex. To address this, we studied the differences in the transcriptome of the cerebral cortex of male and female C57Bl/6 J mice after 6 h of sleep deprivation. We found that several genes, including the neurotrophin growth factor Bdnf, immediate early genes Fosb and Fosl2, and the adenylate cyclase Adcy7 are differentially upregulated in males compared to females. We identified the androgen-receptor activating transcription factor EZH2 as the upstream regulatory element specifying sex differences in the sleep deprivation transcriptome. We propose that the pathways downstream of these transcripts, which impact on cellular re-organisation, synaptic signalling, and learning may underpin the differential response to sleep deprivation in the two sexes.
Collapse
Affiliation(s)
- Tianyi Shi
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, United Kingdom
| | - Ishani Shah
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Quang Dang
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, United Kingdom
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Diao H, Li Y, Sun W, Zhang J, Wang M, Chen Y, Zhou F, Li X. REM sleep deprivation induced by the modified multi-platform method has detrimental effects on memory: A systematic review and meta-analysis. Behav Brain Res 2023; 454:114652. [PMID: 37652237 DOI: 10.1016/j.bbr.2023.114652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
The modified multi-platform method (MMPM) is used to induce animal models of paradoxical sleep deprivation and impairs memory in rodents. However, variations in MMPM protocols have contributed to inconsistent conclusions across studies. This meta-analysis aimed to assess the variations of the MMPM and their effects on memory in rats and mice. A comprehensive search identified 60 studies, and 50 were included in our meta-analysis. Overall, the meta-analysis showed that the MMPM significantly reduced the percentage of time spent in target quadrants (I2 = 54 %, 95 % confidence interval [CI] = [-1.83, -1.18]) and the number of platform-area crossings (I2 = 26 %, 95 % CI = [-1.71, -1.07]) in the Morris water maze (MWM) and shortened the latency to entering the dark compartment in the passive avoidance task (I2 = 68 %, 95 % CI = [-1.36, -0.57]), but it increased the number of errors in the radial arm water maze (RAWM) (I2 = 59 %, 95 % CI = [1.29, 2.07]). Additionally, mice performed worse on the MWM, whereas rats performed worse on the passive avoidance task. More significant memory deficits were found in cross-learning and post-learning MMPM in the MWM and RAWM, respectively. This study provided evidence that the MMPM can be used in preclinical studies of memory deficits induced by paradoxical sleep deprivation.
Collapse
Affiliation(s)
- Huaqiong Diao
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yiming Li
- Department of Chinese Medicine, Zibo Central Hospital, Shandong, China
| | - Wenjun Sun
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wang
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Chen
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fen Zhou
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaoli Li
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
12
|
Shahveisi K, Zarei SA, Naderi S, Khodamoradi M. Role of sex hormones in the effects of sleep deprivation on methamphetamine reward memory. Neurosci Lett 2023; 814:137440. [PMID: 37586558 DOI: 10.1016/j.neulet.2023.137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Sleep deficiency is known as an important risk factor for relapse to drug abuse, especially for the powerful psychostimulant methamphetamine (METH). On the other hand, both drug addiction and sleep neurobiology are affected by sex hormones. We, therefore, aimed to examine the probable effects of sleep deprivation (SD) on methamphetamine (METH) reward memory in male and female rats. Moreover, we asked if sex hormones influence the effects of SD on METH reward memory. Adult male and female Wistar rats were divided into two main groups, sham and gonadectomized groups. Three weeks later, they were conditioned to receive METH (2 mg/kg, i.p.) in the conditioned place preference. METH reward memory was then reinstated following a 10-day extinction period. SD was induced for 72 h, either before or after extinction, in different groups. In gonadectomized animals, they daily received either subcutaneous administration of estrogen (5 μg/0.1 ml oil) or progesterone (2 mg/0.1 ml oil) or dihydrotestosterone (25 mg/0.1 ml oil) for thirteen days, from post-conditioning day to reinstatement session. We found that SD facilitated relapse to METH reward memory, depending on the time interval between SD and METH reinstatement. Furthermore, we found that estrogen and SD showed synergistic effects to facilitate METH reward memory, whereas testosterone and progesterone revealed inhibitory effects in the controls, but not in the SD, animals. Our findings would seem to suggest that sex hormones should be considered as determinant factors to manage METH abuse and relapse to METH seeking/taking behavior, especially for those with sleep deficiency.
Collapse
Affiliation(s)
- Kaveh Shahveisi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahab A Zarei
- Center for Excellence in Brain Science and Intelligence Technology (Institute of Neuroscience), Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | - Safoura Naderi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
14
|
Ling Y, Yuan S, Huang X, Tan S, Huang T, Xu A, Lyu J. The association of night shift work with the risk of all-cause dementia and Alzheimer's disease: a longitudinal study of 245,570 UK Biobank participants. J Neurol 2023:10.1007/s00415-023-11672-8. [PMID: 37022480 DOI: 10.1007/s00415-023-11672-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND The purpose of this research was to investigate a possible link between night shift work and the development of all-cause dementia and Alzheimer's disease (AD), as well as determine the contribution of night shift work, genetic susceptibility to AD. METHODS This study was conducted using the UK Biobank database. 245,570 participants with a mean follow-up length of 13.1 years were included. A Cox proportional hazards model was used to investigate the link between night shift work and the development of all-cause dementia or AD. RESULTS We counted a total of 1248 participants with all-cause dementia. In the final multivariable adjusted model, the risk of dementia was highest in always night shift workers (HR 1.465, 95% CI 1.058-2.028, P = 0.022), followed by irregular shift workers (HR 1.197, 95% CI 1.026-1.396, P = 0.023). AD events were recorded in 474 participants during the follow-up period. After final multivariate adjustment of model, always night shift workers remained at the highest risk (HR 2.031, 95% CI 1.269-3.250, P = 0.003). Moreover, always night shift workers were associated with a higher risk of AD in both low, intermediate and high AD-GRS groups. CONCLUSIONS Always night shift work had a higher risk of developing all-cause dementia and AD. Irregular shift workers had a higher risk of developing all-cause dementia than no shift workers. Always night shift work had a higher AD risk, regardless of whether they had a high, intermediate or low AD-GRS.
Collapse
Affiliation(s)
- Yitong Ling
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Shiqi Yuan
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xiaxuan Huang
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Shanyuan Tan
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Tao Huang
- Department of Clinical Research, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Anding Xu
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China.
| | - Jun Lyu
- Department of Clinical Research, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Rajizadeh MA, Aminizadeh AH, Esmaeilpour K, Bejeshk MA, Sadeghi A, Salimi F. Investigating the effects of Citrullus colocynthis on cognitive performance and anxiety-like behaviors in STZ-induced diabetic rats. Int J Neurosci 2023; 133:343-355. [PMID: 33848216 DOI: 10.1080/00207454.2021.1916743] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Diabetes can impair cognitive performance and lead to dementia. Patients with type 1 diabetes mellitus (T1DM) are reported with different levels of cognitive dysfunctions in various cognitive domains ranging from general intellectual testing to specific deficits with visuospatial abilities, motor speed, writing, attention, reading, and psychomotor efficiency. The present study aimed to investigate the effect of Citrullus colocynthis on cognitive functions.Methods: A total of 42 male Wistar rats (3-4 months old and weighing 200-250 g) were tested in the current study. Rats were randomly allocated into 3 groups of control, Diabetes, and Diabetes + Drug. The diabetic rats received Citrullus colocynthis extraction orally. The behavioral tests included the open field, elevated plus maze (EPM), novel object recognition (NOR), passive avoidance tests, and Morris Water Maze (MWM) tests. Data were analyzed using student and paired t-tests via SPSS software version 16.Results: Our results showed the protective effects of Citrullus colocynthis administration against cognitive impairments. This is followed by STZ-induced diabetes in the MWM, novel object recognition, and passive avoidance tasks. Also, it was found that Citrullus colocynthis improved anxiety in diabetic rats.Conclusion According to the findings of this study, the administration of 200 mg/kg C. colocynthis once per day for 40 days can lead to ameliorated cognitive impairments and antidiabetic effects such as increasing body weight and decreasing FBS.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Hashem Aminizadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fouzieh Salimi
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Zhou L, Kong J, Li X, Ren Q. Sex differences in the effects of sleep disorders on cognitive dysfunction. Neurosci Biobehav Rev 2023; 146:105067. [PMID: 36716906 DOI: 10.1016/j.neubiorev.2023.105067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Sleep is an essential physiological function that sustains human life. Sleep disorders involve problems with the quality, duration, and abnormal behaviour of sleep. Insomnia is the most common sleep disorder, followed by sleep-disordered breathing (SDB). Sleep disorders often occur along with medical conditions or other mental health conditions. Of particular interest to researchers is the role of sleep disorders in cognitive dysfunction. Sleep disorder is a risk factor for cognitive dysfunction, yet the exact pathogenesis is still far from agreement. Little is known about how sex differences influence the changes in cognitive functions caused by sleep disorders. This narrative review examines how sleep disorders might affect cognitive impairment, and then explores the sex-specific consequences of sleep disorders as a risk factor for dementia and the potential underlying mechanisms. Some insights on the direction of further research are also presented.
Collapse
Affiliation(s)
- Lv Zhou
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jingting Kong
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaoli Li
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China
| | - Qingguo Ren
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China.
| |
Collapse
|
17
|
The effect of combination pretreatment of donepezil and environmental enrichment on memory deficits in amyloid-beta-induced Alzheimer-like rat model. Biochem Biophys Rep 2022; 32:101392. [DOI: 10.1016/j.bbrep.2022.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
|
18
|
Harrington YA, Parisi JM, Duan D, Rojo-Wissar DM, Holingue C, Spira AP. Sex Hormones, Sleep, and Memory: Interrelationships Across the Adult Female Lifespan. Front Aging Neurosci 2022; 14:800278. [PMID: 35912083 PMCID: PMC9331168 DOI: 10.3389/fnagi.2022.800278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/09/2022] [Indexed: 01/26/2023] Open
Abstract
As the population of older adults grows, so will the prevalence of aging-related conditions, including memory impairments and sleep disturbances, both of which are more common among women. Compared to older men, older women are up to twice as likely to experience sleep disturbances and are at a higher risk of cognitive decline and Alzheimer's disease and related dementias (ADRD). These sex differences may be attributed in part to fluctuations in levels of female sex hormones (i.e., estrogen and progesterone) that occur across the adult female lifespan. Though women tend to experience the most significant sleep and memory problems during the peri-menopausal period, changes in memory and sleep have also been observed across the menstrual cycle and during pregnancy. Here, we review current knowledge on the interrelationships among female sex hormones, sleep, and memory across the female lifespan, propose possible mediating and moderating mechanisms linking these variables and describe implications for ADRD risk in later life.
Collapse
Affiliation(s)
- Yasmin A. Harrington
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeanine M. Parisi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Darlynn M. Rojo-Wissar
- The Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Center for Behavioral and Preventive Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Johns Hopkins Center on Aging and Health, Baltimore, MD, United States
| |
Collapse
|
19
|
Bajaj P, Kaur G. Acute Sleep Deprivation-Induced Anxiety and Disruption of Hypothalamic Cell Survival and Plasticity: A Mechanistic Study of Protection by Butanol Extract of Tinospora cordifolia. Neurochem Res 2022; 47:1692-1706. [PMID: 35230647 DOI: 10.1007/s11064-022-03562-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022]
Abstract
Since sleep is a key homeostatic phenomenon of the body, therefore understanding the complex etiology of the neurological outcome of sleep deprivation (SD) such as anxiety, depression, cognitive dysfunctions, and their management is of utmost importance. The findings of the current study encompass the neurobehavioral as well as hormonal, and neuroinflammatory changes in serum and hypothalamus region of the brain as an outcome of acute SD and their amelioration by pre-treatment with butanol extract of Tinospora cordifolia. SD group animals showed anxiety-like behavior as evident from Elevated Plus Maze data and higher serum cortisol levels, whereas, pre-treatment with B-TCE showed anxiolytic activity and also reduced cortisol levels which was corroborated by an increase in leptin and insulin levels. Further, SD induced elevation of serum pro-inflammatory cytokines IL-6, TNF-α, IL-1β, and MCP-1 and subsequent activation of astroglial cells in the hypothalamus was suppressed in B-TCE pre-treated animals. The current findings suggest that besides the cortical structures, hypothalamus region's synaptic plasticity and cell survival are adversely impacted by acute SD. Further active ingredients present in B-TCE may be useful for the management of SD-induced anxiety, systemic inflammation, and neuroinflammation by targeting hypothalamic BDNF-TrkB/PI3K-Akt pathways.
Collapse
Affiliation(s)
- Payal Bajaj
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Gurcharan Kaur
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
20
|
Khodaverdiloo A, Farhadi M, Jameie M, Jameie SB, Pirhajati V. Neurogenesis in the rat neonate's hippocampus with maternal short-term REM sleep deprivation restores by royal jelly treatment. Brain Behav 2021; 11:e2423. [PMID: 34807519 PMCID: PMC8671766 DOI: 10.1002/brb3.2423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Numerous studies have shown the effects of rapid eye movement sleep deprivation (REM-SD) on behavior and brain structures. The impact of REM-SD on learning and memory, thus neurogenesis, has been reported in previous studies. Royal jelly (RJ) is known as the wealthiest biological nutrient with various physiological properties. This study aimed to study the possible effect of RJ on neurogenesis of the rat hippocampus neonates following exposure of mother to REM-SD during pregnancy. METHODS Thirty neonate rats from 15 pregnant Wistar rats were used. To induce REM-SD, the flowerpot method was used. The pregnant rats were divided into five groups (n = 3): group 1, no treatment; group 2, REM-SD; groups 3, 4, and 5, REM-SD +RJ. The former group received 72 h REM-SD during pregnancy (days 7, 14, 21), and the latter group received REM-SD + RJ (three trial groups). At week 4, the rat neonates of all groups were sacrificed (n = 6 each group). Their brains were fixed, removed, and prepared for Nissl and Hoechst 33342 staining. By using real time polymerase chain reaction methode the brain-derived neurotrophic factor BDNF gene expression was studied (RT-PCR), brain-derived neurotrophic factor (BDNF) gene expression was studied. The results were analyzed statistically, and the Pv < .05 was considered significant. RESULTS The results showed a significant decrease in the number of neurons in the hippocampus of neonatal rats of REM-SD mothers compared to the neonates of the mother with REM-SD + RJ. REM-SD also led to an increase in apoptosis reaching the neonates from the REM-SD + RJ animals. High expression of BDNF was observed in the hippocampus of the neonates from REM-SD + RJ treated mothers. CONCLUSION RJ acts as a neuroprotective agent that could compensate for the effects of REM-SD on learning and memory via restoring neurogenesis.
Collapse
Affiliation(s)
- Atena Khodaverdiloo
- Department of MicrobiologyKaraj BranchIslamic Azad UniversityKarajIran
- Neuroscience Research Center (NRC)Iran University of Medical SciencesTehranIran
| | - Mona Farhadi
- Department of MicrobiologyKaraj BranchIslamic Azad UniversityKarajIran
| | - Melikasadat Jameie
- Iranian Center of Neurological ResearchTehran University of Medical SciencesTehranIran
- Neuroscience Research Center (NRC)Iran University of Medical SciencesTehranIran
| | - Seyed behnamedin Jameie
- Neuroscience Research Center (NRC)Iran University of Medical SciencesTehranIran
- Department of AnatomyIran University of Medical SciencesTehranIran
| | - Vahid Pirhajati
- Neuroscience Research Center (NRC)Iran University of Medical SciencesTehranIran
| |
Collapse
|
21
|
Jung T, Noh J. Alteration of fear behaviors in sleep-deprived adolescent rats: increased fear expression and delayed fear extinction. Anim Cells Syst (Seoul) 2021; 25:83-92. [PMID: 34234889 PMCID: PMC8118405 DOI: 10.1080/19768354.2021.1902854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Disruption of sleep due to acute or chronic stress can lead to changes in emotional memory processing. Sleep disturbances are highly prevalent in post-traumatic stress disorder (PTSD), but still, the contribution of sleep deprivation on the susceptibility to PTSD has received little attention. To determine whether rapid eye movement sleep deprivation (SD) alters the development of fear expression or fear-associated memory impairment in adolescent rats, we performed animal emotional behavior tests using an SD animal model with the flowerpot technique. SD rats showed an increase in locomotor activity frequency and a decrease in sucrose consumption compared to control rats. An increase in freezing behavior during shock trials was observed in SD rats. Noticeably, it was observed that when applying the SD condition after fear stimuli exposure, fear extinction was delayed more in SD rats than in control rats. Overall, these results indicate that SD in adolescent rats leads to increased locomotor activity and anhedonic behavior, as well as increased fear expression and delayed fear extinction, suggesting that SD would lead to increased severity of PTSD-like phenotype.
Collapse
Affiliation(s)
- Taesub Jung
- Department of Science Education, Dankook University, Yongin-si, Republic of Korea
| | - Jihyun Noh
- Department of Science Education, Dankook University, Yongin-si, Republic of Korea
| |
Collapse
|
22
|
Alonso A, Genzel L, Gomez A. Sex and Menstrual Phase Influences on Sleep and Memory. CURRENT SLEEP MEDICINE REPORTS 2021. [DOI: 10.1007/s40675-020-00201-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Purposes of Review
This review highlights the effect of sex differences in sleep mediated memory consolidation and cognitive performance. In addition, the role of menstrual cycle and the fluctuating level of sexual hormones (mainly oestrogen and progesterone) are stressed.
Recent Findings
The literature indicates that sex hormones mediate and orchestrate the differences observed in performance of females in comparison with males in a variety of tasks and can also be related to how sleep benefits cognition. Although the exact mechanism of such influence is not clear, it most likely involves differential activation of brain areas, sensitivity to neuromodulators (mainly oestrogen), circadian regulation of sleep and temperature, as well as modification of strategies to solve tasks across the menstrual cycle.
Summary
With the evidence presented here, we hope to encourage researchers to develop appropriate paradigms to study the complex relationship between menstrual cycle, sleep (its regulation, architecture and electrophysiological hallmarks) and performance in memory and other cognitive tasks.
Collapse
|
23
|
Franceschini A, Fattore L. Gender-specific approach in psychiatric diseases: Because sex matters. Eur J Pharmacol 2021; 896:173895. [PMID: 33508283 DOI: 10.1016/j.ejphar.2021.173895] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
In both animals and human beings, males and females differ in their genetic background and hormonally driven behaviour and show sex-related differences in brain activity and response to internal and external stimuli. Gender-specific medicine has been a neglected dimension of medicine for long time, and only in the last three decades it is receiving the due scientific and clinical attention. Research has recently begun to identify factors that could provide a neurobiological basis for gender-based differences in health and disease and to point to gonadal hormones as important determinants of male-female differences. Animal studies have been of great help in understanding factors contributing to sex-dependent differences and sex hormones action. Here we review and discuss evidence provided by clinical and animal studies in the last two decades showing gender (in humans) and sex (in animals) differences in selected psychiatric disorders, namely eating disorders (anorexia nervosa, bulimia nervosa, binge eating disorder), schizophrenia, mood disorders (anxiety, depression, obsessive-compulsive disorder) and neurodevelopmental disorders (autism spectrum disorders, attention-deficit/hyperactivity disorder).
Collapse
Affiliation(s)
- Anna Franceschini
- Addictive Behaviors Department, Local Health Authority, Trento, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council, Italy.
| |
Collapse
|
24
|
Guerrero-Vargas NN, Zárate-Mozo C, Guzmán-Ruiz MA, Cárdenas-Rivera A, Escobar C. Time-restricted feeding prevents depressive-like and anxiety-like behaviors in male rats exposed to an experimental model of shift-work. J Neurosci Res 2020; 99:604-620. [PMID: 33078850 DOI: 10.1002/jnr.24741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
Individuals who regularly shift their sleep timing, like night and/or shift-workers suffer from circadian desynchrony and are at risk of developing cardiometabolic diseases and cancer. Also, shift-work is are suggested to be a risk factor for the development of mood disorders such as the burn out syndrome, anxiety, and depression. Experimental and clinical studies provide evidence that food intake restricted to the normal activity phase is a potent synchronizer for the circadian system and can prevent the detrimental health effects associated with circadian disruption. Here, we explored whether adult male Wistar rats exposed to an experimental model of shift-work (W-AL) developed depressive and/or anxiety-like behaviors and whether this was associated with neuroinflammation in brain areas involved with mood regulation. We also tested whether time-restricted feeding (TRF) to the active phase could ameliorate circadian disruption and therefore would prevent depressive and anxiety-like behaviors as well as neuroinflammation. In male Wistar rats, W-AL induced depressive-like behavior characterized by hypoactivity and anhedonia and induced increased anxiety-like behavior in the open field test. This was associated with increased number of glial fibrillary acidic protein and IBA-1-positive cells in the prefrontal cortex and basolateral amygdala. Moreover W-AL caused morphological changes in the microglia in the CA3 area of the hippocampus indicating microglial activation. Importantly, TRF prevented behavioral changes and decreased neuroinflammation markers in the brain. Present results add up evidence about the importance that TRF in synchrony with the light-dark cycle can prevent neuroinflammation leading to healthy mood states in spite of circadian disruptive conditions.
Collapse
Affiliation(s)
- Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carmen Zárate-Mozo
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alfredo Cárdenas-Rivera
- Centro de Investigación en Bioingeniería, Universidad de Ingeniería y Tecnología, Lima, Perú
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
25
|
Brown AMC, Gervais NJ. Role of Ovarian Hormones in the Modulation of Sleep in Females Across the Adult Lifespan. Endocrinology 2020; 161:5879359. [PMID: 32735650 PMCID: PMC7450669 DOI: 10.1210/endocr/bqaa128] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Ovarian hormones, including 17β-estradiol, are implicated in numerous physiological processes, including sleep. Beginning at puberty, girls report more sleep complaints than boys, which is maintained throughout the reproductive life stage. Sleep problems are exacerbated during the menopausal transition, evidenced by greater risk for sleep disorders. There is emerging evidence that menopause-associated hormone loss contributes to this elevated risk, but age is also an important factor. The extent to which menopause-associated sleep disturbance persists into postmenopause above and beyond the effects of age remains unknown. Untreated sleep disturbances have important implications for cognitive health, as they are emerging as risk factors for dementia. Given that sleep loss impairs memory, an important knowledge gap concerns the role played by menopause-associated hormone loss in exacerbating sleep disturbance and, ultimately, cognitive function in aging women. In this review, we take a translational approach to illustrate the contribution of ovarian hormones in maintaining the sleep-wake cycle in younger and middle-aged females, with evidence implicating 17β-estradiol in supporting the memory-promoting effects of sleep. Sleep physiology is briefly reviewed before turning to behavioral and neural evidence from young females linking 17β-estradiol to sleep-wake cycle maintenance. Implications of menopause-associated 17β-estradiol loss is also reviewed before discussing how ovarian hormones may support the memory-promoting effects of sleep, and why menopause may exacerbate pathological aging via effects on sleep. While still in its infancy, this research area offers a new sex-based perspective on aging research, with a focus on a modifiable risk factor for pathological aging.
Collapse
Affiliation(s)
- Alana M C Brown
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole J Gervais
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Correspondence: Nicole J. Gervais, University of Toronto, Department of Psychology, 100 St. George Street, Toronto, ON, Canada M5S 3G3. E-mail:
| |
Collapse
|
26
|
Rajizadeh MA, Esmaeilpour K, Motamedy S, Mohtashami Borzadaranb F, Sheibani V. Cognitive Impairments of Sleep-Deprived Ovariectomized (OVX) Female Rats by Voluntary Exercise. Basic Clin Neurosci 2020; 11:573-586. [PMID: 33643551 PMCID: PMC7878057 DOI: 10.32598/bcn.9.10.505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/25/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction: Previous studies demonstrated that forced and voluntary exercise had ameliorative effects on behavioral tasks followed by Sleep Deprivation (SD) in intact female rats. The main goal of this research was evaluating the impact of voluntary exercise on cognitive functions while SD and ovariectomization is induced in female wistar rats. Methods: The rats were anesthesized combining dosage of ketamine and xylazine. Then, both ovaries were eliminated and 3 weeks after surgery the animals entered the study. The exercise protocol took 4 weeks of voluntary exercise in a wheel which was connected to home cage. For inducing a 72 hours deprivation the multiple platforms was applied. The cognitive functions were studied by exploiting the Morris Water Maze (MWM) and Novel object recognition tests. Anxiety was evaluated by open field test and corticostrone measurement was carried out by ELISA method. One-way and two-way ANOVA and repeated measures were utilized for data analysis and P<0.05 was considered statistically significant. Results: We observed significant spatial and recognition learning and memory impairments in OVX sleep-deprived rats compared to the control group and voluntary exercise alleviated the SD-induced learning and memory defects. Conclusion: We concluded that voluntary exercise can improve cognitive impairments followed by SD in OVX female rats.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Motamedy
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Vahid Sheibani
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Nollet M, Wisden W, Franks NP. Sleep deprivation and stress: a reciprocal relationship. Interface Focus 2020; 10:20190092. [PMID: 32382403 PMCID: PMC7202382 DOI: 10.1098/rsfs.2019.0092] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sleep is highly conserved across evolution, suggesting vital biological functions that are yet to be fully understood. Animals and humans experiencing partial sleep restriction usually exhibit detrimental physiological responses, while total and prolonged sleep loss could lead to death. The perturbation of sleep homeostasis is usually accompanied by an increase in hypothalamic–pituitary–adrenal (HPA) axis activity, leading to a rise in circulating levels of stress hormones (e.g. cortisol in humans, corticosterone in rodents). Such hormones follow a circadian release pattern under undisturbed conditions and participate in the regulation of sleep. The investigation of the consequences of sleep deprivation, from molecular changes to behavioural alterations, has been used to study the fundamental functions of sleep. However, the reciprocal relationship between sleep and the activity of the HPA axis is problematic when investigating sleep using traditional sleep-deprivation protocols that can induce stress per se. This is especially true in studies using rodents in which sleep deprivation is achieved by exogenous, and potentially stressful, sensory–motor stimulations that can undoubtedly confuse their conclusions. While more research is needed to explore the mechanisms underlying sleep loss and health, avoiding stress as a confounding factor in sleep-deprivation studies is therefore crucial. This review examines the evidence of the intricate links between sleep and stress in the context of experimental sleep deprivation, and proposes a more sophisticated research framework for sleep-deprivation procedures that could benefit from recent progress in biotechnological tools for precise neuromodulation, such as chemogenetics and optogenetics, as well as improved automated real-time sleep-scoring algorithms.
Collapse
Affiliation(s)
- Mathieu Nollet
- Department of Life Sciences, Imperial College London, London, UK.,UK Dementia Research Institute at Imperial College London, London, UK
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK.,UK Dementia Research Institute at Imperial College London, London, UK.,Centre for Neurotechnology, Imperial College London, London, UK
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, UK.,UK Dementia Research Institute at Imperial College London, London, UK.,Centre for Neurotechnology, Imperial College London, London, UK
| |
Collapse
|
28
|
Gao C, Fillmore P, Scullin MK. Classical music, educational learning, and slow wave sleep: A targeted memory reactivation experiment. Neurobiol Learn Mem 2020; 171:107206. [PMID: 32145407 DOI: 10.1016/j.nlm.2020.107206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022]
Abstract
Poor sleep in college students compromises the memory consolidation processes necessary to retain course materials. A solution may lie in targeting reactivation of memories during sleep (TMR). Fifty undergraduate students completed a college-level microeconomics lecture (mathematics-based) while listening to distinctive classical music (Chopin, Beethoven, and Vivaldi). After they fell asleep, we re-played the classical music songs (TMR) or a control noise during slow wave sleep. Relative to the control condition, the TMR condition showed an 18% improvement for knowledge transfer items that measured concept integration (d = 0.63), increasing the probability of "passing" the test with a grade of 70 or above (OR = 4.68, 95%CI: 1.21, 18.04). The benefits of TMR did not extend to a 9-month follow-up test when performance dropped to floor levels, demonstrating that long-term-forgetting curves are largely resistant to experimentally-consolidated memories. Spectral analyses revealed greater frontal theta activity during slow wave sleep in the TMR condition than the control condition (d = 0.87), and greater frontal theta activity across conditions was associated with protection against long-term-forgetting at the next-day and 9-month follow-up tests (rs = 0.42), at least in female students. Thus, students can leverage instrumental music-which they already commonly pair with studying-to help prepare for academic tests, an approach that may promote course success and persistence.
Collapse
Affiliation(s)
- Chenlu Gao
- Baylor University, Department of Psychology and Neuroscience, Waco, TX, United States
| | - Paul Fillmore
- Baylor University, Department of Communication Sciences and Disorders, Waco, TX, United States
| | - Michael K Scullin
- Baylor University, Department of Psychology and Neuroscience, Waco, TX, United States.
| |
Collapse
|
29
|
Rajizadeh MA, Esmaeilpour K, Haghparast E, Ebrahimi MN, Sheibani V. Voluntary exercise modulates learning & memory and synaptic plasticity impairments in sleep deprived female rats. Brain Res 2019; 1729:146598. [PMID: 31866363 DOI: 10.1016/j.brainres.2019.146598] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/23/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
Previous studies have indicated that forced exercise plays a preventive role in synaptic plasticity deficits in the hippocampus and behavioral impairments in sleep-deprived male and female rats. The objective of the present study was to evaluate the effects of voluntary exercise on early long-term potentiation (E-LTP) at the Cornu Ammonis (CA1) area of the hippocampus and behavioral functions by barnes maze and novel location tests in sleep-deprived female rats. Intact female Wistar rats were used in the present study. The exercise protocol was four weeks wheel running and the multiple platform method was applied to induce 72 h Sleep deprivation (SD). We examine the effect of exercise and/or SD on synaptic plasticity using in vivo extracellular recording in the CA1 area of the hippocampus. Spatial learning and memory examined by Barnes maze and recognition memory assessed by novel location test. Field potential recording indicated that the induction and maintenance phase of E-LTP impaired in the sleep deprived animals compared to the other groups. After 72 h SD, LTP impairments were reduced by 4 weeks of voluntary exercise but do not go back to control values. SD impairs learning and memory and exercise could improve these deficits. In conclusion, the synaptic plasticity deficit in sleep-deprived female rats was improved by voluntary exercise. Further studies are suggested to evaluate the possible underlying mechanisms.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Elham Haghparast
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Navid Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
30
|
Barbosa CC, Rodrigues TC, Ataídes CFS, Santos ML, Ghedini PC, Dias Junior W, Andersen ML, Mazaro-Costa R. Protective effects of Hydrocotyle umbellata var. bonariensis Lam. (Araliaceae) on memory in sleep-impaired female mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112183. [PMID: 31445134 DOI: 10.1016/j.jep.2019.112183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/03/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hydrocotyle umbellata var.bonariensis Lam. (Hb), popularly known in Brazil as acariçoba and outside Brazil Hb by a number of names including marsh-pennywort, and many-flower, has traditionally been used in Ayurvedic medicine in the retardation of aging (Rasayana effect). AIM OF THE STUDY The present study evaluated the effect of Hb treatment before and during paradoxical sleep deprivation (PSD) and sleep restriction (SR) on learning, memory, and acetylcholinesterase (AChE) brain activity. MATERIAL AND METHODS Adult Swiss nulliparous female mice were randomly distributed among the experimental groups. The treated groups received the aqueous solution of Hb leaves orally at concentrations of 500 and 1.000 mg/kg. PSD and SR were induced by the multiple platform method, in which the animals remained for 3-days in PSD or 15-days in SR for 22 h per day. The collection of the vaginal epithelium occurred daily to determine the estrous cycle. Body mass gain was determined. The animals were submitted to the passive avoidance test and were then euthanized for the collection of brain tissue and the determination of cerebral cholinesterase activity. RESULTS The aqueous solution of Hb was associated with a significant reduction in cholinesterase activity at both doses in the SR model, and at the dose of 1.000 mg/kg in the PSD model. Regarding the learning and memory test, the PSD group treated with 1.000 mg/kg presented significant improvement, whereas in the SR experiment none of the treated-groups showed any improvement in learning and memory. In the analysis of SR/PSD interference and/or Hb treatment on the estrous cycle, it was possible to observe that the treatment acted as a protector in the SR group, maintaining a normal cycle. CONCLUSIONS The analyses showed that Hb was safe to use during periods of SR or PSD, acting as an adaptogen for these situations, in addition to being able to reduce cholinesterase activity, which suggests its neuroprotective action. In relation to the estrous cycle, Hb can act as a protector in SR situations.
Collapse
Affiliation(s)
- C C Barbosa
- Departamento de Farmacologia - Universidade Federal de Goiás, Goiás, Brazil
| | - T C Rodrigues
- Departamento de Farmacologia - Universidade Federal de Goiás, Goiás, Brazil
| | - C F S Ataídes
- Departamento de Farmacologia - Universidade Federal de Goiás, Goiás, Brazil
| | - M L Santos
- Departamento de Farmacologia - Universidade Federal de Goiás, Goiás, Brazil
| | - P C Ghedini
- Departamento de Farmacologia - Universidade Federal de Goiás, Goiás, Brazil
| | - W Dias Junior
- Universidade Estadual de Goiás, Campus Ceres, Goiás, Brazil
| | - M L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R Mazaro-Costa
- Departamento de Farmacologia - Universidade Federal de Goiás, Goiás, Brazil.
| |
Collapse
|
31
|
Cherng CG, Yu L. Sex differences and the modulating effects of gonad intactness on behavioral conformity in a mouse model. CHINESE J PHYSIOL 2019; 62:245-255. [PMID: 31793460 DOI: 10.4103/cjp.cjp_42_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Although gender differences in conformity are noticed in human studies, cultural norms and psychosocial factors inevitably affect such differences. Biological factors, especially the gonadal hormones and the brain regions involved, contributing to the sex differences in behavioral conformity remained scarcely explored. To prevent psychosocial and cultural norm confounds, intact and gonadectomized male and female mice were used to assess the modulating effects of gonadal hormones on behavioral conformity and such conformity-related brain regions using an approach of choice paradigm. Intact and gonadectomized mice' choices for the nonrewarded runway were assessed when these experimental mice were alone versus with a group, consisting of three same-sex noncagemates choosing the respective experimental mice' nonrewarded runway, in a double-J-shaped maze test. Although male and female mice exhibited comparable rewarded runway choices at the conclusion of the operant training procedures and in the test individually, male mice demonstrated greater conformity index as compared to female mice when group tested. Gonadectomy, done at their 4 or 9 weeks of age, decreased males' conformity index but did not affect females' when both sexes were group tested. Such gonadectomy did not affect the conditioning or conformity index when tested individually in either sex. Female mice had higher serum corticosterone (CORT) levels when group tested as compared to the female mice tested individually and male mice. Finally, the number of FOS-staining cells in high conformity-displaying mice was found less than it in the low conformity-performing mice in the nucleus accumbens. Taken together, we conclude that testis-derived hormones, at least, play a role in enhancing behavioral conformity in male mice. CORT and nucleus accumbal neuronal activity deserve further investigation for their involvement in behavioral conformity.
Collapse
Affiliation(s)
- Chianfang G Cherng
- Education Center of Humanities and Social Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Lung Yu
- Department of Physiology; Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| |
Collapse
|
32
|
Effects of CDP-choline administration on learning and memory in REM sleep-deprived rats. Physiol Behav 2019; 213:112703. [PMID: 31654682 DOI: 10.1016/j.physbeh.2019.112703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 02/08/2023]
Abstract
Cytidine 5-diphosphocholine (CDP-choline) administration has been shown to improve learning and memory deficits in different models of brain disorders. In this study, effects of CDP-choline on the well known negative effects of Rapid Eye Movements (REM) sleep deprivation on learning and memory were investigated. Sleep deprivation was induced by placing adult male Wistar albino rats on 6.5 cm diameter platforms individually for 96 h according to flower pot method. Learning and memory performances were evaluated using Morris Water Maze (MWM) test during the same period of time. Saline or CDP-choline (100 µmol/kg, 300 µmol/kg or 600 µmol/kg) was administered intraperitoneally 30 min prior to the onset of MWM experiments. On completion of behavioral tests, rats were decapitated and hippocampi were assayed for total and phosphorylated Ca2+/calmodulin-dependent protein kinase II (tCaMKII and pCaMKII, respectively) and total antioxidant capacity. We observed that while REM sleep deprivation had no effect on learning, it diminished the memory function, which was associated with decreased levels of pCaMKII and total antioxidant capacity in the hippocampus. CDP-choline treatment blocked the impairment in memory function of sleep-deprived rats and, increased pCaMKII levels and total antioxidant capacity. These data suggest that CDP-choline reduces REM sleep deprivation-induced impairment in memory, at least in part, by counteracting the disturbances in biochemical and molecular biological parameters.
Collapse
|
33
|
Mohammadipoor-Ghasemabad L, Sangtarash MH, Sheibani V, Sasan HA, Esmaeili-Mahani S. Hippocampal microRNA-191a-5p Regulates BDNF Expression and Shows Correlation with Cognitive Impairment Induced by Paradoxical Sleep Deprivation. Neuroscience 2019; 414:49-59. [DOI: 10.1016/j.neuroscience.2019.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022]
|
34
|
Rajizadeh MA, Sheibani V, Bejeshk MA, Mohtashami Borzadaran F, Saghari H, Esmaeilpour K. The effects of high intensity exercise on learning and memory impairments followed by combination of sleep deprivation and demyelination induced by etidium bromide. Int J Neurosci 2019; 129:1166-1178. [DOI: 10.1080/00207454.2019.1640695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hasan Saghari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
35
|
Abstract
There are 3 common physiological estrogens, of which estradiol (E2) is seen to decline rapidly over the menopausal transition. This decline in E2 has been associated with a number of changes in the brain, including cognitive changes, effects on sleep, and effects on mood. These effects have been demonstrated in both rodent and non-human preclinical models. Furthermore, E2 interactions have been indicated in a number of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, and depression. In normal brain aging, there are a number of systems that undergo changes and a number of these show interactions with E2, particularly the cholinergic system, the dopaminergic system, and mitochondrial function. E2 treatment has been shown to ameliorate some of the behavioral and morphological changes seen in preclinical models of menopause; however, in clinical populations, the effects of E2 treatment on cognitive changes after menopause are mixed. The future use of sex hormone treatment will likely focus on personalized or precision medicine for the prevention or treatment of cognitive disturbances during aging, with a better understanding of who may benefit from such treatment.
Collapse
Affiliation(s)
- Jason K Russell
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Paul A Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Geriatric Research, Education, and Clinical Center (GRECC), Tennessee VA Health Systems, Nashville, TN, 37212, USA.
| |
Collapse
|
36
|
Taheri F, Sepehri G, Sheibani V, Sharififar F. Amelioration of Prenatal Lead-Induced Learning and Memory Impairments by Methanolic Extract of Zataria Multiflora in Male Rats. Basic Clin Neurosci 2019; 11:535-548. [PMID: 33613892 PMCID: PMC7878035 DOI: 10.32598/bcn.9.10.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 09/28/2018] [Accepted: 12/31/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction The current study aimed at evaluating the effects of Zataria Multiflora (ZM) on learning and memory of adult male offspring rats with prenatal lead-exposure. Methods Pregnant rats in the case group received tap water containing 0.2% lead acetate throughout the gestation period. Control rats had free access to lead-free tap water. Two male offspring (two-month-old, weighing 180-200 g) from each mother were randomly selected and treated with either Z. Multiflora (50, 200, 400, and 800 mg/kg/Intraperitoneally (I.P)/20 day) or saline. Spatial memory of the control, saline, and ZM-treated rats was evaluated by a training trial and probe test using Morris water maze (6-8 rat/group). Results The obtained results showed memory deficits including increased escape latency, and a greater traveled distance, as well as decrements in the frequency of crossings into target quadrants in prenatally lead-exposed male offspring compared with the controls. ZM treatment (200 mg/kg/i.p) ameliorated the memory deficits in male offspring by increasing the time spent and traveled distance in the trigger zone (P<0.01 vs. saline).There was no significant difference in swimming speed between the groups. Conclusion The results showed memory deficits in prenatally lead-exposed male offspring. ZM treatment (especially 200 mg/kg) had beneficial effects on cognitive behavior and was indicated as the improvement of lead-induced memory deficits in prenatally lead-exposed male rats. The exact mechanism(s) is not determined yet, but it could be mediated through the anticholinesterase and antioxidant effects and also alterations in Central Nervous System (CNS) and neurotransmission in the central nervous system.
Collapse
Affiliation(s)
- Farahnaz Taheri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Department of Pharmacognosy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
37
|
Taheri F, Sepehri G, Sheibani V, Sharififar F. Amelioration of Prenatal Lead-Induced Learning and Memory Impairments by Methanolic Extract of Zataria Multiflora in Male Rats. Basic Clin Neurosci 2019. [PMID: 31031904 PMCID: PMC6484190 DOI: 10.32598/bcn.10.2.1104.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction: The current study aimed at evaluating the effects of Zataria Multiflora (ZM) on learning and memory of adult male offspring rats with prenatal lead-exposure. Methods: Pregnant rats in the case group received tap water containing 0.2% lead acetate throughout the gestation period. Control rats had free access to lead-free tap water. Two male offspring (two-month-old, weighing 180–200 g) from each mother were randomly selected and treated with either Z. Multiflora (50, 200, 400, and 800 mg/kg/Intraperitoneally (I.P)/20 day) or saline. Spatial memory of the control, saline, and ZM-treated rats was evaluated by a training trial and probe test using Morris water maze (6–8 rat/group). Results: The obtained results showed memory deficits including increased escape latency, and a greater traveled distance, as well as decrements in the frequency of crossings into target quadrants in prenatally lead-exposed male offspring compared with the controls. ZM treatment (200 mg/kg/i.p) ameliorated the memory deficits in male offspring by increasing the time spent and traveled distance in the trigger zone (P<0.01 vs. saline).There was no significant difference in swimming speed between the groups. Conclusion: The results showed memory deficits in prenatally lead-exposed male offspring. ZM treatment (especially 200 mg/kg) had beneficial effects on cognitive behavior and was indicated as the improvement of lead-induced memory deficits in prenatally lead-exposed male rats. The exact mechanism(s) is not determined yet, but it could be mediated through the anticholinesterase and antioxidant effects and also alterations in Central Nervous System (CNS) and neurotransmission in the central nervous system.
Collapse
Affiliation(s)
- Farahnaz Taheri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Department of Pharmacognosy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
38
|
Hajali V, Andersen ML, Negah SS, Sheibani V. Sex differences in sleep and sleep loss-induced cognitive deficits: The influence of gonadal hormones. Horm Behav 2019; 108:50-61. [PMID: 30597139 DOI: 10.1016/j.yhbeh.2018.12.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 12/30/2022]
Abstract
Males and females can respond differentially to the same environmental stimuli and experimental conditions. Chronic sleep loss is a frequent and growing problem in many modern societies and has a broad variety of negative outcomes for health and well-being. While much has been done to explore the deleterious effects of sleep deprivation (SD) on cognition in both human and animal studies over the last few decades, very little attention has been paid to the part played by sex differences and gonadal steroids in respect of changes in cognitive functions caused by sleep loss. The effects of gonadal hormones on sleep regulation and cognitive performances are well established. Reduced gonadal function in menopausal women and elderly men is associated with sleep disturbances and cognitive decline as well as dementia, which suggests that sex steroids play a key role in modulating these conditions. Finding out whether there are sex differences in respect of the effect of insufficient sleep on cognition, and how neuroendocrine mediators influence cognitive impairment induced by SD could provide valuable insights into the best therapies for each sex. In this review, we aim to highlight the involvement of sex differences and gonadal hormone status on the severity of cognitive deficits induced by sleep deficiency in both human and animal studies.
Collapse
Affiliation(s)
- Vahid Hajali
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Sajad Sahab Negah
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
39
|
Noise-induced sleep disruption increases weight gain and decreases energy metabolism in female rats. Int J Obes (Lond) 2018; 43:1759-1768. [PMID: 30568267 PMCID: PMC6584067 DOI: 10.1038/s41366-018-0293-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 01/28/2023]
Abstract
Background/objectives: Inadequate sleep increases obesity and environmental noise contributes to poor sleep. However, women may be more vulnerable to noise and hence more susceptible to sleep disruption-induced weight gain than men. In male rats, exposure to environmental (i.e. ambient) noise disrupts sleep and increases feeding and weight gain. However, the effects of environmental noise on sleep and weight gain in female rats are unknown. Thus, this study was designed to determine whether noise exposure would disturb sleep, increase feeding and weight gain and alter the length of the estrous cycle in female rats. Subjects/methods: Female rats (12-weeks old) were exposed to noise for 17d (8h/d during the light period) to determine the effects of noise on weight gain and food intake. In a separate set of females, estrous cycle phase and length, EEG, EMG, spontaneous physical activity and energy expenditure were recorded continuously for 27d during baseline (control, 9d), noise exposure (8h/d, 9d) and recovery (9d) from sleep disruption. Results: Noise exposure significantly increased weight gain and food intake compared to females that slept undisturbed. Noise also significantly increased wakefulness, reduced sleep and resulted in rebound sleep during the recovery period. Total energy expenditure was significantly lower during both noise exposure and recovery due to lower energy expenditure during spontaneous physical activity and sleep. Notably, noise did not alter the estrous cycle length. Conclusions: As previously observed in male rats, noise exposure disrupted sleep and increased weight gain in females but did not alter the length of the estrous cycle. This is the first demonstration of weight gain in female rats during sleep disruption. We conclude that the sleep disruption caused by exposure to environmental noise is a significant tool for determining how sleep loss contributes to obesity in females.
Collapse
|
40
|
Aghaei I, Hajali V, Haghani M, Vaziri Z, Moosazadeh M, Shabani M. Peroxisome proliferator-activated receptor-γ activation attenuates harmaline-induced cognitive impairments in rats. J Clin Neurosci 2018; 59:276-283. [PMID: 30472346 DOI: 10.1016/j.jocn.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 01/31/2023]
Abstract
Cognitive and motor disturbances are serious concerns of the tremors induced by motor disorders. Despite the lack of effective clinical treatment, some potential therapeutic agents have been used to alleviate the cognitive symptoms in the animal models of tremor. Recent studies have shown that PPAR-γ agonists have neuroprotective effects. In the current study, the effects of pioglitazone (PIO), a peroxisome proliferator-activated receptor gamma agonist, on harmaline-induced motor and cognitive impairment were studied. Male Wistar rats were divided into vehicle (normal saline), PIO (20 mg/kg i.p.), harmaline (10 mg/kg, i.p.) and PIO + harmaline (PIO injected 2 h before harmaline) groups. Open field, rotarod, wire grip, foot print and Morris water maze tests were used to evaluate the motor and cognitive performance. The results indicated that administration of PIO attenuated harmaline-induced locomotor, anxiety-like behaviors, and spatial learning and memory impairments, but it partially decreased the tremor score. The neuroprotective and anxiolytic effects of PIO demonstrated in the current study can offer the PPAR-γ receptor agonism as a potential therapeutic agent in the treatment of patients with tremor that manifest mental dysfunction.
Collapse
Affiliation(s)
- Iraj Aghaei
- Department of Neuroscience, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Vahid Hajali
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Masoud Haghani
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Vaziri
- Social Determinants of Health Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmmod Moosazadeh
- Health Sciences Research Center, School of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shabani
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman
| |
Collapse
|
41
|
Gharib A, Sayyahi Z, Komaki A, Barkley V, Sarihi A, Mirnajafi-Zadeh J. The role of 5-HT 1A receptors of hippocampal CA1 region in anticonvulsant effects of low-frequency stimulation in amygdala kindled rats. Physiol Behav 2018; 196:119-125. [PMID: 30179595 DOI: 10.1016/j.physbeh.2018.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/24/2023]
Abstract
Low frequency stimulation (LFS) has been proposed as a method in the treatment of epilepsy, but its anticonvulsant mechanism is still unknown. In the current study, the hippocampal CA1 region was microinjected with NAD-299 (a selective 5-HT1A antagonist), and its role in mediating the inhibitory action of LFS on amygdala kindling was investigated. Male Wistar rats were kindled by amygdala stimulation in a semi-rapid kindling manner (12 stimulations per day). LFS (0.1 ms pulse duration at 1 Hz, 200 pulses, 50-150 μA) was applied at 5 min after termination of daily kindling stimulations. NAD (a selective 5-HT1A antagonist) was microinjected into the CA1 region of the hippocampus at the doses of 2.5 and 5 μg/1 μl. An open field test was also run to determine the motor activity of animals in different experimental groups. The application of LFS following daily kindling stimulations reduced the behavioral seizure stages, afterdischarge duration, and stage 5 seizure duration and increased the latency to stage 4 seizure compared to the kindled group. However, microinjection of NAD at the doses of 5 μg/1 μl, but not 2.5 μg/1 μl, blocked the inhibitory effect of LFS on behavioral and electrophysiological parameters in kindled animals. It could be presumed that 5-HT1A receptors in the CA1 area are involved in mediating the antiepileptic effects of LFS.
Collapse
Affiliation(s)
- Alireza Gharib
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zeinab Sayyahi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Abdolrahman Sarihi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
42
|
Nabaee E, Kesmati M, Shahriari A, Khajehpour L, Torabi M. Cognitive and hippocampus biochemical changes following sleep deprivation in the adult male rat. Biomed Pharmacother 2018; 104:69-76. [PMID: 29772442 DOI: 10.1016/j.biopha.2018.04.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 01/08/2023] Open
Abstract
Sleep deprivation (SD) influences physiological processes such as cognitive function. The balance of oxidant and antioxidant markers, neurotrophic factors and magnesium are affected by sleep deprivation but there is no difference between pre and post training sleep deprivation. This study was designed to investigate memory retrieval and biochemical factors such as oxidant and antioxidant enzyme, brain-derived neurotrophic factor (BDNF) and magnesium levels in the hippocampus following pre and post-training sleep deprivation. Male Wistar rats (weighing 200 ± 20 g) in below groups were used: control 1, 24, 48 and 72 h SD before training groups, control2, 24 h SD1 after training (being evaluated 24 h after training) and SD2 24 after training (being evaluated 48 h after training). Memory was evaluated 90 min, 24 h or 48 h after training by step-through passive avoidance apparatus. Multiple platforms method was used to induce SD. Oxidant and antioxidant markers including glutathione (GSH), glutathione reductase (GPx), malonedialdehyde (MDA), Total antioxidant concentration, catalase, superoxide dismutase (SOD), magnesium and BDNF were assessed in the hippocampus or/and brain. 72 h pre-training SD impaired short and long-term memory significantly. There was no significant difference in hippocampus oxidant and antioxidant markers compared to control. Hippocampal BDNF and magnesium did not show any changes in all SD groups. Lack of correlation between memory impairment and levels of BDNF, magnesium and/or oxidant and antioxidant balance in the hippocampus is likely to be related to animal locomotor activity in the multiple platforms method. More research is needed to clarify the role of neurochemical systems.
Collapse
Affiliation(s)
- Ebrahim Nabaee
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mahnaz Kesmati
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Shahriari
- ِDepartment of Biochemistry, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Lotfollah Khajehpour
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mozhgan Torabi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
43
|
Sex Differences in Hippocampal Memory and Kynurenic Acid Formation Following Acute Sleep Deprivation in Rats. Sci Rep 2018; 8:6963. [PMID: 29725029 PMCID: PMC5934413 DOI: 10.1038/s41598-018-25288-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023] Open
Abstract
Inadequate sleep is a prevalent problem within our society that can result in cognitive dysfunction. Elevations in kynurenic acid (KYNA), a metabolite of the kynurenine pathway (KP) of tryptophan degradation known to impact cognition, in the brain may constitute a molecular link between sleep loss and cognitive impairment. To test this hypothesis, we investigated the impact of 6 hours of sleep deprivation on memory and KP metabolism (brain and plasma) in male and female rats. Sleep-deprived males were impaired in a contextual memory paradigm, and both sexes were impaired in a recognition memory paradigm. After sleep deprivation, hippocampal KYNA levels increased significantly only in males. The response in hippocampal KYNA levels to sleep loss was suppressed in gonadectomized males, delineating a role of circulating gonadal hormones. Circulating corticosterone, which has previously been linked to KP metabolism, correlated negatively with hippocampal KYNA in sleep-deprived females, however the relationship was not significant in male animals. Taken together, our study introduces striking sex differences in brain KYNA formation and circulating corticosterone in response to sleep deprivation. Relating these findings to sex differences in cognitive outcomes after sleep deprivation may further advance the development of novel therapeutic agents to overcome sleep loss-induced cognitive dysfunction.
Collapse
|
44
|
Rajizadeh MA, Esmaeilpour K, Masoumi-Ardakani Y, Bejeshk MA, Shabani M, Nakhaee N, Ranjbar MP, Borzadaran FM, Sheibani V. Voluntary exercise impact on cognitive impairments in sleep-deprived intact female rats. Physiol Behav 2018; 188:58-66. [DOI: 10.1016/j.physbeh.2017.12.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/06/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
|
45
|
Wu B, Ma L, Zhang E, Du J, Liu S, Price J, Li S, Zhao Z. Sexual dimorphism of sleep regulated by juvenile hormone signaling in Drosophila. PLoS Genet 2018; 14:e1007318. [PMID: 29617359 PMCID: PMC5909909 DOI: 10.1371/journal.pgen.1007318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/20/2018] [Accepted: 03/19/2018] [Indexed: 11/30/2022] Open
Abstract
Sexually dimorphic phenotypes are a universal phenomenon in animals. In the model animal fruit fly Drosophila, males and females exhibit long- and short-sleep phenotypes, respectively. However, the mechanism is still a mystery. In this study, we showed that juvenile hormone (JH) is involved in regulation of sexually dimorphic sleep in Drosophila, in which gain of JH function enlarges differences of the dimorphic sleep phenotype with higher sleep in males and lower sleep in females, while loss of JH function blurs these differences and results in feminization of male sleep and masculinization of female sleep. Further studies indicate that germ cell-expressed (GCE), one of the JH receptors, mediates the response in the JH pathway because the sexually dimorphic sleep phenotypes cannot be rescued by JH hormone in a gce deletion mutant. The JH-GCE regulated sleep dimorphism is generated through the sex differentiation-related genes -fruitless (fru) and doublesex (dsx) in males and sex-lethal (sxl), transformer (tra) and doublesex (dsx) in females. These are the “switch” genes that separately control the sleep pattern in males and females. Moreover, analysis of sleep deprivation and circadian behaviors showed that the sexually dimorphic sleep induced by JH signals is a change of sleep drive and independent of the circadian clock. Furthermore, we found that JH seems to also play an unanticipated role in antagonism of an aging-induced sleep decrease in male flies. Taken together, these results indicate that the JH signal pathway is critical for maintenance of sexually dimorphic sleep by regulating sex-relevant genes. Sleep is a very important biological behavior in all animals and takes up around one third of the lifespan in many animals. In both insects and mammals (including humans), sleep differences between male and female (sexually dimorphic sleep) have been described over the past decades. However, its internal regulation mechanism is still unclear. The fruit fly Drosophila melanogaster, sharing most sleep characteristics with humans, has been used for sleep studies as a powerful model for genetic analysis. In this study, we reported that Juvenile hormone (JH) induces completely different sleep effects between males and females with higher sleep in males and lower sleep in females, while loss of JH function blurs these differences and results in feminization of male sleep and masculinization of female sleep. Further studies indicate that the sexual dimorphism of sleep is generated through the sex differentiation-related genes regulated by JH and its receptor GCE (germ cell-expressed) signaling. Furthermore, we found that JH seems to also play an unanticipated role in aging-induced sleep changes.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lingling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Enyan Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Suning Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jeffrey Price
- Department of Neurology and Cognitive Neuroscience, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- * E-mail: (SL); (ZZ)
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- * E-mail: (SL); (ZZ)
| |
Collapse
|
46
|
Coborn JE, Houser MM, Perez-Leighton CE, Teske JA. Role of Sex and the Environment in Moderating Weight Gain Due to Inadequate Sleep. Curr Obes Rep 2017; 6:397-404. [PMID: 29181707 PMCID: PMC6886373 DOI: 10.1007/s13679-017-0290-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW The growing prevalence of obesity, inadequate sleep and sleep disorders together with the negative impact of lack of sleep on overall health highlights the need for therapies targeted towards weight gain due to sleep loss. RECENT FINDINGS Sex disparities in obesity and sleep disorders are present; yet, the role of sex is inadequately addressed and thus it is unclear whether sensitivity to sleep disruption differs between men and women. Like sex, environmental factors contribute to the development of obesity and poor sleep. The obesogenic environment is characterized by easy access to palatable foods and a low demand for energy expenditure in daily activities. These and other environmental factors are discussed, as they drive altered sleep or their interaction with food choice and intake can promote obesity. We discuss data that suggest differences in sleep patterns and responses to sleep disruption influence sex disparities in weight gain, and that enviromental disturbances alter sleep and interact with features of the obesogenic environment that together promote obesity.
Collapse
Affiliation(s)
- Jamie E Coborn
- Department of Nutritional Sciences, University of Arizona, 1177 E 4th Street Shantz building room 330A, Tucson, AZ, 85721, USA.
| | - Monica M Houser
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, 1177 E 4th Street Shantz building room 330A, Tucson, AZ, 85721, USA
| | - Claudio E Perez-Leighton
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andres Bello, 8370071, Santiago, Región Metropolitana, Chile
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - Jennifer A Teske
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, 1177 E 4th Street Shantz building room 330A, Tucson, AZ, 85721, USA.
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA.
- Minnesota Obesity Center, University of Minnesota, Saint Paul, MN, USA.
- Department of Nutritional Sciences, University of Arizona, 1177 E 4th Street, Shantz building room 332, Tucson, AZ, 85721, USA.
| |
Collapse
|
47
|
Cordeira J, Kolluru SS, Rosenblatt H, Kry J, Strecker RE, McCarley RW. Learning and memory are impaired in the object recognition task during metestrus/diestrus and after sleep deprivation. Behav Brain Res 2017; 339:124-129. [PMID: 29180134 DOI: 10.1016/j.bbr.2017.11.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/25/2023]
Abstract
Females are an under-represented research model and the mechanisms through which sleep loss impairs cognition are not clear. Since levels of reproductive hormones and the estrous cycle are sensitive to sleep loss and necessary for learning and memory, we hypothesized that sleep deprivation impacts learning and memory in female mice by interfering with the estrous cycle. We used the object recognition task to assess learning and memory in female mice during separate phases of the estrous cycle and after sleep loss. Mice in metestrus/diestrus attended to sample objects less than mice in proestrus/estrus during object acquisition, the first phase of the object recognition task. Subsequently, during the recognition phase of the task, only mice in proestrus/estrus displayed a preference for the novel object. Sleep deprivation for 12h immediately before the object recognition task reduced time attending to sample objects and novel object preference for mice in proestrus/estrus, without changing length of the estrous cycle. These results show that sleep deprived mice in proestrus/estrus had learning deficits and memory impairments, like mice in metestrus/diestrus. Since sleep deprivation did not disrupt the estrous cycle, however, results did not support the hypothesis. Cognitive impairments due to acute sleep loss were not due to alterations to the estrous cycle.
Collapse
Affiliation(s)
- Joshua Cordeira
- Department of Biological & EnvironmentalSciences, Western Connecticut State University, Danbury, CT, USA.
| | - Sai Saroja Kolluru
- Department of Biological & EnvironmentalSciences, Western Connecticut State University, Danbury, CT, USA
| | - Heather Rosenblatt
- Department of Biological & EnvironmentalSciences, Western Connecticut State University, Danbury, CT, USA
| | - Jenny Kry
- Department of Biological & EnvironmentalSciences, Western Connecticut State University, Danbury, CT, USA
| | - Robert E Strecker
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Robert W McCarley
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, Brockton, MA 02301, USA
| |
Collapse
|
48
|
Taheri F, Sepehri G, Sheibani V, Esmaeilpour K. Lavandula angustifolia and combination of Lavandula angustifolia and Zataria multiflora administration attenuates prenatal lead-exposed induced learning and memory impairments in male rats. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1344711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Farahnaz Taheri
- Institute of Neuropharmacology, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Institute of Neuropharmacology, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Institute of Neuropharmacology, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Institute of Neuropharmacology, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
49
|
A Review of Protective Effects of Exercise on Cognitive Impairments Induced by Sleep Deprivation in Female Rats. ARCHIVES OF NEUROSCIENCE 2017. [DOI: 10.5812/archneurosci.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Aghaei I, Saeedi Saravi SS, Ghotbi Ravandi S, Nozari M, Roudbari A, Dalili A, Shabani M, Dehpour AR. Evaluation of prepulse inhibition and memory impairments at early stage of cirrhosis may be considered as a diagnostic index for minimal hepatic encephalopathy. Physiol Behav 2017; 173:87-94. [PMID: 28119160 DOI: 10.1016/j.physbeh.2017.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 10/22/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
Minimal hepatic encephalopathy (MHE), which represents the early stage of this condition, is not clinically apparent and is prevalent in up to 80% of patients. The poor outcomes of MHE encouraged us to identify more simple methods for early diagnosis of MHE. To this purpose, we evaluated the contemporary manifestations of motor, cognitive and sensorimotor gaiting deficits following bile duct-ligation (BDL). Male Wistar rats were undergone BDL to induce cirrhosis and locomotor, spatial learning and memory and sensorimotor gating were assessed 2, 3, and 4weeks after the operation by rotarod, Morris water-maze and prepulse inhibition (PPI) tests. PPI was examined 6weeks after BDL until appearance of hepatic encephalopathy. Results showed that although PPI was significantly enhanced in the 6-week BDL animals, locomotor activity reduced in 4-week BDL rats compared to the BDL rats after a 2-week period. The total distance travelled and swimming time to reach the platform increased in the 4-week BDL rats and, in contrast, the percentage of time spent and space travelled in correct quadrant decreased. Moreover, memory index decreased in the 3-week BDL group compared to sham-operated group. It was observed an increase in global PPI in 3- and 4-week BDL animals in comparison with either 2-week BDL or sham-operated rats. Consequently, it is indicated that BDL animals manifest spatial learning and memory deficits and PPI disruption in early stage of HE and evaluation of these factors can be considered as indices for simple and early diagnosis of MHE.
Collapse
Affiliation(s)
- Iraj Aghaei
- Social Determinants of Health Research Center, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Soheil Saeedi Saravi
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Ghotbi Ravandi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Nozari
- Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Roudbari
- Neuroscience Research Center, Department of Neurology, Poursina Hospital, School of Medicine, Guilan University of Medical sciences, Rasht, Iran
| | - Afshin Dalili
- Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|