1
|
Tripp G, Wickens J. Using rodent data to elucidate dopaminergic mechanisms of ADHD: Implications for human personality. PERSONALITY NEUROSCIENCE 2024; 7:e2. [PMID: 38384667 PMCID: PMC10877278 DOI: 10.1017/pen.2023.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 02/23/2024]
Abstract
An altered behavioral response to positive reinforcement has been proposed to be a core deficit in attention deficit hyperactivity disorder (ADHD). The spontaneously hypertensive rat (SHR), a congenic animal strain, displays a similarly altered response to reinforcement. The presence of this genetically determined phenotype in a rodent model allows experimental investigation of underlying neural mechanisms. Behaviorally, the SHR displays increased preference for immediate reinforcement, increased sensitivity to individual instances of reinforcement relative to integrated reinforcement history, and a steeper delay of reinforcement gradient compared to other rat strains. The SHR also shows less development of incentive to approach sensory stimuli, or cues, that predict reward after repeated cue-reward pairing. We consider the underlying neural mechanisms for these characteristics. It is well known that midbrain dopamine neurons are initially activated by unexpected reward and gradually transfer their responses to reward-predicting cues. This finding has inspired the dopamine transfer deficit (DTD) hypothesis, which predicts certain behavioral effects that would arise from a deficient transfer of dopamine responses from actual rewards to reward-predicting cues. We argue that the DTD predicts the altered responses to reinforcement seen in the SHR and individuals with ADHD. These altered responses to reinforcement in turn predict core symptoms of ADHD. We also suggest that variations in the degree of dopamine transfer may underlie variations in personality dimensions related to altered reinforcement sensitivity. In doing so, we highlight the value of rodent models to the study of human personality.
Collapse
Affiliation(s)
- Gail Tripp
- Human Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jeff Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
2
|
Fox AE, Nicholson AM, Singha D, Thieret BAS, Ortiz M, Visser EJ. Timing and delay discounting in attention-deficit/hyperactivity disorder: A translational approach. Dev Psychobiol 2023; 65:e22399. [PMID: 37338253 DOI: 10.1002/dev.22399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/21/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder that often presents with abnormal time perception and increased impulsive choice behavior. The spontaneously hypertensive rat (SHR) is the most widely used preclinical model of the ADHD-Combined and ADHD-Hyperactive/Impulsive subtypes of the disorder. However, when testing the spontaneously hypertensive rat from Charles River (SHR/NCrl) on timing and impulsive choice tasks, the appropriate control strain is not clear, and it is possible that one of the possible control strains, the Wistar Kyoto from Charles River (WKY/NCrl), is an appropriate model for ADHD-Predominately Inattentive. Our goals were to test the SHR/NCrl, WKY/NCrl, and Wistar (WI; the progenitor strain for the SHR/NCrl and WKY/NCrl) strains on time perception and impulsive choice tasks to assess the validity of SHR/NCrl and WKY/NCrl as models of ADHD, and the validity of the WI strain as a control. We also sought to assess impulsive choice behavior in humans diagnosed with the three subtypes of ADHD and compare them with our findings from the preclinical models. We found SHR/NCrl rats timed faster and were more impulsive than WKY/NCrl and WI rats, and human participants diagnosed with ADHD were more impulsive compared to controls, but there were no differences between the three ADHD subtypes.
Collapse
Affiliation(s)
- Adam E Fox
- Department of Psychology, St. Lawrence University, Canton, New York, USA
| | - Alycia M Nicholson
- Department of Psychology, St. Lawrence University, Canton, New York, USA
| | - Depika Singha
- Department of Psychology, St. Lawrence University, Canton, New York, USA
| | - Bryana A S Thieret
- Department of Psychology, St. Lawrence University, Canton, New York, USA
| | - Marcelo Ortiz
- Department of Psychology, St. Lawrence University, Canton, New York, USA
| | - Emma J Visser
- Department of Psychology, St. Lawrence University, Canton, New York, USA
| |
Collapse
|
3
|
Panfil K, Small R, Kirkpatrick K. Effects of methylphenidate on impulsive choice and delay aversion in Lewis rats. Behav Pharmacol 2023; 34:169-Btii. [PMID: 36752349 PMCID: PMC10006322 DOI: 10.1097/fbp.0000000000000719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD), a common behavioral disorder in children and young adults, is characterized by symptoms of impulsivity, inattention, and hyperactivity. The purpose of this study was to evaluate the Lewis rat strain as a model of ADHD by testing their impulsive choices. Lewis rats were compared to their source strain, the Wistar rat, on an impulsive choice task. Rats completed the tasks on and off methylphenidate, a commonly prescribed medication for ADHD. Off methylphenidate, Lewis rats made more impulsive choices than Wistar rats. Analyses of acquisition of choice behavior suggested that both strains were able to discriminate reward sizes, but Lewis rats still chose the smaller-sooner option more than the larger-later (LL) option when the delays to reward were the same. This may be due to an aversion to the LL lever, which was associated with the longest delays to reward. Higher doses of methylphenidate increased LL choices in Lewis rats but decreased LL choices in Wistar rats. Altogether, these results suggest Lewis rats may be a viable model for ADHD in individuals whose symptoms are characterized by impulsive choices.
Collapse
Affiliation(s)
- Kelsey Panfil
- Department of Psychological Sciences, Kansas State University, Manhattan, Kansas, USA
| | | | | |
Collapse
|
4
|
Sjoberg E, Ottåsen HM, Wilner RG, Johansen EB. Previous experience with delays affects delay discounting in animal model of ADHD. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:4. [PMID: 36782239 PMCID: PMC9926738 DOI: 10.1186/s12993-022-00199-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/31/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND ADHD is a disorder where a common symptom is impulsive behaviour, a broad term associated with making sub-optimal choices. One frequently used method to investigate impulsive behaviour is delay discounting, which involves choosing between a small, immediate reinforcer and a delayed, larger one. Choosing the small immediate reinforcer is by itself, however, not sufficient for terming the choice impulsive, as all organisms eventually switch to choosing the small, immediate reinforcer when the delay to the larger reinforcer becomes long. This switch can be termed impulsive only when it occurs more frequently, or at shorter LL delays, than typically observed in normal controls. A poorly understood aspect is how choice is influenced by previous experience with delays. Using an animal model of Attention-Deficit/Hyperactivity Disorder, the Spontaneously Hypertensive Rat, we manipulated the order of exposure to delays in a delay discounting task. Following a preference test, the Ascending group experienced gradually increasing delays between choice and reinforcer while the Descending group were exposed to these delays in reverse order. RESULTS The results showed that the Descending group chose the small, immediate reinforcer over the larger delayed to a much larger extent than the Ascending group, and continued to do so even when the delay component was ultimately removed. Strain effects were found in the Ascending group, with SHRs switching to the small, immediate reinforcer earlier than controls as the delay to the larger reinforcer increased. CONCLUSION The data suggests that delay discounting is affected by history of exposure to delayed consequences. When reinforcement contingencies are incrementally changed from having no response-reinforcer delay to a long delay, discounting of delayed consequences is gradual. However, a sudden change from no delay to a long delay, without intermediate training, results in a rapid switch to the small, immediate reinforcer option, and this behaviour is somewhat resilient to the shortening and eventual removal of the large reinforcer delay. The implication is that attempting to reduce already existing impulsive behaviour in children with ADHD will require gradual habituation and not sudden changes in reinforcement contingencies.
Collapse
Affiliation(s)
- Espen Sjoberg
- Kristiania University College, Prinsens gate 7-9, 0152 Oslo, Norway
- Oslo Metropolitan University, P.O. Box 4, St. Olavs Plass, 0130 Oslo, Norway
| | - H. M. Ottåsen
- Oslo Metropolitan University, P.O. Box 4, St. Olavs Plass, 0130 Oslo, Norway
| | - R. G. Wilner
- University of Bergen, Sydnesplassen 7, 5007 Bergen, Norway
| | - E. B. Johansen
- Oslo Metropolitan University, P.O. Box 4, St. Olavs Plass, 0130 Oslo, Norway
| |
Collapse
|
5
|
Carbajal MS, Bounmy AJC, Harrison OB, Nolen HG, Regan SL, Williams MT, Vorhees CV, Sable HJK. Impulsive choice in two different rat models of ADHD-Spontaneously hypertensive and Lphn3 knockout rats. Front Neurosci 2023; 17:1094218. [PMID: 36777639 PMCID: PMC9909198 DOI: 10.3389/fnins.2023.1094218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Impulsivity is a symptom of attention-deficit/hyperactivity disorder (ADHD) and variants in the Lphn3 (Adgrl3) gene (OMIM 616417) have been linked to ADHD. This project utilized a delay-discounting (DD) task to examine the impact of Lphn3 deletion in rats on impulsive choice. "Positive control" measures were also collected in spontaneously hypertensive rats (SHRs), another animal model of ADHD. Methods For Experiment I, rats were given the option to press one lever for a delayed reward of 3 food pellets or the other lever for an immediate reward of 1 pellet. Impulsive choice was measured as the tendency to discount the larger, delayed reward. We hypothesized that impulsive choice would be greater in the SHR and Lphn3 knockout (KO) rats relative to their control strains - Wistar-Kyoto (WKY) and Lphn3 wildtype (WT) rats, respectively. Results The results did not completely support the hypothesis, as only the SHRs (but not the Lphn3 KO rats) demonstrated a decrease in the percent choice for the larger reward. Because subsequent trials did not begin until the end of the delay period regardless of which lever was selected, rats were required to wait for the next trial to start even if they picked the immediate lever. Experiment II examined whether the rate of reinforcement influenced impulsive choice by using a DD task that incorporated a 1 s inter-trial interval (ITI) immediately after delivery of either the immediate (1 pellet) or delayed (3 pellet) reinforcer. The results of Experiment II found no difference in the percent choice for the larger reward between Lphn3 KO and WT rats, demonstrating reinforcement rate did not influence impulsive choice in Lphn3 KO rats. Discussion Overall, there were impulsivity differences among the ADHD models, as SHRs exhibited deficits in impulsive choice, while the Lphn3 KO rats did not.
Collapse
Affiliation(s)
- Monica S. Carbajal
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Asiah J. C. Bounmy
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Olivia B. Harrison
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Hunter G. Nolen
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Samantha L. Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Helen J. K. Sable
- Department of Psychology, University of Memphis, Memphis, TN, United States,*Correspondence: Helen J. K. Sable,
| |
Collapse
|
6
|
González-Barriga F, Orduña V. Spontaneously hypertensive rats show higher impulsive action, but equal impulsive choice with both positive and aversive consequences. Behav Brain Res 2022; 427:113858. [PMID: 35339564 DOI: 10.1016/j.bbr.2022.113858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Both positive and aversive delayed consequences play an important role in decision making. However, most of research has studied the temporal discounting of the positive consequences, while the study of the aversives is scarce in general and null in some areas. This is the case of research on impulsivity in spontaneously hypertensive rats (SHR), an animal model of ADHD. To evaluate SHRs' sensitivity to aversive delayed consequences, we employed a choice procedure in which subjects chose between a smaller-amount alternative and a larger-amount alternative plus a shock; when preference for the smaller-amount alternative stabilized, five different delays to the shock were presented with the objective of analyzing the recovery of preference for the larger-amount alternative, which is related to the sensitivity to the delayed aversive consequence. To analyze the sensitivity to delayed positive consequences we employed a procedure that evaluated the preference between a smaller-amount alternative and a larger-amount alternative as a function of the delay to the later. Finally, to evaluate impulsive action we employed a DRL 10s schedule. In all tasks, Wistar rats were evaluated as control strain. The results indicated that choice impulsivity was equivalent between strains, both for positive and for aversive consequences. In contrast, we found a higher level of impulsive action in SHR.
Collapse
Affiliation(s)
| | - Vladimir Orduña
- Facultad de Psicología, Universidad Nacional Autónoma de México, México D.F. 04510, México.
| |
Collapse
|
7
|
Kantak KM. Rodent models of attention-deficit hyperactivity disorder: An updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav 2022; 216:173378. [DOI: 10.1016/j.pbb.2022.173378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
|
8
|
Stanford SC. Animal Models of ADHD? Curr Top Behav Neurosci 2022; 57:363-393. [PMID: 35604570 DOI: 10.1007/7854_2022_342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To describe animals that express abnormal behaviors as a model of Attention-Deficit Hyperactivity Disorder (ADHD) implies that the abnormalities are analogous to those expressed by ADHD patients. The diagnostic features of ADHD comprise inattentiveness, impulsivity, and hyperactivity and so these behaviors are fundamental for validation of any animal model of this disorder. Several experimental interventions such as neurotoxic lesion of neonatal rats with 6-hydroxydopamine (6-OHDA), genetic alterations, or selective inbreeding of rodents have produced animals that express each of these impairments to some extent. This article appraises the validity of claims that these procedures have produced a model of ADHD, which is essential if they are to be used to investigate the underlying cause(s) of ADHD and its abnormal neurobiology.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
9
|
Sjoberg EA, Ramos S, López-Tolsa GE, Johansen EB, Pellón R. The irrelevancy of the inter-trial interval in delay-discounting experiments on an animal model of ADHD. Behav Brain Res 2021; 408:113236. [PMID: 33727048 DOI: 10.1016/j.bbr.2021.113236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/19/2023]
Abstract
Delay discounting involves choosing between a small, immediate reward, and a larger but delayed one. As the delay between choice and large reward gets longer, people with ADHD tend to become impulsive faster than controls, indicated by a switch in preference from the large to the smaller reward. Choosing the smaller reward when the larger is considered reward maximizing is labeled impulsive behaviour. It is well documented that increased delays between choice and reward affects choice preference in both humans and other animals. Other variables such as the inter-trial interval or trial length are observed to have an effect on human discounting, but their effect on discounting in other animals is largely assumed rather than tested. In the current experiment, we tested this assumption. One group of rats was exposed to increasing delays between choosing the large reward and receiving it, while another group experienced longer inter-trial intervals that were equal in length to the delays in the other group. This ensured that trial length was controlled for in delay discounting, but that the delay function and inter-trial intervals could be manipulated and measured separately. Results showed that while the delay between choice and reward caused impulsive behaviour in rats, the length of the inter-trial interval (and by extension trial length) had no impact on choice behaviour. A follow-up experiment found this to be the case even if the length of the inter-trial interval was signaled with audio cues. These results suggest that rats, and possibly animals in general, are insensitive to time between trials, and therefore cannot easily represent human counterparts on the task.
Collapse
Affiliation(s)
- Espen A Sjoberg
- Department of Behavioral Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, Oslo, 0130, Norway; School of Health Sciences, Kristiania University College, Chr. Krohgs Gate 32A, Oslo, 0186, Norway
| | - Sergio Ramos
- Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, Madrid, 28040, Spain
| | - Gabriela E López-Tolsa
- Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, Madrid, 28040, Spain; Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Espen Borgå Johansen
- Department of Behavioral Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, Oslo, 0130, Norway
| | - Ricardo Pellón
- Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, Madrid, 28040, Spain.
| |
Collapse
|
10
|
Impact of Light–Dark Phase on Delay Discounting Behavior in Rats. PSYCHOLOGICAL RECORD 2021. [DOI: 10.1007/s40732-021-00462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Hernandez CM, Orsini C, Wheeler AR, Ten Eyck TW, Betzhold SM, Labiste CC, Wright NG, Setlow B, Bizon JL. Testicular hormones mediate robust sex differences in impulsive choice in rats. eLife 2020; 9:58604. [PMID: 32985975 PMCID: PMC7521924 DOI: 10.7554/elife.58604] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Impairments in choosing optimally between immediate and delayed rewards are associated with numerous psychiatric disorders. Such ‘intertemporal’ choice is influenced by genetic and experiential factors; however, the contributions of biological sex are understudied and data to date are largely inconclusive. Rats were used to determine how sex and gonadal hormones influence choices between small, immediate and large, delayed rewards. Females showed markedly greater preference than males for small, immediate over large, delayed rewards (greater impulsive choice). This difference was neither due to differences in food motivation or reward magnitude perception, nor was it affected by estrous cycle. Ovariectomies did not affect choice in females, whereas orchiectomies increased impulsive choice in males. These data show that male rats exhibit less impulsive choice than females and that this difference is at least partly maintained by testicular hormones. These differences in impulsive choice could be linked to gender differences across multiple neuropsychiatric conditions.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, United States.,Department of Psychiatry, University of Florida, Gainesville, United States
| | - Caitlin Orsini
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Sara M Betzhold
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Chase C Labiste
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Noelle G Wright
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, United States
| |
Collapse
|
12
|
Ramos S, López-Tolsa GE, Sjoberg EA, Pellón R. Effect of Schedule-Induced Behavior on Responses of Spontaneously Hypertensive and Wistar-Kyoto Rats in a Delay-Discounting Task: A Preliminary Report. Front Behav Neurosci 2019; 13:255. [PMID: 31798428 PMCID: PMC6874143 DOI: 10.3389/fnbeh.2019.00255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Delay discounting is the loss of the subjective value of an outcome as the time to its delivery increases. It has been suggested that organisms can become more tolerant of this delay when engaging in schedule-induced behaviors. Schedule-induced behaviors are those that develop at a high rate during intermittent reinforcement schedules without the need of arranged contingency to the reinforcer, and they have been considered as a model of compulsivity. There is evidence that relates compulsivity to greater delay discounting. The rate of delay discounting represents how impulsive the subject is, as the rate of discounting increases the higher the impulsivity. Thus, the main purpose of this study was to undertake a preliminary evaluation of whether developing schedule-induced behaviors affects performance in a delay-discounting task, by comparing spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) rats. The rats were exposed to a task that consisted of presenting the subjects with two levers: one produced a small, immediate food reinforcer while the other one produced a larger, delayed reinforcer. During Condition A, the levers were presented, and a water bottle and a running wheel were available in the conditioning chambers; during Condition B, only the levers were presented. SHR and WKY rats developed schedule-induced behaviors during Condition A and showed no difference in discounting rates, contradicting previous reports. Lick allocation during response-reinforcer delays and the inter-trial interval (ITI) showed, respectively, pre- and post-food distributions. Discounting rates during Condition B (when rats could not engage in schedule-induced behaviors) did not reach statistical significance difference among strains of animals, although it was observed a tendency for WKY to behave more self-controlled. Likewise it was not found any effect of schedule-induced behavior on discounting rates, however, a tendency for WKY rats to behave more impulsive during access to drink and run seems to tentatively support the idea of schedule-induced behavior as a model of compulsivity in those rats, being impulsivity simply defined as an excess in behavior.
Collapse
Affiliation(s)
- Sergio Ramos
- Animal Learning and Behavior Laboratory, Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Gabriela E López-Tolsa
- Animal Learning and Behavior Laboratory, Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Espen A Sjoberg
- Animal Behavior Laboratories, Department of Behavioral Science, Oslo Metropolitan University, Oslo, Norway
- Schools of Health Sciences, Kristiania University College, Oslo, Norway
| | - Ricardo Pellón
- Animal Learning and Behavior Laboratory, Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
13
|
Differential effects of d-amphetamine and atomoxetine on risk-based decision making of Lewis and Fischer 344 rats. Behav Pharmacol 2019; 30:605-616. [PMID: 31503070 DOI: 10.1097/fbp.0000000000000500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Individuals with attention-deficit/hyperactivity disorder tend to make risker choices during probabilistic-discounting procedures. Thus, how common attention-deficit/hyperactivity disorder medications affect probabilistic discounting is of interest. In general, d-amphetamine increases risk-taking while atomoxetine has produced mixed effects in rats. Results from previous studies may result from genetic factors. Lewis and F344 rats have neurochemical differences that may be relevant to probabilistic discounting and how drugs affect such behavior. In this study, we evaluated dose-dependent effects of d-amphetamine and atomoxetine on probabilistic discounting of Lewis and F344. Male Lewis and F344 chose between one food pellet delivered 100% of the time and three food pellets delivered following decreasing probabilities of delivery (i.e. 100%, 66.7%, 33.3%, 16.5%, and 8.25%). Saline, d-amphetamine (0.1-1.8 mg/kg), and atomoxetine (0.1-7.8 mg/kg) were tested acutely. Lewis and F344 did not differ in choice at baseline. d-Amphetamine increased risky choice for both rat strains at low-to-moderate doses, although it did so at a lower dose (0.1 and 0.3 mg/kg) for F344 as compared to Lewis (0.3 mg/kg only). At high doses (1.0 and 1.8 mg/kg), d-amphetamine disrupted choice, increased frequencies of omitted trials, and reduced reinforcer sensitivity. Although atomoxetine increased frequencies of omitted trials at high doses (5.6 and 7.8 mg/kg), it had no effect on probabilistic discounting for either rat strain. Although Lewis and F344 differ in various types of impulsivity (i.e. motor, choice), with Lewis being the more impulsive of the two, the present results suggest that Lewis and F344 do not differ in risk-based decision-making. Effects of d-amphetamine on probabilistic discounting may be biology-dependent and differ from effects of atomoxetine.
Collapse
|
14
|
Mitchell SH. Linking Delay Discounting and Substance Use Disorders: Genotypes and Phenotypes. Perspect Behav Sci 2019; 42:419-432. [PMID: 31976442 PMCID: PMC6768927 DOI: 10.1007/s40614-019-00218-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Research supports the idea that "delay discounting," also known as temporal discounting, intertemporal choice, or impulsive choice, is a transdisease process with a strong connection to substance use disorders (SUDs) and other psychopathologies, like attention deficit hyperactivity disorder and depression. This article briefly reviews the evidence used to conclude that delay discounting is heritable and should be considered to be an endophenotype, as well as evidence of its behavioral and genetic associations with SUDs. It also discusses the limitations that should be considered when evaluating the strength of these associations. Finally, this article briefly describes research examining relationships among delay discounting and SUD-associated intermediate phenotypes to better understand the conceptual relationships underlying the links between SUDs and delay discounting, and identifies research gaps that should be addressed.
Collapse
Affiliation(s)
- Suzanne H. Mitchell
- Behavioral Neuroscience, Psychiatry, the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| |
Collapse
|
15
|
Steele CC, Pirkle JRA, Davis IR, Kirkpatrick K. Dietary effects on the determinants of food choice: Impulsive choice, discrimination, incentive motivation, preference, and liking in male rats. Appetite 2019; 136:160-172. [PMID: 30721744 DOI: 10.1016/j.appet.2019.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 01/27/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
The current study sought to understand how long-term exposure to diets high in saturated fat and refined sugar affected impulsive choice behavior, discrimination abilities, incentive motivation, food preferences, and liking of fat and sugar in male rats. The results showed that 8 weeks of dietary exposure impaired impulsive choice behavior; rats exposed to diets high in processed fat or sugar were more sensitive to changes in delay, a marker of impulsivity. For the high-fat group, these deficits in impulsive choice may stem from poor time discrimination, as their performance was impaired on a temporal discrimination task. The high-fat group also showed reduced magnitude sensitivity in the impulsive choice task, and they earned fewer rewards during lever press training indicating potentially reduced incentive motivation. The high-fat group also developed a preference for high-fat foods compared to the chow and high-sugar group who both preferred sugar. In contrast, dietary exposure did not alter the liking of fat or sugar as measured by a taste reactivity task. Together, the results suggest that the alterations in impulsive choice, time discrimination, incentive motivation, and food preferences induced by consumption of a high-fat diet could make individuals vulnerable to overeating, and thus obesity.
Collapse
Affiliation(s)
- Catherine C Steele
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| | - Jesseca R A Pirkle
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Ian R Davis
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kimberly Kirkpatrick
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
16
|
Miguel PM, Deniz BF, Deckmann I, Confortim HD, Diaz R, Laureano DP, Silveira PP, Pereira LO. Prefrontal cortex dysfunction in hypoxic-ischaemic encephalopathy contributes to executive function impairments in rats: Potential contribution for attention-deficit/hyperactivity disorder. World J Biol Psychiatry 2018; 19:547-560. [PMID: 28105895 DOI: 10.1080/15622975.2016.1273551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The attention-deficit/hyperactivity disorder (ADHD) compromises the quality of life of individuals including adaptation to the social environment. ADHD aetiology includes perinatal conditions such as hypoxic-ischaemic events; preclinical studies have demonstrated attentional deficits and impulsive-hyperactive outcomes after neonatal hypoxic and/or ischaemic intervention, but data are missing to understand this relationship. Thus, the aim of this study was to evaluate executive function (EF) and impulsivity, and tissue integrity and dopaminergic function in the prefrontal cortex (PFC) of rats submitted to hypoxia-ischaemia (HI). METHODS At postnatal day (PND) 7, male Wistar rats were divided into control (n = 10) and HI groups (n = 11) and the HI procedure was conducted. At PND60, the animals were tested in the attentional set-shifting (ASS) task to EF and in the tolerance to delay of reward for assessment of impulsivity. After, morphological analysis and the dopaminergic system were evaluated in the PFC. RESULTS Animals subjected to HI had impairments in EF evidenced by a behavioural inflexibility that was correlated to PFC atrophy. Moreover, HI animals presented reduced D2 receptors in the ipsilateral side of ischaemia in the PFC. CONCLUSIONS Animals submitted to HI presented impaired EF associated with tissue atrophy and dopaminergic disturbance in the PFC.
Collapse
Affiliation(s)
- Patrícia Maidana Miguel
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Bruna Ferrary Deniz
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Iohanna Deckmann
- b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Heloísa Deola Confortim
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Ramiro Diaz
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Daniela Pereira Laureano
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Patrícia Pelufo Silveira
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,c Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,d Ludmer Centre for Neuroinformatics and Mental Health , Douglas Mental Health University Institute, McGill University , Montreal , QC , Canada
| | - Lenir Orlandi Pereira
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| |
Collapse
|
17
|
Abstract
Impulsive choice underlies several psychological disorders and can be assessed in laboratory rats using delay-discounting tasks, in which choice is for either one food pellet immediately or three food pellets after a delay. Choice for the smaller, immediate reinforcer is considered the impulsive choice. Lewis (LEW) and Fischer 344 (F344) rats differ in the number of impulsive choices made during this task when singly housed, with LEW choosing the impulsive option more often. Due to increasing recommendations to provide environmental enrichment as a component of animal-husbandry practices, a systematic replication of two previous studies was conducted using pair-housed LEW and F344. Delay discounting was assessed with pair-housed LEW and F344 and compared to previous data from singly housed LEW and F344 collected from the same laboratory. Results showed that differences in impulsive choice between the two strains were attenuated with pair housing. The main result driving this change appears to be an increase in impulsive choice in pair-housed F344 relative to singly housed F344.
Collapse
|
18
|
Aparicio CF, Hennigan PJ, Mulligan LJ, Alonso-Alvarez B. Spontaneously hypertensive (SHR) rats choose more impulsively than Wistar-Kyoto (WKY) rats on a delay discounting task. Behav Brain Res 2017; 364:480-493. [PMID: 28963043 DOI: 10.1016/j.bbr.2017.09.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022]
Abstract
Indications of Attention Deficit Hyperactivity Disorder (ADHD) in the spontaneously hypertensive rat (SHR) are not consistent across different tests of impulsivity, questioning the SHR's validity as a rodent model of ADHD. This study used a concurrent-chains procedure to examine possible differences in impulsive choice between SHRs and control-normotensive Wistar Kyoto (WKY) rats. The aim was to extend the generality of findings showing regularities between the hyperbolic-decay model and the generalized matching law fitting delay discounting data from nonhuman animals. The objectives were to: (1) examine differences in impulsive choice between SHRs and WKYs; (2) add evidence suggesting that the SHR is a suitable model of ADHD; (3) demonstrate that concurrent-chains procedures requiring locomotion detect differences in impulsive choice between SHRs and WKYs; (4) support the idea that impulsivity in nonhuman animals increases with training. The initial link used two non-independent random interval schedules arranging entries to the terminal links, where one fixed-time (FT) schedule delayed 1-food pellet and the other FT 4-food pellets. The FT delaying the former was kept constant at 0.1s and that delaying the latter changed after every 10 food deliveries, defining six delay components (0.1, 5, 10, 20, 40, and 80s) presented in random order each session. Results showed that the SHRs choose more impulsively than the WKYs, adding to the body of evidence suggesting that the SHR may be a suitable model of ADHD. Both models of choice fitted the impulsive choices of the SHRs and WKYs well; positive correlations between estimates of parameters k and s suggested compatibility between models of choice showing that impulsivity increases with training.
Collapse
|
19
|
Orduña V, Mercado E. Impulsivity in spontaneously hypertensive rats: Within-subjects comparison of sensitivity to delay and to amount of reinforcement. Behav Brain Res 2017; 328:178-185. [DOI: 10.1016/j.bbr.2017.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 12/31/2022]
|
20
|
Sjoberg EA. Logical fallacies in animal model research. Behav Brain Funct 2017; 13:3. [PMID: 28202023 PMCID: PMC5312558 DOI: 10.1186/s12993-017-0121-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Background Animal models of human behavioural deficits involve conducting experiments on animals with the hope of gaining new knowledge that can be applied to humans. This paper aims to address risks, biases, and fallacies associated with drawing conclusions when conducting experiments on animals, with focus on animal models of mental illness. Conclusions Researchers using animal models are susceptible to a fallacy known as false analogy, where inferences based on assumptions of similarities between animals and humans can potentially lead to an incorrect conclusion. There is also a risk of false positive results when evaluating the validity of a putative animal model, particularly if the experiment is not conducted double-blind. It is further argued that animal model experiments are reconstructions of human experiments, and not replications per se, because the animals cannot follow instructions. This leads to an experimental setup that is altered to accommodate the animals, and typically involves a smaller sample size than a human experiment. Researchers on animal models of human behaviour should increase focus on mechanistic validity in order to ensure that the underlying causal mechanisms driving the behaviour are the same, as relying on face validity makes the model susceptible to logical fallacies and a higher risk of Type 1 errors. We discuss measures to reduce bias and risk of making logical fallacies in animal research, and provide a guideline that researchers can follow to increase the rigour of their experiments.
Collapse
Affiliation(s)
- Espen A Sjoberg
- Department of Behavioral Sciences, Oslo and Akershus University College of Applied Sciences, St. Olavs Plass, P.O. Box 4, 0130, Oslo, Norway.
| |
Collapse
|
21
|
Fox AE, Caramia SR, Haskell MM, Ramey AL, Singha D. Stimulus control in two rodent models of attention-deficit/hyperactivity disorder. Behav Processes 2017; 135:16-24. [DOI: 10.1016/j.beproc.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022]
|
22
|
Smith AP, Peterson JR, Kirkpatrick K. Reward Contrast Effects on Impulsive Choice and Timing in Rats. TIMING & TIME PERCEPTION 2016; 4:147-166. [PMID: 27867839 DOI: 10.1163/22134468-00002059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite considerable interest in impulsive choice as a predictor of a variety of maladaptive behaviors, the mechanisms that drive choice behavior are still poorly understood. The present study sought to examine the influence of one understudied variable, reward magnitude contrast, on choice and timing behavior as changes in magnitude commonly occur within choice procedures. In addition, assessments of indirect effects on choice behavior through magnitude-timing interactions were assessed by measuring timing within the choice task. Rats were exposed to choice procedures composed of different pairs of magnitudes of rewards for either the smaller-sooner (SS) or larger-later (LL) option. In Phase 2, the magnitude of reward either increased or decreased by 1 pellet in different groups (LL increase = 1v1→1v2; SS decrease = 2v2 → 1v2; SS increase = 1v2 → 2v2), followed by a return to baseline in Phase 3. Choice behavior was affected by the initial magnitudes experienced in the task, demonstrating a strong anchor effect. The nature of the change in magnitude affected choice behavior as well. Timing behavior was also affected by the reward contrast manipulation albeit to a lesser degree and the timing and choice effects were correlated. The results suggest that models of choice behavior should incorporate reinforcement history, reward contrast elements, and magnitude-timing interactions, but that direct effects of reward contrast on choice should be given more weight than the indirect reward-timing interactions. A better understanding of the factors that contribute to choice behavior could supply key insights into this important individual differences variable.
Collapse
|
23
|
Scariot PPM, Manchado-Gobatto FDB, Torsoni AS, Dos Reis IGM, Beck WR, Gobatto CA. Continuous Aerobic Training in Individualized Intensity Avoids Spontaneous Physical Activity Decline and Improves MCT1 Expression in Oxidative Muscle of Swimming Rats. Front Physiol 2016; 7:132. [PMID: 27148071 PMCID: PMC4834519 DOI: 10.3389/fphys.2016.00132] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/28/2016] [Indexed: 11/16/2022] Open
Abstract
Although aerobic training has been shown to affect the lactate transport of skeletal muscle, there is no information concerning the effect of continuous aerobic training on spontaneous physical activity (SPA). Because every movement in daily life (i.e., SPA) is generated by skeletal muscle, we think that it is possible that an improvement of SPA could affect the physiological properties of muscle with regard to lactate transport. The aim of this study was to evaluate the effect of 12 weeks of continuous aerobic training in individualized intensity on SPA of rats and their gene expressions of monocarboxylate transporters (MCT) 1 and 4 in soleus (oxidative) and white gastrocnemius (glycolytic) muscles. We also analyzed the effect of continuous aerobic training on aerobic and anaerobic parameters using the lactate minimum test (LMT). Sixty-day-old rats were randomly divided into three groups: a baseline group in which rats were evaluated prior to initiation of the study; a control group (Co) in which rats were kept without any treatment during 12 weeks; and a chronic exercise group (Tr) in which rats swam for 40 min/day, 5 days/week at 80% of anaerobic threshold during 12 weeks. After the experimental period, SPA of rats was measured using a gravimetric method. Rats had their expression of MCTs determined by RT-PCR analysis. In essence, aerobic training is effective in maintaining SPA, but did not prevent the decline of aerobic capacity and anaerobic performance, leading us to propose that the decline of SPA is not fully attributed to a deterioration of physical properties. Changes in SPA were concomitant with changes in MCT1 expression in the soleus muscle of trained rats, suggestive of an additional adaptive response toward increased lactate clearance. This result is in line with our observation showing a better equilibrium on lactate production-remotion during the continuous exercise (LMT). We propose an approach to combat the decline of SPA of rats in their home cages. This new finding is worth for scientists who work with animal models to study the protective effects of exercise.
Collapse
Affiliation(s)
- Pedro P M Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas Limeira, Brazil
| | | | - Adriana S Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas Limeira, Brazil
| | - Ivan G M Dos Reis
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas Limeira, Brazil
| | - Wladimir R Beck
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas Limeira, Brazil
| | - Claudio A Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas Limeira, Brazil
| |
Collapse
|
24
|
Peterson JR, Hill CC, Marshall AT, Stuebing SL, Kirkpatrick K. I can't wait: Methods for measuring and moderating individual differences in impulsive choice. ACTA ACUST UNITED AC 2015; 13:89-99. [PMID: 27695664 DOI: 10.1515/jafio-2015-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Impulsive choice behavior occurs when individuals make choices without regard for future consequences. This behavior is often maladaptive and is a common symptom in many disorders, including drug abuse, compulsive gambling, and obesity. Several proposed mechanisms may influence impulsive choice behavior. These mechanisms provide a variety of pathways that may provide the basis for individual differences that are often evident when measuring choice behavior. This review provides an overview of these different pathways to impulsive choice, and the behavioral intervention strategies being developed to moderate impulsive choice. Because of the compelling link between impulsive choice behavior and the near-epidemic pervasiveness of obesity in the United States, we focus on the relationship between impulsive choice behavior and obesity as a test case for application of the multiple pathways approach. Choosing immediate gratification over healthier long term food choices is a contributing factor to the obesity crisis. Behavioral interventions can lead to more self controlled choices in a rat pre-clinical model, suggesting a possible gateway for translation to human populations. Designing and implementing effective impulsive choice interventions is crucial to improving the overall health and well-being of impulsive individuals.
Collapse
|
25
|
Marwitz SE, Woodie LN, Blythe SN. Western-style diet induces insulin insensitivity and hyperactivity in adolescent male rats. Physiol Behav 2015; 151:147-54. [PMID: 26192711 DOI: 10.1016/j.physbeh.2015.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/29/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
|
26
|
Marshall AT, Kirkpatrick K. Mechanisms of impulsive choice: III. The role of reward processes. Behav Processes 2015; 123:134-48. [PMID: 26506254 DOI: 10.1016/j.beproc.2015.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/16/2015] [Accepted: 10/17/2015] [Indexed: 02/07/2023]
Abstract
Two experiments examined the relationship between reward processing and impulsive choice. In Experiment 1, rats chose between a smaller-sooner (SS) reward (1 pellet, 10 s) and a larger-later (LL) reward (1, 2, and 4 pellets, 30 s). The rats then experienced concurrent variable-interval 30-s schedules with variations in reward magnitude to evaluate reward magnitude discrimination. LL choice behavior positively correlated with reward magnitude discrimination. In Experiment 2, rats chose between an SS reward (1 pellet, 10 s) and an LL reward (2 and 4 pellets, 30 s). The rats then received either a reward intervention which consisted of concurrent fixed-ratio schedules associated with different magnitudes to improve their reward magnitude discrimination, or a control task. All rats then experienced a post-intervention impulsive choice task followed by a reward magnitude discrimination task to assess intervention efficacy. The rats that received the intervention exhibited increases in post-intervention LL choice behavior, and made more responses for larger-reward magnitudes in the reward magnitude discrimination task, suggesting that the intervention heightened sensitivities to reward magnitude. The results suggest that reward magnitude discrimination plays a key role in individual differences in impulsive choice, and could be a potential target for further intervention developments.
Collapse
|
27
|
Orduña V. Impulsivity and sensitivity to amount and delay of reinforcement in an animal model of ADHD. Behav Brain Res 2015. [PMID: 26225844 DOI: 10.1016/j.bbr.2015.07.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous research has been inconclusive about the degree of impulsivity displayed by spontaneously hypertensive rats (SHR), an animal model of Attention Deficit Hyperactivity Disorder (ADHD). In the present set of experiments, concurrent-chains schedules were employed in order to explore SHR's impulsivity, sensitivity to delay, and sensitivity to amount of reinforcement; Wistar rats (WIS) were used as comparison group. In the three experiments - performed with different subjects - non-independent variable interval 30s schedules were presented in the initial links; the difference between experiments was in the terminal links. For exploring impulsivity, one of the terminal links (SS) was associated to a short delay (2s) and a small reinforcer (1 pellet), whereas the other terminal link (LL) was associated to a longer delay (28s) and a larger reinforcer (4 pellets). The results indicated a remarkably higher impulsivity in SHR. Because this impulsivity may have as potential mechanisms an increased sensitivity to delay and/or a decreased sensitivity to the amount of reinforcement, in experiments 2 and 3 these possibilities were examined. For assessing sensitivity to delay, the following pairs of fixed interval (FI) schedules were used in the terminal links in five conditions: 2-28, 6-24, 15-15, 24-6, 28-2s; the magnitude of reinforcement was 1 pellet in all conditions for both alternatives. For assessing sensitivity to amount, in five conditions the alternatives were associated with different magnitudes of reinforcement: 1-5 pellets, 2-4, 3-3, 4-2 and 5-1 in left-right alternatives, respectively; the delay to reinforcement was controlled by a FI 15s in all conditions and for both alternatives. The sensitivity to delay and the sensitivity to amount were calculated according to the Generalized Matching Law. The results indicated a higher sensitivity to delay in SHR, and the same sensitivity to amount in SHR and WIS rats. These results suggest that the increased sensitivity to delay influences the high level of impulsivity observed in SHR.
Collapse
Affiliation(s)
- Vladimir Orduña
- Facultad de Psicología, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
28
|
Smith AP, Marshall AT, Kirkpatrick K. Mechanisms of impulsive choice: II. Time-based interventions to improve self-control. Behav Processes 2015; 112:29-42. [PMID: 25444771 PMCID: PMC4314470 DOI: 10.1016/j.beproc.2014.10.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/29/2014] [Accepted: 10/22/2014] [Indexed: 02/03/2023]
Abstract
Impulsive choice behavior has been proposed as a primary risk factor for other maladaptive behaviors (e.g., gambling, substance abuse). Recent research has suggested that timing processes may play a key role in impulsive choice behavior, and could provide an avenue for altering impulsive choice. Accordingly, the current experiments assessed a set of time-based behavioral interventions to increase self-control while simultaneously assessing effects on timing processes within the impulsive choice task. Three experiments assessed temporal interventions using a differential reinforcement of low rates task (Experiment 1) and exposure to either a variable or fixed interval schedule (Experiments 2-3). The efficacy of the interventions was assessed in Sprague-Dawley (Experiments 1-2) and Lewis (Experiment 3) rat strains. Impulsive choice behavior was assessed by measuring preferences of a smaller-sooner (SS) versus a larger-later (LL) reward, while timing of the SS and LL durations was measured during peak trials within the impulsive choice procedure. The rats showed an increased preference for the LL following all three time-based interventions and also displayed increased temporal precision. These results add to the increasing evidence that supports a possible role for temporal processing in impulsive choice behavior and supply novel behavioral interventions to decrease impulsive behavior.
Collapse
Affiliation(s)
- Aaron P Smith
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1100 Mid-Campus, Manhattan, KS 66506-5302, United States
| | - Andrew T Marshall
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1100 Mid-Campus, Manhattan, KS 66506-5302, United States
| | - Kimberly Kirkpatrick
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1100 Mid-Campus, Manhattan, KS 66506-5302, United States.
| |
Collapse
|
29
|
Marshall AT, Kirkpatrick K. Relative gains, losses, and reference points in probabilistic choice in rats. PLoS One 2015; 10:e0117697. [PMID: 25658448 PMCID: PMC4319772 DOI: 10.1371/journal.pone.0117697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/30/2014] [Indexed: 12/02/2022] Open
Abstract
Theoretical reference points have been proposed to differentiate probabilistic gains from probabilistic losses in humans, but such a phenomenon in non-human animals has yet to be thoroughly elucidated. Three experiments evaluated the effect of reward magnitude on probabilistic choice in rats, seeking to determine reference point use by examining the effect of previous outcome magnitude(s) on subsequent choice behavior. Rats were trained to choose between an outcome that always delivered reward (low-uncertainty choice) and one that probabilistically delivered reward (high-uncertainty). The probability of high-uncertainty outcome receipt and the magnitudes of low-uncertainty and high-uncertainty outcomes were manipulated within and between experiments. Both the low- and high-uncertainty outcomes involved variable reward magnitudes, so that either a smaller or larger magnitude was probabilistically delivered, as well as reward omission following high-uncertainty choices. In Experiments 1 and 2, the between groups factor was the magnitude of the high-uncertainty-smaller (H-S) and high-uncertainty-larger (H-L) outcome, respectively. The H-S magnitude manipulation differentiated the groups, while the H-L magnitude manipulation did not. Experiment 3 showed that manipulating the probability of differential losses as well as the expected value of the low-uncertainty choice produced systematic effects on choice behavior. The results suggest that the reference point for probabilistic gains and losses was the expected value of the low-uncertainty choice. Current theories of probabilistic choice behavior have difficulty accounting for the present results, so an integrated theoretical framework is proposed. Overall, the present results have implications for understanding individual differences and corresponding underlying mechanisms of probabilistic choice behavior.
Collapse
Affiliation(s)
- Andrew T. Marshall
- Department of Psychological Sciences, Kansas State University, Manhattan, Kansas, United States of America
| | - Kimberly Kirkpatrick
- Department of Psychological Sciences, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
30
|
Kirkpatrick K, Marshall AT, Smith AP. Mechanisms of Individual Differences in Impulsive and Risky Choice in Rats. COMPARATIVE COGNITION & BEHAVIOR REVIEWS 2015; 10:45-72. [PMID: 27695580 PMCID: PMC5045043 DOI: 10.3819/ccbr.2015.100003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Individual differences in impulsive and risky choice are key risk factors for a variety of maladaptive behaviors such as drug abuse, gambling, and obesity. In our rat model, ordered individual differences are stable across choice parameters, months of testing, and span a broad spectrum, suggesting that rats, like humans, exhibit trait-level impulsive and risky choice behaviors. In addition, impulsive and risky choices are highly correlated, suggesting a degree of correlation between these two traits. An examination of the underlying cognitive mechanisms has suggested an important role for timing processes in impulsive choice. In addition, in an examination of genetic factors in impulsive choice, the Lewis rat strain emerged as a possible animal model for studying disordered impulsive choice, with this strain demonstrating deficient delay processing. Early rearing environment also affected impulsive behaviors, with rearing in an enriched environment promoting adaptable and more self-controlled choices. The combined results with impulsive choice suggest an important role for timing and reward sensitivity in moderating impulsive behaviors. Relative reward valuation also affects risky choice, with manipulation of objective reward value (relative to an alternative reference point) resulting in loss chasing behaviors that predicted overall risky choice behaviors. The combined results are discussed in relation to domain-specific versus domain-general subjective reward valuation processes and the potential neural substrates of impulsive and risky choice.
Collapse
|
31
|
Marshall AT, Kirkpatrick K. Everywhere and everything: The power and ubiquity of time. INTERNATIONAL JOURNAL OF COMPARATIVE PSYCHOLOGY 2015; 28:http://escholarship.org/uc/item/8hg831n3. [PMID: 28392622 PMCID: PMC5382961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Anticipatory timing plays a critical role in many aspects of human and non-human animal behavior. Timing has been consistently observed in the range of milliseconds to hours, and demonstrates a powerful influence on the organization of behavior. Anticipatory timing is acquired early in associative learning and appears to guide association formation in important ways. Importantly, timing participates in regulating goal-directed behaviors in many schedules of reinforcements, and plays a critical role in value-based decision making under concurrent schedules. In addition to playing a key role in fundamental learning processes, timing often dominates when temporal cues are available concurrently with other stimulus dimensions. Such control by the passage of time has even been observed when other cues provide more accurate information and can lead to sub-optimal behaviors. The dominance of temporal cues in governing anticipatory behavior suggests that time may be inherently more salient than many other stimulus dimensions. Discussions of the interface of the timing system with other cognitive processes are provided to demonstrate the powerful and primitive nature of time as a stimulus dimension.
Collapse
|
32
|
Peterson JR, Hill CC, Kirkpatrick K. Measurement of impulsive choice in rats: same- and alternate-form test-retest reliability and temporal tracking. J Exp Anal Behav 2014; 103:166-79. [PMID: 25490901 DOI: 10.1002/jeab.124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/16/2014] [Indexed: 11/08/2022]
Abstract
Impulsive choice is typically measured by presenting smaller-sooner (SS) versus larger-later (LL) rewards, with biases towards the SS indicating impulsivity. The current study tested rats on different impulsive choice procedures with LL delay manipulations to assess same-form and alternate-form test-retest reliability. In the systematic-GE procedure (Green & Estle, 2003), the LL delay increased after several sessions of training; in the systematic-ER procedure (Evenden & Ryan, 1996), the delay increased within each session; and in the adjusting-M procedure (Mazur, 1987), the delay changed after each block of trials within a session based on each rat's choices in the previous block. In addition to measuring choice behavior, we also assessed temporal tracking of the LL delays using the median times of responding during LL trials. The two systematic procedures yielded similar results in both choice and temporal tracking measures following extensive training, whereas the adjusting procedure resulted in relatively more impulsive choices and poorer temporal tracking. Overall, the three procedures produced acceptable same form test-retest reliability over time, but the adjusting procedure did not show significant alternate form test-retest reliability with the other two procedures. The results suggest that systematic procedures may supply better measurements of impulsive choice in rats.
Collapse
|
33
|
Kishikawa Y, Kawahara Y, Yamada M, Kaneko F, Kawahara H, Nishi A. The spontaneously hypertensive rat/Izm (SHR/Izm) shows attention deficit/hyperactivity disorder-like behaviors but without impulsive behavior: therapeutic implications of low-dose methylphenidate. Behav Brain Res 2014; 274:235-42. [PMID: 25151620 DOI: 10.1016/j.bbr.2014.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 01/20/2023]
Abstract
The spontaneously hypertensive rat (SHR) has been used as a genetic animal model of attention deficit/hyperactivity disorder (ADHD). SHR/Izm is derived from stroke-resistant SHR as SHR/NIH and SHR/NCrl but from 22nd to 23rd generation descendants of the SHR/NIH ancestor and therefore may show different behavioral phenotypes compared to other SHR sub-strains. In this study, ADHD-like behaviors in SHR/Izm were evaluated compared to Wistar rats. SHR/Izm showed high locomotor activity in the habituation phase in a novel environment, although locomotor activity in the initial exploratory phase was low. In a behavioral test for attention, spontaneous alternation behavior in the Y-maze test was impaired in SHR/Izm. However, impulsive behavior in the elevated-plus maze test, which is designed to detect anxiety-related behavior but also reflects impulsivity for novelty seeking, was comparable to Wistar rats. Hyperactivity and inattention, detected as ADHD-like behaviors in SHR/Izm, were ameliorated with methylphenidate at a low dose (0.05mg/kg, i.p.). Therefore, SHR/Izm represents a unique animal model of ADHD without anxiety-related impulsive behavior.
Collapse
Affiliation(s)
- Yuki Kishikawa
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| | - Makiko Yamada
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan; Department of Psychiatry, Tokyo Women's Medical University, Kawada-Cho 8-1, Shinjuku-ku, Tokyo 168-8666, Japan.
| | - Fumi Kaneko
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| | - Hiroshi Kawahara
- Department of Dental Anesthesiology, School of Dentistry, Tsurumi University, Tsurumi 2-1-3, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan.
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| |
Collapse
|
34
|
Marshall AT, Smith AP, Kirkpatrick K. Mechanisms of impulsive choice: I. Individual differences in interval timing and reward processing. J Exp Anal Behav 2014; 102:86-101. [PMID: 24965705 PMCID: PMC4232211 DOI: 10.1002/jeab.88] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/01/2014] [Indexed: 11/09/2022]
Abstract
Impulsive choice behavior incorporates the psychological mechanisms involved in the processing of the anticipated magnitude and delay until reward. The goal of the present experiment was to determine whether individual differences in such processes related to individual differences in impulsive choice behavior. Two groups of rats (Delay Group and Magnitude Group) were initially exposed to an impulsive choice task with choices between smaller-sooner (SS) and larger-later (LL) rewards. The Delay Group was subsequently exposed to a temporal discrimination task followed by a progressive interval task, whereas the Magnitude Group was exposed to a reward magnitude sensitivity task followed by a progressive ratio task. Intertask correlations revealed that the rats in the Delay Group that made more self-controlled (LL) choices also displayed lower standard deviations in the temporal bisection task and greater delay tolerance in the progressive interval task. Impulsive choice behavior in the Magnitude Group did not display any substantial correlations with the reward magnitude sensitivity and progressive ratio tasks. The results indicate the importance of core timing processes in impulsive choice behavior, and encourage further research examining the effects of changes in core timing processes on impulsive choice.
Collapse
|
35
|
Kirkpatrick K, Marshall AT, Clarke J, Cain ME. Environmental rearing effects on impulsivity and reward sensitivity. Behav Neurosci 2014; 127:712-24. [PMID: 24128360 DOI: 10.1037/a0034124] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous research has indicated that rearing in an enriched environment may promote self-control in an impulsive choice task. To further assess the effects of rearing environment on impulsivity, 2 experiments examined locomotor activity, impulsive action, impulsive choice, and different aspects of reward sensitivity and discrimination. In Experiment 1, rats reared in isolated or enriched conditions were tested on an impulsive choice procedure with a smaller-sooner versus a larger-later reward, revealing that the isolated rats valued the smaller-sooner reward more than the enriched rats. A subsequent reward challenge was presented in which the delay to the 2 rewards was the same but the magnitude difference remained. The enriched rats did not choose the larger reward as often as the isolated rats, reflecting poorer reward discrimination. Impulsive action was assessed using a differential-reinforcement-of-low-rate task, which revealed deficits in the enriched rats. In Experiment 2, rats reared in isolated, standard, or enriched conditions were tested on reward contrast and reward magnitude sensitivity procedures. The rats were presented with 2 levers that delivered different magnitudes of food on variable interval 30-s schedules. Across all tests, the enriched and social rats displayed more generalized responding to the small-reward lever, but a similar response to the large-reward lever, compared with the isolated rats. This confirmed the results of Experiment 1, indicating poorer reward discrimination in the enriched condition compared with the isolated condition. The results suggest that enrichment may moderate reward generalization/discrimination processes through alterations in incentive motivational processes.
Collapse
|
36
|
Individual differences in impulsive and risky choice: effects of environmental rearing conditions. Behav Brain Res 2014; 269:115-27. [PMID: 24769268 DOI: 10.1016/j.bbr.2014.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/06/2014] [Accepted: 04/14/2014] [Indexed: 11/22/2022]
Abstract
The present experiment investigated early-rearing environment modulation of individual differences in impulsive and risky choice. Rats were reared in an isolated condition (IC; n=12), in which they lived alone without novel stimuli, or an enriched condition (EC; n=11), in which they lived among conspecifics with novel stimuli. The impulsive choice task involved choices between smaller-sooner (SS) versus larger-later (LL) rewards. The risky choice task involved choices between certain-smaller (C-S) versus uncertain-larger (U-L) rewards. Following choice testing, incentive motivation to work for food was measured using a progressive ratio task and correlated with choice behavior. HPLC analyses were conducted to determine how monoamine concentrations within the prefrontal cortex (PFC) and nucleus accumbens (NAC) related to behavior in different tasks. IC rats were more impulsive than EC rats, but they did not differ in risky choice behavior. However, choice behavior across tasks was significantly correlated (i.e., the more impulsive rats were also riskier). There were no group differences in monoamine levels, but noradrenergic and serotonergic concentrations were significantly correlated with impulsive and risky choice. Furthermore, serotonin and norepinephrine concentrations in the NAC significantly correlated with incentive motivation and the timing of the reward delays within the choice tasks. These results suggest a role for domain general processes in impulsive and risky choice and indicate the importance of the NAC and/or PFC in timing, reward processing, and choice behavior.
Collapse
|
37
|
Eubig PA, Noe TE, Floresco SB, Sable JJ, Schantz SL. Sex differences in response to amphetamine in adult Long-Evans rats performing a delay-discounting task. Pharmacol Biochem Behav 2014; 118:1-9. [PMID: 24388843 PMCID: PMC3934103 DOI: 10.1016/j.pbb.2013.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 11/11/2013] [Accepted: 12/24/2013] [Indexed: 01/27/2023]
Abstract
The use of animal models to investigate experimental questions about impulsive behavior can provide valuable insight into problems that affect human health. The delay-discounting paradigm involves subjects choosing between smaller reinforcers delivered immediately and larger reinforcers that are delivered after a delay. This is an important experimental paradigm for examining impulsive choice in both laboratory species and humans. However, a shortcoming of previously published delay-discounting studies in animals is that typically only males were studied, reducing the applicability of these studies to human populations. In the present study, both female and male adult Long-Evans rats were trained to perform a delay-discounting task, with delays of 0, 5, 10, 20 and 40 s before delivery of the larger reinforcer. Because dopaminergic signaling is important in mediating this task, the effects of d-amphetamine and the dopamine receptor antagonist, cis-flupenthixol, on task performance were then examined. The main experimental measure was percent larger-reinforcer choice, which was defined as the percentage of experimental trials at each delay in which the delayed, larger reinforcer was chosen. There was no sex difference in percent larger-reinforcer choice during baseline performance of the task. However, d-amphetamine administration disrupted choice in females, as evidenced by <80% larger-reinforcer choice in half of the females, but none of the males, at 0.5 mg/kg. D-Amphetamine also differentially altered the latency to choose between immediate versus delayed reinforcers in females compared to males. In contrast, cis-flupenthixol did not have a sex-related effect on percent larger-reinforcer choice. These findings parallel the sex differences in response to amphetamine seen in human delay-discounting studies and underscore the importance of evaluating sex-based differences in baseline performance and in response to pharmacologic agents when utilizing animal models.
Collapse
Affiliation(s)
- Paul A Eubig
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, USA.
| | - Terese E Noe
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, USA
| | - Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jeffrey J Sable
- Department of Behavioral Sciences, Christian Brothers University, Memphis, TN 38104, USA
| | - Susan L Schantz
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, USA; Neuroscience Program, University of Illinois, Urbana, IL 61802, USA
| |
Collapse
|
38
|
Lee KN, Pellom ST, Oliver E, Chirwa S. Characterization of the guinea pig animal model and subsequent comparison of the behavioral effects of selective dopaminergic drugs and methamphetamine. Synapse 2014; 68:221-33. [PMID: 24436154 DOI: 10.1002/syn.21731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/21/2013] [Indexed: 12/30/2022]
Abstract
Although not commonly used in behavior tests guinea pigs may offer subtle behavior repertoires that better mimic human activity and warrant study. To test this, 31 Hartley guinea pigs (male, 200-250 g) were evaluated in PhenoTyper cages using the video-tracking EthoVision XT 7.0 software. Results showed that guinea pigs spent more time in the hidden zone (small box in corner of cage) than the food/water zone, or arena zone. Guinea pigs exhibited thigmotaxis (a wall following strategy) and were active throughout the light and dark phases. Eating and drinking occurred throughout the light and dark phases. An injection of 0.25 mg/kg SCH23390, the dopamine D1 receptors (D1R) antagonist, produced significant decreases in time spent in the hidden zone. There were insignificant changes in time spent in the hidden zone for guinea pigs treated with 7.5 mg SKF38393 (D1R agonist), 1.0 mg/kg sulpiride (D2R antagonist), and 1.0 or 10.0 mg/kg methamphetamine. Locomotor activity profiles were unchanged after injections of saline, SKF38393, SCH23390, and sulpiride. By contrast, a single injection or repeated administration for 7 days of low-dose methamphetamine induced transient hyperactivity but this declined to baseline levels over the 22-h observation period. Guinea pigs treated with high-dose methamphetamine displayed sustained hyperactivity and travelled significantly greater distances over the circadian cycle. Subsequent 7-day treatment with high-dose methamphetamine induced motor sensitization and significant increases in total distances moved relative to single drug injections or saline controls. These results highlight the versatility and unique features of the guinea pig for studying brain-behavior interactions.
Collapse
Affiliation(s)
- Kiera-Nicole Lee
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, 37208
| | | | | | | |
Collapse
|
39
|
Heilbronner SR, Meck WH. Dissociations between interval timing and intertemporal choice following administration of fluoxetine, cocaine, or methamphetamine. Behav Processes 2014; 101:123-34. [PMID: 24135569 PMCID: PMC4081038 DOI: 10.1016/j.beproc.2013.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 09/21/2013] [Indexed: 12/26/2022]
Abstract
The goal of our study was to characterize the relationship between intertemporal choice and interval timing, including determining how drugs that modulate brain serotonin and dopamine levels influence these two processes. In Experiment 1, rats were tested on a standard 40-s peak-interval procedure following administration of fluoxetine (3, 5, or 8 mg/kg) or vehicle to assess basic effects on interval timing. In Experiment 2, rats were tested in a novel behavioral paradigm intended to simultaneously examine interval timing and impulsivity. Rats performed a variant of the bi-peak procedure using 10-s and 40-s target durations with an additional "defection" lever that provided the possibility of a small, immediate reward. Timing functions remained relatively intact, and 'patience' across subjects correlated with peak times, indicating a negative relationship between 'patience' and clock speed. We next examined the effects of fluoxetine (5 mg/kg), cocaine (15 mg/kg), or methamphetamine (1 mg/kg) on task performance. Fluoxetine reduced impulsivity as measured by defection time without corresponding changes in clock speed. In contrast, cocaine and methamphetamine both increased impulsivity and clock speed. Thus, variations in timing may mediate intertemporal choice via dopaminergic inputs. However, a separate, serotonergic system can affect intertemporal choice without affecting interval timing directly. This article is part of a Special Issue entitled: Associative and Temporal Learning.
Collapse
Affiliation(s)
- Sarah R Heilbronner
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| |
Collapse
|