1
|
Ross TW, Poulter SL, Lever C, Easton A. Mice integrate conspecific and contextual information in forming social episodic-like memories under spontaneous recognition task conditions. Sci Rep 2024; 14:16159. [PMID: 38997341 PMCID: PMC11245605 DOI: 10.1038/s41598-024-66403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The ability to remember unique past events (episodic memory) may be an evolutionarily conserved function, with accumulating evidence of episodic-(like) memory processing in rodents. In humans, it likely contributes to successful complex social networking. Rodents, arguably the most used laboratory models, are also rather social animals. However, many behavioural paradigms are devoid of sociality, and commonly-used social spontaneous recognition tasks (SRTs) are open to non-episodic strategies based upon familiarity. We address this gap by developing new SRT variants. Here, in object-in-context SRTs, we asked if context could be specified by the presence/absence of either a conspecific (experiment 1) or an additional local object (experiment 2). We show that mice readily used the conspecific as contextual information to distinguish unique episodes in memory. In contrast, no coherent behavioural response emerged when an additional object was used as a potential context specifier. Further, in a new social conspecific-in-context SRT (experiment 3) where environment-based change was the context specifier, mice preferably explored a more recently-seen familiar conspecific associated with contextual mismatch, over a less recently-seen familiar conspecific presented in the same context. The results argue that, in incidental SRT conditions, mice readily incorporate conspecific cue information into episodic-like memory. Thus, the tasks offer different ways to assess and further understand the mechanisms at work in social episodic-like memory processing.
Collapse
Affiliation(s)
- T W Ross
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK.
- Centre for Learning and Memory Processes, Durham University, Durham, UK.
| | - S L Poulter
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
- Centre for Learning and Memory Processes, Durham University, Durham, UK
| | - C Lever
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
- Centre for Learning and Memory Processes, Durham University, Durham, UK
| | - A Easton
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
- Centre for Learning and Memory Processes, Durham University, Durham, UK
| |
Collapse
|
2
|
Ross TW, Easton A. Rats use strategies to make object choices in spontaneous object recognition tasks. Sci Rep 2022; 12:16973. [PMID: 36216920 PMCID: PMC9550825 DOI: 10.1038/s41598-022-21537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022] Open
Abstract
Rodent spontaneous object recognition (SOR) paradigms are widely used to study the mechanisms of complex memory in many laboratories. Due to the absence of explicit reinforcement in these tasks, there is an underlying assumption that object exploratory behaviour is 'spontaneous'. However, rodents can strategise, readily adapting their behaviour depending on the current information available and prior predications formed from learning and memory. Here, using the object-place-context (episodic-like) recognition task and novel analytic methods relying on multiple trials within a single session, we demonstrate that rats use a context-based or recency-based object recognition strategy for the same types of trials, depending on task conditions. Exposure to occasional ambiguous conditions changed animals' responses towards a recency-based preference. However, more salient and predictable conditions led to animals exploring objects on the basis of episodic novelty reliant on contextual information. The results have important implications for future research using SOR tasks, especially in the way experimenters design, analyse and interpret object recognition experiments in non-human animals.
Collapse
Affiliation(s)
- T W Ross
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK.
- Centre for Learning and Memory Processes, Durham University, Durham, UK.
| | - A Easton
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
- Centre for Learning and Memory Processes, Durham University, Durham, UK
| |
Collapse
|
3
|
Peng X, Burwell RD. Beyond the hippocampus: The role of parahippocampal-prefrontal communication in context-modulated behavior. Neurobiol Learn Mem 2021; 185:107520. [PMID: 34537379 DOI: 10.1016/j.nlm.2021.107520] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023]
Abstract
Multiple paradigms indicate that the physical environment can influence spontaneous and learned behavior. In rodents, context-dependent behavior is putatively supported by the prefrontal cortex and the medial temporal lobe. A preponderance of the literature has targeted the role of the hippocampus. In addition to the hippocampus proper, the medial temporal lobe also comprises parahippocampal areas, including the perirhinal and postrhinal cortices. These parahippocampal areas directly connect with multiple regions in the prefrontal cortex. The function of these connections, however, is not well understood. This article first reviews the involvement of the perirhinal, postrhinal, and prefrontal cortices in context-dependent behavior in rodents. Then, based on functional and anatomical evidence, we suggest that perirhinal and postrhinal contributions to context-dependent behavior go beyond supporting context representation in the hippocampus. Specifically, we propose that the perirhinal and postrhinal cortices act as a contextual-support network that directly provides contextual and spatial information to the prefrontal cortex. In turn, the perirhinal and postrhinal cortices modulate prefrontal input to the hippocampus in the service of context-guided behavior.
Collapse
Affiliation(s)
- Xiangyuan Peng
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Rebecca D Burwell
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
4
|
Shimoda S, Ozawa T, Ichitani Y, Yamada K. Long-term associative memory in rats: Effects of familiarization period in object-place-context recognition test. PLoS One 2021; 16:e0254570. [PMID: 34329332 PMCID: PMC8323955 DOI: 10.1371/journal.pone.0254570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
Spontaneous recognition tests, which utilize rodents’ innate tendency to explore novelty, can evaluate not only simple non-associative recognition memory but also more complex associative memory in animals. In the present study, we investigated whether the length of the object familiarization period (sample phase) improved subsequent novelty discrimination in the spontaneous object, place, and object-place-context (OPC) recognition tests in rats. In the OPC recognition test, rats showed a significant novelty preference only when the familiarization period was 30 min but not when it was 5 min or 15 min. In addition, repeated 30-min familiarization periods extended the significant novelty preference to 72 hours. However, the rats exhibited a successful discrimination between the stayed and replaced objects under 15 min and 30 min familiarization period conditions in the place recognition test and between the novel and familiar objects under all conditions of 5, 15 and 30 min in the object recognition test. Our results suggest that the extension of the familiarization period improves performance in the spontaneous recognition paradigms, and a longer familiarization period is necessary for long-term associative recognition memory than for non-associative memory.
Collapse
Affiliation(s)
- Shota Shimoda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takaaki Ozawa
- Institute of Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yukio Ichitani
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
5
|
De Castro V, Girard P. Location and temporal memory of objects declines in aged marmosets (Callithrix jacchus). Sci Rep 2021; 11:9138. [PMID: 33911122 PMCID: PMC8080792 DOI: 10.1038/s41598-021-88357-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Episodic memory decline is an early marker of cognitive aging in human. Although controversial in animals and called “episodic-like memory”, several models have been successfully developed, however they rarely focused on ageing. While marmoset is an emerging primate model in aging science, episodic-like memory has never been tested in this species and importantly in aged marmosets. Here, we examined if the recall of the what-when and what-where building blocks of episodic-like memory declines in ageing marmosets. We developed a naturalistic approach using spontaneous exploration of real objects by young and old marmosets in the home cage. We implemented a three-trial task with 1 week inter-trial interval. Two different sets of identical objects were presented in sample trials 1 and 2, respectively. For the test trial, two objects from each set were presented in a former position and two in a new one. We quantified the exploratory behaviour and calculated discrimination indices in a cohort of 20 marmosets. Young animals presented a preserved memory for combined what-where, and what-when components of the experiment, which declined with aging. These findings lead one to expect episodic-like memory deficits in aged marmosets.
Collapse
Affiliation(s)
- Vanessa De Castro
- Centre de Recherche Cerveau et Cognition (CerCo), Toulouse, France. .,Centre National de la Recherche Scientifique (CNRS) - UMR 5549, Toulouse, France.
| | - Pascal Girard
- Centre de Recherche Cerveau et Cognition (CerCo), Toulouse, France. .,Institut national de la santé et de la recherche médicale (INSERM), Toulouse, France.
| |
Collapse
|
6
|
Nitka AW, Bonardi C, Robinson J. An associative analysis of recognition memory: Relative recency effects in an eye-tracking paradigm. JOURNAL OF EXPERIMENTAL PSYCHOLOGY. ANIMAL LEARNING AND COGNITION 2020; 46:314-326. [PMID: 32730084 PMCID: PMC7391916 DOI: 10.1037/xan0000258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022]
Abstract
We report 2 eye-tracking experiments with human variants of 2 rodent recognition memory tasks, relative recency and object-in-place. In Experiment 1 participants were sequentially exposed to 2 images, A then B, presented on a computer display. When subsequently tested with both images, participants biased looking toward the first-presented image A: the relative recency effect. When contextual stimuli x and y, respectively, accompanied A and B in the exposure phase (xA, yB), the recency effect was greater when y was present at test, than when x was present. In Experiment 2 participants viewed 2 identical presentations of a 4-image array, ABCD, followed by a test with the same array, but in which one of the pairs of stimuli exchanged position (BACD or ABDC). Participants looked preferentially at the displaced stimulus pair: the object-in-place effect. Three further conditions replicated Experiment 1's findings: 2 pairs of images were presented one after the other (AB followed by CD); on a test with AB and CD, relative recency was again evident as preferential looking at AB. Moreover, this effect was greater when the positions of the first-presented A and B were exchanged between exposure and test (BACD), compared with when the positions of second-presented C and D were exchanged (ABDC). The results were interpreted within the theoretical framework of the Sometime Opponent Process model of associative learning (Wagner, 1981). (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
|
7
|
Aggleton JP, Nelson AJD. Distributed interactive brain circuits for object-in-place memory: A place for time? Brain Neurosci Adv 2020; 4:2398212820933471. [PMID: 32954003 PMCID: PMC7479857 DOI: 10.1177/2398212820933471] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Rodents will spontaneously learn the location of an individual object, an
ability captured by the object-in-place test. This review considers
the network of structures supporting this behavioural test, as well as
some potential confounds that may affect interpretation. A
hierarchical approach is adopted, as we first consider those brain
regions necessary for two simpler, ‘precursor’ tests (object
recognition and object location). It is evident that performing the
object-in-place test requires an array of areas additional to those
required for object recognition or object location. These additional
areas include the rodent medial prefrontal cortex and two thalamic
nuclei (nucleus reuniens and the medial dorsal nucleus), both densely
interconnected with prefrontal areas. Consequently, despite the need
for object and location information to be integrated for the
object-in-place test, for example, via the hippocampus, other
contributions are necessary. These contributions stem from how
object-in-place is a test of associative recognition, as none of the
individual elements in the test phase are novel. Parallels between the
structures required for object-in-place and for recency
discriminations, along with a re-examination of the demands of the
object-in-place test, signal the integration of temporal information
within what is usually regarded as a spatial-object test.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Cardiff, Wales, UK
| | | |
Collapse
|
8
|
Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance. J Neurosci 2017; 37:3555-3567. [PMID: 28264977 PMCID: PMC5373134 DOI: 10.1523/jneurosci.3213-16.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/12/2017] [Accepted: 02/04/2017] [Indexed: 01/03/2023] Open
Abstract
Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod).
Collapse
|
9
|
Tam SKE, Hasan S, Hughes S, Hankins MW, Foster RG, Bannerman DM, Peirson SN. Modulation of recognition memory performance by light requires both melanopsin and classical photoreceptors. Proc Biol Sci 2016; 283:20162275. [PMID: 28003454 PMCID: PMC5204172 DOI: 10.1098/rspb.2016.2275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 01/26/2023] Open
Abstract
Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless-coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance.
Collapse
Affiliation(s)
- Shu K E Tam
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
- Department of Experimental Psychology, Oxford University, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK
| | - Sibah Hasan
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Steven Hughes
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Mark W Hankins
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - David M Bannerman
- Department of Experimental Psychology, Oxford University, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|