1
|
Mundorf A, Merklein SA, Rice LC, Desmond JE, Peterburs J. Early Adversity Affects Cerebellar Structure and Function-A Systematic Review of Human and Animal Studies. Dev Psychobiol 2024; 66:e22556. [PMID: 39378310 DOI: 10.1002/dev.22556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Recent research has highlighted cerebellar involvement in cognition and several psychiatric conditions such as mood and anxiety disorders and schizophrenia. Attention-deficit/hyperactivity disorder and autism spectrum disorder have been linked to reduced cerebellar volume as well. Cerebellar alterations are frequently present after early adversity in humans and animals, but a systematic integration of results is lacking. To this end, a systematic literature search was conducted in PubMed, Web of Science, and EBSCO databases using the keywords "early adversity OR early life stress" AND "cerebellum OR cerebellar." A total of 45 publications met the inclusion criteria: 25 studies investigated human subjects and 20 reported results from animal models. Findings in healthy subjects show bilateral volume reduction and decreased functional connectivity within the cerebellum and between the cerebellum and frontal regions after adversity throughout life, especially when adversity was assessed with the Childhood Trauma Questionnaire. In clinical populations, adults demonstrate increased cerebellar volume and functional connectivity after adversity, whereas pediatric patients show reduced cerebellar volume. Animal findings reveal cerebellar alterations without necessarily co-occurring pathological behavior, highlighting alterations in stress hormone receptor levels, cell density, and neuroinflammation markers. Cerebellar alterations after early adversity are robust findings across human and animal studies and occur independent of clinical symptoms.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sarah A Merklein
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Laura C Rice
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jutta Peterburs
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Porteus CS, Waples E, Dempsey A, Paull G, Wilson RW. A survey of water chemistry used in zebrafish facilities and their effects on early zebrafish development. F1000Res 2024; 13:168. [PMID: 39386085 PMCID: PMC11462130 DOI: 10.12688/f1000research.134520.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 10/12/2024] Open
Abstract
Background There are a variety of published standard methods and water chemistry recommendations for zebrafish ( Danio rerio) husbandry, but empirical evidence for their justification is often lacking, as is information on some variables that have important biological effects on fish. Importantly, these different recommendations could contribute to variability in results and fish welfare between or within institutions. Methods Here we document the current range of water chemistry used by various research institutions around the world and report initial findings on their effects on the development and growth of zebrafish. Over 40 institutes responded to a survey that revealed a large variation in water chemistry used for zebrafish husbandry including differences in the set-points and acceptable ranges for temperature, pH and conductivity. In subsequent experiments, zebrafish ( D. rerio, WIK) embryos/larvae exposed to a large range of salt concentrations (50μM to 10mM Na + or 30 - 2500 μS/cm) and CO 2 levels (400 - 8,000 μatm). Results Larvae exposed to the lowest salt concentration (5 μM Na + or < 30μS/cm) had a slower response to touch and their swim bladders were not inflated. Larvae exposed to 5-100 μM Na + were 5 % shorter in total body length than those exposed to higher salt concentrations (>100 μM Na +). Zebrafish embryo/larvae exposed to intermediate pCO 2 values (~2000 μatm) were 1 to 3.5% longer than those exposed to either ambient (400 μatm) or higher (4000 μatm) pCO 2, but pCO 2 did not affect developmental endpoints up to 4 dpf. Conclusions Overall, we highlight the magnitude of variation in water chemistry used within zebrafish research and provide some empirical evidence to show that not all of these water conditions might be optimal for developing zebrafish and reproducibility of research, although further research is necessary to determine longer-term effects of water chemistry on older larvae, juveniles and adults.
Collapse
Affiliation(s)
- Cosima S. Porteus
- Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Ella Waples
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Anna Dempsey
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Gregory Paull
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Rod W. Wilson
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| |
Collapse
|
3
|
Flatt EE, Alderman SL. 11β-Hydroxysteroid dehydrogenase type 2 may mediate the stress-specific effects of cortisol on brain cell proliferation in adult zebrafish (Danio rerio). J Exp Biol 2024; 227:jeb248020. [PMID: 39092490 PMCID: PMC11418181 DOI: 10.1242/jeb.248020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Stress-induced increases in cortisol can stimulate or inhibit brain cell proliferation, but the mechanisms behind these opposing effects are unknown. We tested the hypothesis that 11β-hydroxysteroid dehydrogenase type 2 (Hsd11b2), a glucocorticoid-inactivating enzyme expressed in neurogenic regions of the adult zebrafish brain, mitigates cortisol-induced changes to brain cell proliferation, using one of three stress regimes: a single 1 min air exposure (acute stress), two air exposures spaced 24 h apart (repeat acute stress) or social subordination (chronic stress). Plasma cortisol was significantly elevated 15 min after air exposure and recovered within 24 h after acute and repeat acute stress, whereas subordinate fish exhibited significant and sustained elevations relative to dominant fish for 24 h. Following acute stress, brain hsd11b2 transcript abundance was elevated up to 6 h after a single air exposure but was unchanged by repeat acute stress or social subordination. A sustained increase in brain Hsd11b2 protein levels occurred after acute stress, but not after repeat or chronic stress. Following acute and repeat acute stress, brain pcna transcript abundance (a marker of cell proliferation) exhibited a prolonged elevation, but was unaffected by social subordination. Interestingly, the number of telencephalic BrdU+ cells increased in fish after a single air exposure but was unchanged by repeat acute stress. Following acute and repeat acute stress, fish expressed lower brain glucocorticoid and mineralocorticoid receptor (gr and mr) transcript abundance while subordinate fish exhibited no changes. Taken together, these results demonstrate stressor-specific regulation of Hsd11b2 in the zebrafish brain that could modulate rates of cortisol catabolism contributing to observed differences in brain cell proliferation.
Collapse
Affiliation(s)
- E. Emma Flatt
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| | - Sarah L. Alderman
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
4
|
Natsaridis E, Perdikaris P, Fokos S, Dermon CR. Neuronal and Astroglial Localization of Glucocorticoid Receptor GRα in Adult Zebrafish Brain ( Danio rerio). Brain Sci 2023; 13:861. [PMID: 37371341 DOI: 10.3390/brainsci13060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Glucocorticoid receptor α (GRα), a ligand-regulated transcription factor, mainly activated by cortisol in humans and fish, mediates neural allostatic and homeostatic functions induced by different types of acute and chronic stress, and systemic inflammation. Zebrafish GRα is suggested to have multiple transcriptional effects essential for normal development and survival, similarly to mammals. While sequence alignments of human, monkey, rat, and mouse GRs have shown many GRα isoforms, we questioned the protein expression profile of GRα in the adult zebrafish (Danio rerio) brain using an alternative model for stress-related neuropsychiatric research, by means of Western blot, immunohistochemistry and double immunofluorescence. Our results identified four main GRα-like immunoreactive bands (95 kDa, 60 kDa, 45 kDa and 35 kDa), with the 95 kDa protein showing highest expression in forebrain compared to midbrain and hindbrain. GRα showed a wide distribution throughout the antero-posterior zebrafish brain axis, with the most prominent labeling within the telencephalon, preoptic, hypothalamus, midbrain, brain stem, central grey, locus coeruleus and cerebellum. Double immunofluorescence revealed that GRα is coexpressed in TH+, β2-AR+ and vGLUT+ neurons, suggesting the potential of GRα influences on adrenergic and glutamatergic transmission. Moreover, GRα was co-localized in midline astroglial cells (GFAP+) within the telencephalon, hypothalamus and hindbrain. Interestingly, GRα expression was evident in the brain regions involved in adaptive stress responses, social behavior, and sensory and motor integration, supporting the evolutionarily conserved features of glucocorticoid receptors in the zebrafish brain.
Collapse
Affiliation(s)
- Evangelos Natsaridis
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| | - Panagiotis Perdikaris
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| | - Stefanos Fokos
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| | - Catherine R Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| |
Collapse
|
5
|
Mateus AP, Costa RA, Sadoul B, Bégout ML, Cousin X, Canario AV, Power DM. Thermal imprinting during embryogenesis modifies skin repair in juvenile European sea bass (Dicentrarchus labrax). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108647. [PMID: 36842641 DOI: 10.1016/j.fsi.2023.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Fish skin is a multifunctional tissue that develops during embryogenesis, a developmental stage highly susceptible to epigenetic marks. In this study, the impact of egg incubation temperature on the regeneration of a cutaneous wound caused by scale removal in juvenile European sea bass was evaluated. Sea bass eggs were incubated at 11, 13.5 and 16 °C until hatching and then were reared at a common temperature until 9 months when the skin was damaged and sampled at 0, 1 and 3 days after scale removal and compared to the intact skin from the other flank. Skin damage elicited an immediate significant (p < 0.001) up-regulation of pcna in fish from eggs incubated at higher temperatures. In fish from eggs incubated at 11 °C there was a significant (p < 0.001) up-regulation of krt2 compared to fish from higher thermal backgrounds 1 day after skin damage. Damaged epidermis was regenerated after 3 days in all fish irrespective of the thermal background, but in fish from eggs incubated at 11 °C the epidermis was significantly (p < 0.01) thinner compared to other groups, had less goblet cells and less melanomacrophages. The thickness of the dermis increased during regeneration of wounded skin irrespective of the thermal background and by 3 days was significantly (p < 0.01) thicker than the dermis from the intact flank. The expression of genes for ECM remodelling (mmp9, colXα, col1α1, sparc, and angptl2b) and innate immunity (lyg1, lalba, sod1, csf-1r and pparγ) changed during regeneration but were not affected by egg thermal regime. Overall, the results indicate that thermal imprinting of eggs modifies the damage-repair response in juvenile sea bass skin.
Collapse
Affiliation(s)
- Ana Patrícia Mateus
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Escola Superior de Saúde, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rita A Costa
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bastien Sadoul
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France; DECOD, Ecosystem Dynamics and Sustainability, Institut Agro, Ifremer, INRAE, Rennes, France
| | - Marie-Laure Bégout
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France
| | - Xavier Cousin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France
| | - Adelino Vm Canario
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
6
|
Alfonso S, Gesto M, Sadoul B. Temperature increase and its effects on fish stress physiology in the context of global warming. JOURNAL OF FISH BIOLOGY 2021; 98:1496-1508. [PMID: 33111333 DOI: 10.1111/jfb.14599] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 05/07/2023]
Abstract
The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1-4°C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming.
Collapse
Affiliation(s)
- Sébastien Alfonso
- COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare, Bari, Italy
| | - Manuel Gesto
- Section for Aquaculture, DTU Aqua, Technical University of Denmark, Hirtshals, Denmark
| | - Bastien Sadoul
- MARBEC, Ifremer, IRD, UM2, CNRS, Sète, France
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes Cedex, France
| |
Collapse
|
7
|
Hare AJ, Zimmer AM, LePabic R, Morgan AL, Gilmour KM. Early-life stress influences ion balance in developing zebrafish (Danio rerio). J Comp Physiol B 2020; 191:69-84. [PMID: 33064210 DOI: 10.1007/s00360-020-01319-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
As a key endocrine axis involved in responding to stress, the hypothalamic-pituitary-interrenal axis plays dual roles in mobilizing energy and maintaining ionic/osmotic balance in fishes. Although these roles have been examined independently in detail in adult fishes, less attention has been paid to the effects of an endogenous stress response during early life, particularly with respect to its potential effects on ionic/osmotic balance. The present study tested the hypothesis that exposure of zebrafish to stress during early development would alter ion balance later in life. Zebrafish at three developmental stages (4, 7, or 15 days post-fertilization, dpf) were subjected to an air-exposure stressor twice a day for 2 days, causing elevation of whole-body cortisol levels. Individuals stressed early in life exhibited decreased survival and growth, altered cortisol responses to a subsequent air-exposure stressor, and increased whole-body Na+ and Ca2+ concentrations. Changes in whole-body Ca2+ concentrations were accompanied by increased ionocyte abundance at 7 dpf and increased rates of Ca2+ uptake from the environment. Differences in whole-body ion concentrations at 15 and 35 dpf were not accompanied by altered ion uptake rates. Across all ages examined, air-exposure stress experienced at 7 dpf was particularly effective at eliciting phenotypic changes, suggesting a critical window at this age for a stress response to influence development. These findings demonstrate that early-life stress in zebrafish triggers developmental plasticity, with age-dependent effects on both the cortisol stress axis and ion balance.
Collapse
Affiliation(s)
- A J Hare
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | - A M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - R LePabic
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - A L Morgan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Early Developmental Stress Affects Subsequent Gene Expression Response to an Acute Stress in Atlantic Salmon: An Approach for Creating Robust Fish for Aquaculture? G3-GENES GENOMES GENETICS 2019; 9:1597-1611. [PMID: 30885921 PMCID: PMC6505151 DOI: 10.1534/g3.119.400152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Stress during early life has potential to program and alter the response to stressful events and metabolism in later life. Repeated short exposure of Atlantic salmon to cold water and air during embryonic (E), post-hatch (PH) or both phases of development (EPH) has been shown to alter the methylome and transcriptome and to affect growth performance during later life compared to untreated controls (CO). The aim of this study was to investigate how the transcriptome of these fish responds to subsequent acute stress at the start feeding stage, and to describe methylation differences that might steer these changes. EPH treated fish showed the strongest down-regulation of corticotropin releasing factor 1, up-regulation of glucocorticoid receptor and 3-oxo-5-alpha-steroid 4-dehydrogenase 2 gene expression and a suppressed cortisol response 3 hr after the acute stress, differences that could influence hormesis and be affecting how EPH fish cope and recover from the stress event. Growth hormone 2 and insulin-like growth factor 1 were more strongly down-regulated following acute stress in EPH treated fish relative to E, PH and CO fish. This indicates switching away from growth toward coping with stress following stressful events in EPH fish. Genes implicated in immune function such as major histocompatibility class 1A, T-cell receptor and toll-like receptor also responded to acute stress differently in EPH treated fish, indicating that repeated stresses during early life may affect robustness. Differential DNA methylation was detected in regions mapping <500 bases from genes differentially responding to acute stress suggesting the involvement of epigenetic mechanisms. Stress treatments applied during early development therefore have potential as a husbandry tool for boosting the productivity of aquaculture by affecting how fish respond to stresses at critical stages of production.
Collapse
|
9
|
Cadiz L, Ernande B, Quazuguel P, Servili A, Zambonino-Infante JL, Mazurais D. Moderate hypoxia but not warming conditions at larval stage induces adverse carry-over effects on hypoxia tolerance of European sea bass (Dicentrarchus labrax) juveniles. MARINE ENVIRONMENTAL RESEARCH 2018; 138:28-35. [PMID: 29628391 DOI: 10.1016/j.marenvres.2018.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Environmental conditions, to which organisms are exposed during all their life, may cause possible adaptive responses with consequences in their subsequent life-history trajectory. The objective of this study was to investigate whether ecologically relevant combinations of hypoxia (40% and 100% air saturation) and temperature (15° and 20 °C), occurring during the larval period of European sea bass larvae (Dicentrarchus labrax), could have long-lasting impacts on the physiology of resulting juveniles. Hypoxic challenge tests were performed over one year to give an integrative evaluation of physiological performance. We revealed that juvenile performance was negatively impacted by hypoxia but not by the thermal conditions experienced at larval stage. This impact was related to the prevalence of opercular abnormalities. The present study indicates that exposure to a moderate hypoxia event during larval stage may have adverse carry-over effects, which could compromise fitness and population recruitment success.
Collapse
Affiliation(s)
- Laura Cadiz
- IFREMER, Centre de Bretagne, LEMAR (UMR 6539), 29280 Plouzané, France
| | - Bruno Ernande
- IFREMER, Centre Manche Mer du Nord, 62200 Boulogne-sur-Mer, France
| | - Patrick Quazuguel
- IFREMER, Centre de Bretagne, LEMAR (UMR 6539), 29280 Plouzané, France
| | - Arianna Servili
- IFREMER, Centre de Bretagne, LEMAR (UMR 6539), 29280 Plouzané, France
| | | | - David Mazurais
- IFREMER, Centre de Bretagne, LEMAR (UMR 6539), 29280 Plouzané, France.
| |
Collapse
|
10
|
Early life stress induces long-term changes in limbic areas of a teleost fish: the role of catecholamine systems in stress coping. Sci Rep 2018; 8:5638. [PMID: 29618742 PMCID: PMC5884775 DOI: 10.1038/s41598-018-23950-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/20/2018] [Indexed: 01/05/2023] Open
Abstract
Early life stress (ELS) shapes the way individuals cope with future situations. Animals use cognitive flexibility to cope with their ever-changing environment and this is mainly processed in forebrain areas. We investigated the performance of juvenile gilthead seabream, previously subjected to an ELS regime. ELS fish showed overall higher brain catecholaminergic (CA) signalling and lower brain derived neurotrophic factor (bdnf) and higher cfos expression in region-specific areas. All fish showed a normal cortisol and serotonergic response to acute stress. Brain dopaminergic activity and the expression of the α2Α adrenergic receptor were overall higher in the fish homologue to the lateral septum (Vv), suggesting that the Vv is important in CA system regulation. Interestingly, ELS prevented post-acute stress downregulation of the α2Α receptor in the amygdala homologue (Dm3). There was a lack of post-stress response in the β2 adrenergic receptor expression and a downregulation in bdnf in the Dm3 of ELS fish, which together indicate an allostatic overload in their stress coping ability. ELS fish showed higher neuronal activity (cfos) post-acute stress in the hippocampus homologue (Dlv) and the Dm3. Our results show clear long-term effects on limbic systems of seabream that may compromise their future coping ability to environmental challenges.
Collapse
|