1
|
Volf A, Brust TF, Kobylski RR, Czekner KM, Stahl EL, Cameron MD, Trojniak AE, Aubé J, Bohn LM. Triazole 187 is a biased KOR agonist that suppresses itch without sedation and induces anxiolytic-like behaviors in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638680. [PMID: 40027836 PMCID: PMC11870565 DOI: 10.1101/2025.02.17.638680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Kappa opioid receptor agonists are clinically used to treat pruritis and have therapeutic potential for the treatment of pain and neuropsychiatric disorders. We have previously shown that triazole 1.1 is a G protein signaling-biased KOR agonist, that can suppress itch without producing signs of sedation in mice. This profile was recapitulated in rats and non-human primates however, triazole 1.1 had limited potency as an antipruritic. Here we describe a more potent, G protein signaling-biased agonist, triazole 187. Triazole 187 is a potent antipruritic agent and does not decrease spontaneous locomotor activity; interestingly, it produces anxiolytic-like behaviors in mice, an effect not observed for triazole 1.1. In addition to curbing sedation, triazole 187 produces only mild diuresis, resulting in 30% of urine output induced by U50,488H at dose that is 188-fold the antipruritic potency dose. Compounds like triazole 187 may present a means to treat anxiety accompanied by persistent chronic itch while avoiding sedation and diuresis accompanied by typical KOR agonists. Abstract Figure
Collapse
|
2
|
El Daibani A, Madasu MK, Al-Hasani R, Che T. Limitations and potential of κOR biased agonists for pain and itch management. Neuropharmacology 2024; 258:110061. [PMID: 38960136 PMCID: PMC11968146 DOI: 10.1016/j.neuropharm.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The concept of ligand bias is based on the premise that different agonists can elicit distinct responses by selectively activating the same receptor. These responses often determine whether an agonist has therapeutic or undesirable effects. Therefore, it would be highly advantageous to have agonists that specifically trigger the therapeutic response. The last two decades have seen a growing trend towards the consideration of ligand bias in the development of ligands to target the κ-opioid receptor (κOR). Most of these ligands selectively favor G-protein signaling over β-arrestin signaling to potentially provide effective pain and itch relief without adverse side effects associated with κOR activation. Importantly, the specific role of β-arrestin 2 in mediating κOR agonist-induced side effects remains unknown, and similarly the therapeutic and side-effect profiles of G-protein-biased κOR agonists have not been established. Furthermore, some drugs previously labeled as G-protein-biased may not exhibit true bias but may instead be either low-intrinsic-efficacy or partial agonists. In this review, we discuss the established methods to test ligand bias, their limitations in measuring bias factors for κOR agonists, as well as recommend the consideration of other systematic factors to correlate the degree of bias signaling and pharmacological effects. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Amal El Daibani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Manish K Madasu
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ream Al-Hasani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
3
|
Bales KL, Rogers FD. Interactions between the
κ
opioid system, corticotropin-releasing hormone and oxytocin in partner loss. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210061. [PMID: 35858099 PMCID: PMC9272146 DOI: 10.1098/rstb.2021.0061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Selective adult social attachments, or ‘pair bonds’, represent central relationships for individuals in a number of social species, including humans. Loss of a pair mate has emotional consequences that may or may not diminish over time, and that often translate into impaired psychological and physical health. In this paper, we review the literature on the neuroendocrine mechanisms for the emotional consequences of partner loss, with a special focus on hypothesized interactions between oxytocin, corticotropin-releasing hormone and the κ opioid system. This article is part of the theme issue ‘Interplays between oxytocin and other neuromodulators in shaping complex social behaviours’.
Collapse
Affiliation(s)
- Karen L. Bales
- Department of Psychology, University of California, Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
- California National Primate Research Center, Davis, CA 95616, USA
| | - Forrest D. Rogers
- Princeton Neuroscience Institute, Princeton University, NJ 08540, USA
- Department of Molecular Biology, Princeton University, NJ 08540, USA
| |
Collapse
|
4
|
Methods and Challenges in Investigating Sex-Specific Consequences of Social Stressors in Adolescence in Rats: Is It the Stress or the Social or the Stage of Development? Curr Top Behav Neurosci 2021; 54:23-58. [PMID: 34455576 DOI: 10.1007/7854_2021_245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adolescence is a time of social learning and social restructuring that is accompanied by changes in both the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-adrenal (HPA) axis. The activation of these axes by puberty and stressors, respectively, shapes adolescent development. Models of social stress in rats are used to understand the consequences of perturbations of the social environment for ongoing brain development. This paper reviews the challenges in investigating the sex-specific consequences of social stressors, sex differences in the models of social stress used in rats and the sex-specific effects on behaviour and provides an overview of sex differences in HPA responding to stressors, the variability in pubertal development and in strains of rats that require consideration in conducting such research, and directions for future research.
Collapse
|
5
|
Naderi A, Soltanmaohammadi E, Kaza V, Barlow S, Chatzistamou I, Kiaris H. Persistent effects of pair bonding in lung cancer cell growth in monogamous Peromyscus californicus. eLife 2021; 10:e64711. [PMID: 33960931 PMCID: PMC8104960 DOI: 10.7554/elife.64711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Epidemiological evidence suggests that social interactions and especially bonding between couples influence tumorigenesis, yet whether this is due to lifestyle changes, homogamy (likelihood of individuals to marry people of similar health), or directly associated with host-induced effects in tumors remains debatable. In the present study, we explored if tumorigenesis is associated with the bonding experience in monogamous rodents at which disruption of pair bonds is linked to anxiety and stress. Comparison of lung cancer cell spheroids that formed in the presence of sera from bonded and bond-disrupted deer mice showed that in monogamous Peromyscus polionotus and Peromyscus californicus, but not in polygamous Peromyscus maniculatus, the disruption of pair bonds altered the size and morphology of spheroids in a manner that is consistent with the acquisition of increased oncogenic potential. In vivo, consecutive transplantation of human lung cancer cells between P. californicus, differing in bonding experiences (n = 9 for bonded and n = 7 for bond-disrupted), and nude mice showed that bonding suppressed tumorigenicity in nude mice (p<0.05), suggesting that the protective effects of pair bonds persisted even after bonding ceased. Unsupervised hierarchical clustering indicated that the transcriptomes of lung cancer cells clustered according to the serum donors' bonding history while differential gene expression analysis pointed to changes in cell adhesion and migration. The results highlight the pro-oncogenic effects of pair-bond disruption, point to the acquisition of expression signatures in cancer cells that are relevant to the bonding experiences of serum donors, and question the ability of conventional mouse models to capture the whole spectrum of the impact of the host in tumorigenesis.
Collapse
Affiliation(s)
- Asieh Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South CarolinaColumbiaUnited States
| | - Elham Soltanmaohammadi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South CarolinaColumbiaUnited States
| | - Vimala Kaza
- Peromyscus Genetic Stock Center, University of South CarolinaColumbiaUnited States
| | - Shayne Barlow
- Department of Physiology, Pharmacology, and Neuroscience, School of Medicine and Department of Laboratory Animal Resources, University of South CarolinaColumbiaUnited States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South CarolinaColumbiaUnited States
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South CarolinaColumbiaUnited States
- Peromyscus Genetic Stock Center, University of South CarolinaColumbiaUnited States
| |
Collapse
|
6
|
Jacobson ML, Wulf HA, Tsuda MC, Browne CA, Lucki I. Sex differences in the modulation of mouse nest building behavior by kappa opioid receptor signaling. Neuropharmacology 2020; 177:108254. [PMID: 32726598 PMCID: PMC11423493 DOI: 10.1016/j.neuropharm.2020.108254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
Emerging evidence suggests that females are less sensitive than males to the effects of kappa opioid receptor (KOR) ligands across multiple behavioral measures. The effects of the KOR agonist U50,488 and the KOR antagonist aticaprant were assessed on nest building behavior, an ethologically relevant indicator of overall well-being and affect, in adult male and female C57BL/6J mice. Females required a higher dose of U50,488 to suppress nesting, and a higher dose of aticaprant to restore U50,488-induced impairment of nesting. Females also required a higher dose of aticaprant to decrease immobility scores in the forced swim test. Pretreatment with the estrogen receptor modulator tamoxifen, at a dose which blocked estrogen receptors, augmented the effect of U50,488 on nesting in female mice, suggesting that estrogen receptors play a key role in attenuating the effects of KOR ligands in female mice. Together, these results suggest that females are less sensitive to KOR mediation, requiring a higher dose to achieve comparable results to males. This behavioral sensitivity, as measured by nesting, may be mediated by estrogen receptors. Together these studies highlight the importance of comparing sex differences in response to KOR regulation on behaviors related to affective states.
Collapse
Affiliation(s)
- Moriah L Jacobson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Service University, Bethesda, MD, 20814, USA
| | - Hildegard A Wulf
- Department of Pharmacology & Molecular Therapeutics, Uniformed Service University, Bethesda, MD, 20814, USA
| | - Mumeko C Tsuda
- Department of Pharmacology & Molecular Therapeutics, Uniformed Service University, Bethesda, MD, 20814, USA; Rat Behavior Core, Uniformed Service University, Bethesda, MD, 20814, USA
| | - Caroline A Browne
- Department of Pharmacology & Molecular Therapeutics, Uniformed Service University, Bethesda, MD, 20814, USA
| | - Irwin Lucki
- Department of Pharmacology & Molecular Therapeutics, Uniformed Service University, Bethesda, MD, 20814, USA; Department of Psychiatry, Uniformed Service University, Bethesda, MD, 20814, USA.
| |
Collapse
|
7
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
8
|
Przybysz KR, Varlinskaya EI, Diaz MR. Age and sex regulate kappa opioid receptor-mediated anxiety-like behavior in rats. Behav Brain Res 2020; 379:112379. [PMID: 31765725 PMCID: PMC10466214 DOI: 10.1016/j.bbr.2019.112379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
Abstract
Anxiety occurs across ontogeny, but there is evidence that its etiology may vary across the lifespan. The kappa opioid receptor (KOR) system mediates some of the anxiogenic effects of stress and drug exposure, and is involved in aversive responses to environmental stimuli. However, much of this work has been conducted in adult males. Work assessing the effects of KOR activation in younger males has demonstrated that this system produces an anxiolytic/no response, indicating that that this system may be developmentally regulated. Despite these discrepancies, a direct comparison of KOR-induced anxiety in stress-naïve adolescents and adults has not been done. Additionally, the effects of KOR activation in females are poorly understood. Therefore, we assessed the impact of KOR activation on anxiety-like behavior in adolescent and adult male and female Sprague-Dawley rats. Animals were given an i.p. injection of the KOR agonist U69593 (0.01, 0.1, 1.0 mg/kg or vehicle) and were tested using the elevated plus maze. U69593 decreased open arm time in adult males, indicating increased anxiety-like behavior. Adolescents exhibited decreased stretch attend postures when collapsed across sex, suggesting reduced anxiety-like behavior. Adult females were not affected by U69593 administration. These data support studies that have identified age-dependent changes in the KOR system in males, and provide novel evidence that females may not exhibit this ontogenetic change. Given the prevalence of stress and drug exposure during the adolescent period, differences in how the KOR system may mediate the effects of these exposures across age and sex should be explored.
Collapse
Affiliation(s)
- Kathryn R Przybysz
- Department of Psychology, Center for Development and Behavioral Neuroscience, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States.
| |
Collapse
|
9
|
Jacobson ML, Browne CA, Lucki I. Kappa Opioid Receptor Antagonists as Potential Therapeutics for Stress-Related Disorders. Annu Rev Pharmacol Toxicol 2020; 60:615-636. [DOI: 10.1146/annurev-pharmtox-010919-023317] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure to stressful stimuli activates kappa opioid receptor (KOR) signaling, a process known to produce aversion and dysphoria in humans and other species. This endogenous opioid system is dysregulated in stress-related disorders, specifically in major depressive disorder (MDD). These findings serve as the foundation for a growing interest in the therapeutic potential of KOR antagonists as novel antidepressants. In this review, data supporting the hypothesis of dysregulated KOR function in MDD are considered. The clinical data demonstrating the therapeutic efficacy and safety of selective and mixed opioid antagonists are then presented. Finally, the preclinical evidence illustrating the induction of behaviors relevant to the endophenotypes of MDD and KOR antagonist activity in stress-naïve and stress-exposed animals is evaluated. Overall, this review highlights the emergent literature supporting the pursuit of KOR antagonists as novel therapeutics for MDD and other stress-related disorders.
Collapse
Affiliation(s)
- Moriah L. Jacobson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Caroline A. Browne
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Irwin Lucki
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| |
Collapse
|
10
|
Williams AV, Trainor BC. The impact of sex as a biological variable in the search for novel antidepressants. Front Neuroendocrinol 2018; 50:107-117. [PMID: 29859882 PMCID: PMC6139050 DOI: 10.1016/j.yfrne.2018.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
A roadblock to successful treatment for anxiety and depression is the high proportion of individuals that do not respond to existing treatments. Different underlying neurobiological mechanisms may drive similar symptoms, so a more personalized approach to treatment could be more successful. There is increasing evidence that sex is an important biological variable modulating efficacy of antidepressants and anxiolytics. We review evidence for sex-specific effects of traditional monoamine based antidepressants and newer pharmaceuticals targeting kappa opioid receptors (KOR), oxytocin receptors (OTR), and N-methyl-D-aspartate receptors (ketamine). In some cases, similar behavioral effects are observed in both sexes while in other cases strong sex-specific effects are observed. Most intriguing are cases such as ketamine which has similar behavioral effects in males and females, perhaps through sex-specific neurobiological mechanisms. These results show how essential it is to include both males and females in both clinical and preclinical evaluations of novel antidepressants and anxiolytics.
Collapse
Affiliation(s)
- Alexia V Williams
- Department of Psychology, University of California, Davis, CA 95616, United States.
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, United States.
| |
Collapse
|