1
|
An L, Xiong Y, Yang Y, Lyu D, Yang Z, Zhang T. Re-socialization reduces social isolation-induced high alcohol preference and anxiety via possibly restoring dopamine-rewarding effects in the rat striatum. Pharmacol Biochem Behav 2025; 249:173981. [PMID: 39993506 DOI: 10.1016/j.pbb.2025.173981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Social environmental factors frequently play an important role in early-life. It is reported that isolation increases vulnerability to develop alcohol use disorder. We investigated the effects of re-socialization on high alcohol preference and anxiety behaviors, induced by early-life social isolation (SI), and its possible underlying mechanism in male Wistar rats. On the 21st postnatal day, animals were either housed in groups of (CON) or isolated (SI-1) for the first stage (3 weeks). Afterwards, the SI-1 group were divided into two groups: re-socialization with socially housed rats (Re-SH) and isolation (SI-2) for a second stage (3 weeks). Both alcohol preference and behaviour tests were performed in these two stages. The ratio of dopamine content in striatum tissue was measured. The results showed that SI considerably induced the high alcohol preference and increased anxiety-like behaviors. However, during the 2nd stage, peer companionship significantly reduced the high alcohol preference and anxiety-like behaviors which were induced by early-life SI. Moreover, the striatal dopamine content was significantly enhanced by SI, but was evidently suppressed by re-socialization. Additionally, there was no statistical difference in body weight, anxiety-like behaviour, alcohol preference or dopamine content when the rats were only isolated during the SI-2 stage. It suggests that both the high alcohol preference and anxiety-like behaviors are able to be significantly reduced by re-socialization, which is possibly associated with regulating dopamine concentration.
Collapse
Affiliation(s)
- Lei An
- Department of Proctology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yuxiu Xiong
- College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Yang Yang
- Department of Neonatology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Dan Lyu
- Department of Pain Management, Nankai University Affiliated Tianjin First Central Hospital, 300071 Tianjin, China
| | - Zhuo Yang
- College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Tao Zhang
- College of Life Sciences, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
2
|
Xu X, Yan Y, Yang Z, Zhang T. Down-regulation of RIPK3 prevents depression-like behaviors by restoring the synaptic plasticity and suppressing neuronal loss. J Affect Disord 2024; 365:213-221. [PMID: 39154980 DOI: 10.1016/j.jad.2024.08.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The excessive secretion of glucocorticoids resulting from the overactivation of the hypothalamic-pituitary-adrenal axis is a crucial factor in the pathogenesis of depression. RIPK3 plays a significant role in apoptosis and necroptosis. Glucocorticoids have been implicated in directly regulating the expression of RIPK3, leading to apoptosis and necroptosis of osteoblasts. This suggests that RIPK3 may contribute to cell death induced by glucocorticoids. However, the precise involvement of RIPK3 in glucocorticoid-induced depression remains poorly understood. METHODS In this study, a mouse model of depression was established by repeated corticosterone injections to examine the impact of RIPK3 knockdown on depression-like behavior. Additionally, a corticosterone-induced HT22 injury model was also established to investigate the role of RIPK3 in corticosterone-induced neuronal cell death and underlying mechanisms. RESULTS Our findings demonstrate that hippocampal RIPK3 knockdown effectively ameliorated depression-related symptoms and restored synaptic plasticity impairment caused by corticosterone. Furthermore, treatment with the RIPK3 inhibitor GSK872 in vitro successfully mitigated corticosterone-induced HT22 cell death. Additionally, the administration of a free radical scavenger alleviated neuronal death and effectively suppressed the expression of corticosterone-induced RIPK3. LIMITATIONS The limitation of this study is that only the changes of RIPK3 in the hippocampus of depressed male animals were studied. CONCLUSIONS These results suggest that corticosterone may induce RIPK3-dependent neuronal cell death and impair synaptic plasticity through the generation of high levels of oxidative stress, ultimately leading to depression-like behavior.
Collapse
Affiliation(s)
- Xinxin Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300130 Tianjin, China; College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Yuxing Yan
- College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, China
| | - Tao Zhang
- College of Life Sciences, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
3
|
Gros A, Furlan FM, Rouglan V, Favereaux A, Bontempi B, Morel JL. Physical exercise restores adult neurogenesis deficits induced by simulated microgravity. NPJ Microgravity 2024; 10:69. [PMID: 38906877 PMCID: PMC11192769 DOI: 10.1038/s41526-024-00411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Cognitive impairments have been reported in astronauts during spaceflights and documented in ground-based models of simulated microgravity (SMG) in animals. However, the neuronal causes of these behavioral effects remain largely unknown. We explored whether adult neurogenesis, known to be a crucial plasticity mechanism supporting memory processes, is altered by SMG. Adult male Long-Evans rats were submitted to the hindlimb unloading model of SMG. We studied the proliferation, survival and maturation of newborn cells in the following neurogenic niches: the subventricular zone (SVZ)/olfactory bulb (OB) and the dentate gyrus (DG) of the hippocampus, at different delays following various periods of SMG. SMG exposure for 7 days, but not shorter periods of 6 or 24 h, resulted in a decrease of newborn cell proliferation restricted to the DG. SMG also induced a decrease in short-term (7 days), but not long-term (21 days), survival of newborn cells in the SVZ/OB and DG. Physical exercise, used as a countermeasure, was able to reverse the decrease in newborn cell survival observed in the SVZ and DG. In addition, depending on the duration of SMG periods, transcriptomic analysis revealed modifications in gene expression involved in neurogenesis. These findings highlight the sensitivity of adult neurogenesis to gravitational environmental factors during a transient period, suggesting that there is a period of adaptation of physiological systems to this new environment.
Collapse
Affiliation(s)
- Alexandra Gros
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
- Centre National d'Etudes Spatiales, F-75001, Paris, France
| | - Fandilla Marie Furlan
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
- Department of Genetics & Evolution, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Vanessa Rouglan
- CNRS, IINS, UMR 5297, University Bordeaux, F-33000, Bordeaux, France
| | | | - Bruno Bontempi
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
| | - Jean-Luc Morel
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France.
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France.
| |
Collapse
|
4
|
Hong J, Chen J, Li C, Zhao F, Zhang J, Shan Y, Wen H. High-frequency rTMS alleviates cognitive impairment and regulates synaptic plasticity in the hippocampus of rats with cerebral ischemia. Behav Brain Res 2024; 467:115018. [PMID: 38678971 DOI: 10.1016/j.bbr.2024.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Poststroke cognitive impairment (PSCI) is a common complication of stroke, but effective treatments are currently lacking. Repetitive transcranial magnetic stimulation (rTMS) is gradually being applied to treat PSCI, but there is limited evidence of its efficacy. To determine rTMS effects on PSCI, we constructed a transient middle cerebral artery occlusion (tMCAO) rat model. Rats were then grouped by random digital table method: the sham group (n = 10), tMCAO group (n = 10) and rTMS group (n = 10). The shuttle box and Morris water maze (MWM) tests were conducted to detect the cognitive functions of the rats. In addition, synaptic density and synaptic ultrastructural parameters, including the active zone length, synaptic cleft width, and postsynaptic density (PSD) thickness, were quantified and analyzed using an electron microscope. What's more, synaptic associated proteins, including PSD95, SYN, and BDNF were detected by western blot. According to the shuttle box and MWM tests, rTMS improved tMCAO rats' cognitive functions, including spatial learning and memory and decision-making abilities. Electron microscopy revealed that rTMS significantly increased the synaptic density, synaptic active zone length and PSD thickness and decreased the synaptic cleft width. The western blot results showed that the expression of PSD95, SYN, and BDNF was markedly increased after rTMS stimulation. Based on these results, we propose that 20 Hz rTMS can significantly alleviate cognitive impairment after stroke. The underlying mechanism might be modulating the synaptic plasticity and up-regulating the expression PSD95, SYN, and BDNF in the hippocampus.
Collapse
Affiliation(s)
- Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Fei Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jiantao Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yilong Shan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
5
|
Zheng X, Wang R, Ma B, Zhang J, Qian X, Fang Q, An J. rTMS reduces spatial learning and memory deficits induced by sleep deprivation possibly via suppressing the expression of kynurenine 3-monooxygenase in rats. Behav Brain Res 2024; 456:114704. [PMID: 37838245 DOI: 10.1016/j.bbr.2023.114704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
INTRODUCTION Impairment of learning and memory caused by sleep deprivation is a common symptom that significantly affects quality of life. Repetitive transcranial magnetic stimulation (rTMS) is a promising approach to exert a positive effect on cognitive impairment. However, there is less known about the mechanism of rTMS for learning and memory induced by chronic REM sleep deprivation (CRSD). This study was to detect the effects of rTMS on spatial learning and memory deficits by CRSD and explore possible mechanism. METHODS Sixty male Sprague-Dawley rats were randomly divided into four groups: wide platform (Control), sleep deprivation (SD), sleep deprivation + rTMS (TMS), and sleep deprivation + sham rTMS (Sham-TMS). Morris water maze (MWM) and open field test (OFT) assessed spatial learning and memory and anxiety of rats with pre/post-intervention. Golgi staining and transmission electron microscope (TEM) were used to observe structural variations of synapses in the hippocampus. The alteration in gene expression of different groups was analyzed by RNA-sequencing (RNA-Seq), and the key gene was screened and identified by quantitative polymerase chain reaction (qPCR) and subsequently verified with western blotting and immunofluorescence. RESULTS The behavioral test showed spatial learning and memory decreased and anxiety increased in the SD group compared to the Control and TMS groups. Moreover, rTMS improved spine density, ultrastructural damage, and quantities of synapses. In accordance with RNA-Seq, 56 differentially expressed genes (DEGs) were identified by comparing alternations in four groups and concentrated on kynurenine 3-monooxygenase (KMO). The expression of KMO increased significantly in rats of the SD group compared to the Control and TMS groups identified by qPCR, western blotting, and immunofluorescence. CONCLUSION 1 Hz rTMS alleviated spatial learning and memory deficits induced by CRSD probably via down-regulating the expression of KMO and improving the structure and quantity of synapses in the hippocampus of rats.
Collapse
Affiliation(s)
- Xin Zheng
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ruoguo Wang
- School of Anesthesiology, Weifang Medical University & Department of Anesthesiology, Pain & Sleep Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Baofeng Ma
- Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; School of Anesthesiology, Weifang Medical University & Department of Anesthesiology, Pain & Sleep Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xiaoyan Qian
- Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Qiwu Fang
- Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Jianxiong An
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; School of Anesthesiology, Weifang Medical University & Department of Anesthesiology, Pain & Sleep Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China; Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Kazmi S, Farajdokht F, Meynaghizadeh-Zargar R, Sadigh-Eteghad S, Pasokh A, Farzipour M, Farazi N, Hamblin MR, Mahmoudi J. Transcranial photobiomodulation mitigates learning and memory impairments induced by hindlimb unloading in a mouse model of microgravity exposure by suppression of oxidative stress and neuroinflammation signaling pathways. Brain Res 2023; 1821:148583. [PMID: 37717889 DOI: 10.1016/j.brainres.2023.148583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Prolonged microgravity exposure causes cognitive impairment. Evidence shows that oxidative stress and neuroinflammation are involved in the causation. Here, we explore the effectiveness of transcranial near-infrared photobiomodulation (PBM) on cognitive deficits in a mouse model of simulated microgravity. 24 adult male C57BL/6 mice were assigned into three groups (8 in each); control, hindlimb unloading (HU), and HU + PBM groups. After surgery to fit the suspension fixing, the animals were housed either in HU cages or in their normal cage for 14 days. The mice in the HU + PBM group received PBM (810 nm laser, 10 Hz, 8 J/cm2) once per day for 14 days. Spatial learning and memory were assessed in the Lashley III maze and hippocampus tissue samples were collected to assess oxidative stress markers and protein expression of brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), Sirtuin 1 (Sirt1), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Behavioral testing showed that the PBM-treated animals had a shorter latency time to find the target and fewer errors than the HU group. PBM decreased hippocampal lipid peroxidation while increasing antioxidant defense systems (glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to HU mice. PBM increased protein expression of Sirt1, Nrf2, and BDNF while decreasing NF-κB compared to HU mice. Our findings suggested that the protective effect of PBM against HU-induced cognitive impairment involved the activation of the Sirt1/Nrf2 signaling pathway, up-regulation of BDNF, and reduction of neuroinflammation and oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Sareh Kazmi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pasokh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Mohammad Farzipour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Li J, Xue C, Yang H, Zhang J, Li G, Li J, Kuang F, Chen J, Zhang S, Gao F, Kou Z, Zhang X, Dong L. Simulated weightlessness induces hippocampal insulin resistance and cognitive impairment. Life Sci 2023; 333:122112. [PMID: 37758017 DOI: 10.1016/j.lfs.2023.122112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Growing evidence highlights the potential consequences of long-term spaceflight, including gray matter volume reduction and cognitive dysfunction with subclinical manifestations of diabetes mellitus among astronauts, but the underlying mechanisms remain unknown. In this study, we found that long-term simulated weightlessness induced hippocampal insulin resistance and subsequent neuronal damage and cognitive impairment in rats. Rats subjected to 4-week tail suspension exhibited peripheral insulin resistance, evidenced by increased fasting blood glucose and abnormal glucose tolerance and insulin tolerance, alongside reduced spontaneous activity and impaired recognition memory. In addition, 4 weeks of simulated weightlessness induced neuronal apoptosis and degeneration in the hippocampus, as evidenced by increased TUNEL and Fluoro-Jade B staining-positive neurons. Mechanistically, insulin-stimulated hippocampal Akt phosphorylation was decreased, while PTEN, the negative regulator of insulin signaling, was increased in the hippocampus in tail-suspended rats. Interestingly, treatment with berberine, an insulin sensitizer, partly reversed the above-mentioned effects induced by simulated weightlessness. These data suggest that long-term simulated weightlessness induces cognitive impairment as well as neuronal apoptosis and neural degeneration, partially through hippocampal insulin resistance via PTEN up-regulation. Berberine treatment attenuates hippocampal insulin resistance and improves cognitive function.
Collapse
Affiliation(s)
- Jiahui Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China; Department of Psychology, Air Force Hospital, Western Theater Command, Chengdu, China
| | - Caiyan Xue
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Hongyan Yang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Jiaxin Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Guohua Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Jijun Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Fang Kuang
- Department of Neurobiology, Air Force Medical University, Xi'an, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Shu Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhenzhen Kou
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China.
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| |
Collapse
|
8
|
Chen F, Jiang N, Zhang YW, Xie MZ, Liu XM. Protective effect of Gastrodia elata blume ameliorates simulated weightlessness-induced cognitive impairment in mice. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:1-7. [PMID: 36682818 DOI: 10.1016/j.lssr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/17/2023]
Abstract
During the long-term orbital flight, exposure to microgravity negatively affects the astronauts' development of cognition, characterized by learning and memory decline. Gastrodia elata Blume (GEB) has a significant protective effect on cognitive impairment and has been used in Asia for centuries as a functional product. A previous study demonstrated that GEB could improve memory loss in mice caused by circadian rhythm disorders. However, the effects of GEB on cognitive dysfunction caused by weightless environments have not been investigated. In this study, mice received daily treatment with GEB (0.5, 1 g·kg-1d-1, i.g) and Huperzine A(Hup, 0.1 mg·kg-1d-1, i.g) orally until the end of the behavioral test (New object recognition test (NORT). Malondialdehyde (MDA) and nitric oxide (NO) levels were detected by kits, and expression of brain-derived neurotrophic factor (BDNF), protein kinase B (AKT), phosphorylated Akt (P-AKT), synaptophysin (SYN) and postsynaptic density 95(PSD95) in hippocampus were detected by western blotting. The results show that administration of GEB (0.5, 1 g·kg-1d-1, i.g) and Hup (0.1 mg·kg-1d-1, i.g) remarkably reverse HLS-induced learning and behavioral memory disorders, which were associated with significant changes in MDA and NO levels. Additionally, the protein expressions of BDNF, P-AKT/AKT, SYN, and PSD95 were significantly increased in the hippocampus. In summary, our findings will improve the reference for developing GEB as a functional product that improves memory decline.
Collapse
Affiliation(s)
- Fang Chen
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Hunan University of Chinese Medicine, Hunan 410000, China
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yi Wen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Meng Zhou Xie
- Hunan University of Chinese Medicine, Hunan 410000, China.
| | - Xin Min Liu
- Institute of New Drug Technology, Ningbo University, Ningbo 315000, China; Hunan University of Chinese Medicine, Hunan 410000, China.
| |
Collapse
|
9
|
Jiang N, Lv J, Zhang Y, Sun X, Yao C, Wang Q, He Q, Liu X. Protective effects of ginsenosides Rg1 and Rb1 against cognitive impairment induced by simulated microgravity in rats. Front Pharmacol 2023; 14:1167398. [PMID: 37168997 PMCID: PMC10164943 DOI: 10.3389/fphar.2023.1167398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Microgravity experienced during space flight is known to exert several negative effects on the learning ability and memory of astronauts. Few effective strategies are currently available to counteract these effects. Rg1 and Rb1, the major steroidal components of ginseng, have shown potent neuroprotective effects with a high safety profile. The present study aimed to investigate the effects of Rg1 and Rb1 on simulated microgravity-induced learning and memory dysfunction and its underlying mechanism in the hindlimb suspension (HLS) rat model. Administration of Rg1 (30 and 60 μmol/kg) and Rb1 (30 and 60 μmol/kg) for 2 weeks resulted in a significant amelioration of impaired spatial and associative learning and memory caused by 4-week HLS exposure, measured using the Morris water maze and Reward operating conditioning reflex (ROCR) tests, respectively. Furthermore, Rg1 and Rb1 administration alleviated reactive oxygen species production and enhanced antioxidant enzyme activities in the prefrontal cortex (PFC). Rg1 and Rb1 also assisted in the recovery of mitochondrial complex I (NADH dehydrogenase) activities, increased the expression of Mfn2 and decreased the fission marker dynamin-related protein (Drp)-1expression. Additionally, Rg1 and Rb1 treatment increased the SYN, and PSD95 protein expressions and decreased the ratio of Bax:Bcl-2 and reduced the expression of cleaved caspase-3 and cytochrome C. Besides these, the BDNF-TrkB/PI3K-Akt pathway was also activated by Rg1 and Rb1 treatment. Altogether, Rg1 and Rb1 treatment attenuated cognitive deficits induced by HLS, mitigated mitochondrial dysfunction, attenuated oxidative stress, inhibited apoptosis, increased synaptic plasticity, and restored BDNF-TrkB/PI3K-Akt signaling.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinran Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghu He
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xinmin Liu,
| |
Collapse
|
10
|
Exposure to static magnetic field facilitates selective attention and neuroplasticity in rats. Brain Res Bull 2022; 189:111-120. [PMID: 35987295 DOI: 10.1016/j.brainresbull.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022]
Abstract
Static magnetic fields (SMF) have neuroprotective and behavioral effects in rats, however, little is known about the effects of SMF on cognition, motor function and the underlying neurochemical mechanisms. In this study, we focused on the effects of short-term (5~10d) and long-term (13~38d) SMF exposure on selective attention and motor coordination of rats, as well as associated alterations in expression level of neuroplasticity-related structural proteins and cryptochrome (CRY1) protein in the cortex, striatum and ventral midbrain. The results showed that 6 d SMF exposure significantly enhanced selective attention without affecting locomotor activity in open field. All SMF exposures non-significantly enhanced motor coordination (Rotarod test). Neurochemical analysis demonstrated that 5d SMF exposure increased the expression of cortical and striatal CRY1 and synapsin-1 (SYN1), striatal total synapsins (SYN), and synaptophysin (SYP), growth associated protein-43 (GAP43) and post-synaptic density protein-95 (PSD95) in the ventral midbrain. Exposure to SMF for 14d increased PSD95 level in the ventral midbrain while longer SMF exposure elevated the levels of PSD95 in the cortex, SYN and SYN1 in all the examined brain areas. The increased expression of cortical and striatal CRY1and SYN1 correlated with the short-lasting effect of SMF on improving selective attention. Collectively, SMF's effect on selective attention attenuated following longer exposure to SMF whereas its effects on neuroplasticity-related structural biomarkers were time- and brain area-dependent, with some protein levels increasing with longer time exposure. These findings suggest a potential use of SMF for treatment of neurological diseases in which selective attention or neuroplasticity is impaired.
Collapse
|
11
|
5 Hz of repetitive transcranial magnetic stimulation improves cognition and induces modifications in hippocampal neurogenesis in adult female Swiss Webster mice. Brain Res Bull 2022; 186:91-105. [PMID: 35688304 DOI: 10.1016/j.brainresbull.2022.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022]
Abstract
Adult hippocampal neurogenesis is regulated by several stimuli to promote the creation of a reserve that may facilitate coping with environmental challenges. In this regard, repetitive transcranial magnetic stimulation (rTMS), a neuromodulation therapy, came to our attention because in clinical studies it reverts behavioral and cognitive alterations related to changes in brain plasticity. Some preclinical studies emphasize the need to understand the underlying mechanism of rTMS to induce behavioral modifications. In this study, we investigated the effects of rTMS on cognition, neurogenic-associated modifications, and neuronal activation in the hippocampus of female Swiss Webster mice. We applied 5 Hz of rTMS twice a day for 14 days. Three days later, mice were exposed to the behavioral battery. Then, brains were collected and immunostained for Ki67-positive cells, doublecortin-positive (DCX+)-cells, calbindin, c-Fos and FosB/Delta-FosB in the dentate gyrus. Also, we analyzed mossy fibers and CA3 with calbindin immunostaining. Mice exposed to rTMS exhibited cognitive improvement, an increased number of proliferative cells, DCX cells, DCX cells with complex dendrite morphology, c-Fos and immunoreactivity of FosB/Delta-FosB in the granular cell layer. The volume of the granular cell layer, mossy fibers and CA3 in rTMS mice also increased. Interestingly, cognitive improvement correlated with DCX cells with complex dendrite morphology. Also, those DCX cells and calbindin immunoreactivity correlated with c-Fos in the granular cell layer. Our results suggest that 5 Hz of rTMS applied twice a day modify cell proliferation, doublecortin cells, mossy fibers and enhance cognitive behavior in healthy female Swiss Webster mice.
Collapse
|
12
|
Desai RI, Limoli CL, Stark CEL, Stark SM. Impact of spaceflight stressors on behavior and cognition: A molecular, neurochemical, and neurobiological perspective. Neurosci Biobehav Rev 2022; 138:104676. [PMID: 35461987 DOI: 10.1016/j.neubiorev.2022.104676] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022]
Abstract
The response of the human body to multiple spaceflight stressors is complex, but mounting evidence implicate risks to CNS functionality as significant, able to threaten metrics of mission success and longer-term behavioral and neurocognitive health. Prolonged exposure to microgravity, sleep disruption, social isolation, fluid shifts, and ionizing radiation have been shown to disrupt mechanisms of homeostasis and neurobiological well-being. The overarching goal of this review is to document the existing evidence of how the major spaceflight stressors, including radiation, microgravity, isolation/confinement, and sleep deprivation, alone or in combination alter molecular, neurochemical, neurobiological, and plasma metabolite/lipid signatures that may be linked to operationally-relevant behavioral and cognitive performance. While certain brain region-specific and/or systemic alterations titrated in part with neurobiological outcome, variations across model systems, study design, and the conspicuous absence of targeted studies implementing combinations of spaceflight stressors, confounded the identification of specific signatures having direct relevance to human activities in space. Summaries are provided for formulating new research directives and more predictive readouts of portending change in neurobiological function.
Collapse
Affiliation(s)
- Rajeev I Desai
- Harvard Medical School, McLean Hospital, Behavioral Biology Program, Belmont, MA 02478, USA.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, B146B, Irvine, CA 92697, USA
| | - Craig E L Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| | - Shauna M Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Liang R, Wang L, Sun S, Zheng C, Yang J, Ming D. Medial prefrontal cortex and hippocampus in mice differently affected by simulate microgravity and social isolation associated with the alternation of emotional and cognitive functions. LIFE SCIENCES IN SPACE RESEARCH 2022; 33:21-32. [PMID: 35491026 DOI: 10.1016/j.lssr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Long-term spaceflight has been proved to cause physical impairments such as motor, cardiovascular and endocrine functions in astronauts. But psychological effects such as mood and social interaction are less well understood. Besides, there are conflicting accounts of their effects on cognitive function. Thus in this study, we exposed mice (18-21 g) to 28-day simulate microgravity and social isolation (SM+SI) and examined its effects on mood, social interaction and cognitive function. We found that four weeks of SM+SI exposure resulted in emotional and specific social barriers, which may be associated with loss of neurons and decreased dendritic spine density in the medial prefrontal cortex. Unexpectedly, SM+SI enhanced the short and long-term cognitive abilities of mice, which may be related to the anti-apoptotic effect of SM+SI regulating the level of apoptotic factors in the hippocampus. These results indicates that SM+SI, as chronic stressor, can induce the body to establish effective coping strategies to enhance individuals' cognitive ability; on the other hand, long-term exposure to SM+SI causes emotional/social barriers. This study further demonstrates SM+SI causes different effects in a brain-region specific manner. Current findings provide a theoretical basis for understanding how SM+SI acts on the brain structure to influence mental health, and may be useful for designing effective prevention for those, including the astronauts, exposed to microgravity.
Collapse
Affiliation(s)
- Rong Liang
- Institute of Medical Engineering & Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Ling Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shufan Sun
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chenguang Zheng
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Jiajia Yang
- Institute of Medical Engineering & Translational Medicine, Tianjin University, Tianjin 300072, China; School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China.
| | - Dong Ming
- Institute of Medical Engineering & Translational Medicine, Tianjin University, Tianjin 300072, China; School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Heath AM, Brewer M, Yesavage J, McNerney MW. Improved object recognition memory using post-encoding repetitive transcranial magnetic stimulation. Brain Stimul 2022; 15:78-86. [PMID: 34785386 PMCID: PMC10612530 DOI: 10.1016/j.brs.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Brain stimulation is known to affect canonical pathways and proteins involved in memory. However, there are conflicting results on the ability of brain stimulation to improve to memory, which may be due to variations in timing of stimulation. HYPOTHESIS We hypothesized that repetitive transcranial magnetic stimulation (rTMS) given following a learning task and within the time period before retrieval could help improve memory. METHODS We implanted male B6129SF2/J mice (n = 32) with a cranial attachment to secure the rTMS coil so that the mice could be given consistent stimulation to the frontal area whilst freely moving. Mice then underwent the object recognition test sampling phase and given treatment +3, +24, +48 h following the test. Treatment consisted of 10 min 10 Hz rTMS stimulation (TMS, n = 10), sham treatment (SHAM, n = 11) or a control group which did not do the behavior test or receive rTMS (CONTROL n = 11). At +72 h mice were tested for their exploration of the novel vs familiar object. RESULTS At 72-h's, only the mice which received rTMS had greater exploration of the novel object than the familiar object. We further show that promoting synaptic GluR2 and maintaining synaptic connections in the perirhinal cortex and hippocampal CA1 are important for this effect. In addition, we found evidence that these changes were linked to CAMKII and CREB pathways in hippocampal neurons. CONCLUSION By linking the known biological effects of rTMS to memory pathways we provide evidence that rTMS is effective in improving memory when given during the consolidation and maintenance phases.
Collapse
Affiliation(s)
- A M Heath
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA.
| | - M Brewer
- Stanford University, Stanford, CA, 94305, USA
| | - J Yesavage
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA
| | - M W McNerney
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA
| |
Collapse
|
15
|
Immediate and cumulative effects of high-frequency repetitive transcranial magnetic stimulation on cognition and neuronal excitability in mice. Neurosci Res 2021; 173:90-98. [PMID: 34111441 DOI: 10.1016/j.neures.2021.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 01/23/2023]
Abstract
This study primarily explored the potential effects of high-frequency (20 Hz) repetitive transcranial magnetic stimulation (rTMS) with different intervention protocols on cognition and neuronal excitability in mice. Mice were randomly divided into 4 groups: a control group that received sham stimulation, an rTMS in vitro group whose acute brain slices received high-frequency stimulation, an rTMS 1 d group that received high-frequency stimulation for only 1 d, and an rTMS 15 d group that received high-frequency stimulation for 15 d. The novel object recognition and step-down tests were used to assess cognitive ability. The patch-clamp technique was used to record the membrane potentials and neural discharges of dentate gyrus granule cells to evaluate neuronal excitability. Results revealed that cognition and neuronal excitability in the rTMS 15 d group were significantly increased than that in the control and rTMS 1 d groups. The neuronal excitability in the rTMS in vitro group was also significantly increased than that in the control and rTMS 1 d groups. No significant changes were observed between the control and rTMS 1 d groups. These results suggested that high-frequency rTMS applied to the acute brain slices of mice in vitro exerted an immediate effect on increasing neuronal excitability. Chronic high-frequency rTMS applied to the brain of mice in vivo exerted a cumulative effect in improving cognition and increasing neuronal excitability.
Collapse
|
16
|
Down-regulation of MST1 in hippocampus protects against stress-induced depression-like behaviours and synaptic plasticity impairments. Brain Behav Immun 2021; 94:196-209. [PMID: 33607238 DOI: 10.1016/j.bbi.2021.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is a common mental disorder, and its main environmental risk factor is chronic stress. The activation of mammalian STE20-like kinase 1 (MST1), a key factor involved in the underlying pathophysiology of stress, can trigger synaptic plasticity impairment, neuronal dysfunction and neuroinflammation. However, it is unclear whether down-regulation of MST1 in the hippocampus protects against stress-induced behavioural dysfunctions. In this study, three mouse models were used to assess the role of MST1 in stress. Various behavioural tests, in vivo electrophysiological recordings, Western blotting, Golgi staining and immunofluorescence assay were used. The data showed that the level of phospho-MST1 (T183) was significantly increased in the hippocampus of mice subjected to chronic unpredictable mild stress (CUMS) and that mice with MST1 overexpression showed depression-like behaviours. Importantly, the impairment of cognitive functions and the hippocampal synaptic plasticity induced by CUMS were significantly improved by MST1 knockdown, suggesting that MST1 down-regulation effectively protected against stress-induced behavioural dysfunctions. Moreover, MST1 knockdown suppressed CUMS-induced microglial activation, reduced the abnormal expression of inflammatory cytokines and impeded the activation of p38, implying that the antidepressant-like effects of MST1 knockdown were associated with inhibiting the p38 pathway. These findings suggest that hippocampal MST1 is an essential regulator of stress, which can be an ideal target for the development of antidepressants in the future.
Collapse
|
17
|
Xu X, Xiao X, Yan Y, Zhang T. Activation of liver X receptors prevents emotional and cognitive dysfunction by suppressing microglial M1-polarization and restoring synaptic plasticity in the hippocampus of mice. Brain Behav Immun 2021; 94:111-124. [PMID: 33662504 DOI: 10.1016/j.bbi.2021.02.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Depression is a long-lasting and persistent mood disorder in which the regulatory mechanisms of neuroinflammation are thought to play a contributing role to the physiopathology of the condition. Previous studies have shown that liver X receptors (LXRs) can regulate the activation of microglia and neuroinflammation. However, the role of LXRs in depression remains to be fully understood. In this study, we hypothesized that stress impairs the function of LXRs and that the LXRs agonist GW3965 plays a potential anti-depressive role by inhibiting neuroinflammation. The anti-depressive effects of GW3965 were evaluated in both chronic unpredictable mild stress (CUMS) and lipopolysaccharide (LPS) models. The LXRs antagonist GSK2033 was also employed to block LXRs. Behavioural tests were performed to measure depression-like phenotypes and learning abilities. Electrophysiological recordings and Golgi staining were used to measure the plasticity of the dentate gyrus synapse. The expression of synapse and neuroinflammation related proteins were evaluated by Western blotting and immunofluorescence. The activation of LXRs by GW3965 prevented emotional and cognitive deficits induced by either CUMS or LPS. GW3965 prevented the decreased level of LXR-β induced by CUMS. The activation of LXRs significantly improved the impairment of synaptic plasticity, prevented the up-regulation of inflammatory factors and inhibited NF-κB phosphorylation and microglial M1-polarization in both models. The antidepressive-like effects of GW3965 were blocked by GSK2033 in the CUMS and LPS models. Our data suggest that inhibition of the LXRs signalling pathway may be a key driver in the pathogenesis of neuroinflammation during depression and that LXRs agonists have a high potential in the treatment of depression.
Collapse
Affiliation(s)
- Xinxin Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Xi Xiao
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Yuxing Yan
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| |
Collapse
|
18
|
Xu X, Xiang S, Zhang Q, Yin T, Kong W, Zhang T. rTMS alleviates cognitive and neural oscillatory deficits induced by hindlimb unloading in mice via maintaining balance between glutamatergic and GABAergic systems. Brain Res Bull 2021; 172:98-107. [PMID: 33895272 DOI: 10.1016/j.brainresbull.2021.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
Microgravity, as a part of the stress of space flight, has several negative effects on cognitive functions. Repetitive transcranial magnetic stimulation (rTMS), as a novel non-invasive technique, could be an effective approach to alleviated cognitive decline, applied in both preclinical and clinical studies. Neural oscillations and their interactions are involved in cognitive functions and support the communication of neural information. The neural oscillation could be a window from which we may understand what happens in the brain. The current study aimed to explore if 15 Hz rTMS plays a neural modulation role in a mouse model of hindlimb unloading. We hypothezed that rTMS can improve the cognitive and neural oscillatory deficits induced by hindlimb unloading via maintaining the balance between glutamatergic and GABAergic systems. Our data show that rTMS can significantly alleviate behavior deficits, modulate theta oscillation, improve the disturbed power distribution of theta oscillation and the decreased strength of Cross-Frequency Coupling in the dentate gyrus region, and effectively mitigated the blocked communication of neural information in the perforant pathway (PP)-dentate gyrus (DG) neural pathway in Hu mice. Furthermore, biochemical analysis using high-performance liquid chromatography and Western blot assay confirmed that rTMS increases the low expression of glutamate (Glu) and N-Methyl d-Aspartate receptor subtype 2B (NR2B) and decreases the high expression of γ-aminobutyric acid (GABA), 67 KDa isoform of glutamate decarboxylase (GAD67), and GABA type A receptor subunit alpha1 (GABAARα1) in the hippocampus of Hu mice. Taken together, the results suggest that rTMS plays a significant neural modulation role in the hippocampal neural activity disorders induced by Hu, which possibly depends on rTMS maintaining the balance of glutamatergic and gamma-aminobutyric acidergic (GABAergic) systems.
Collapse
Affiliation(s)
- Xinxin Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Shitong Xiang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Qiyue Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Wanzeng Kong
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, 310018, Hangzhou, PR China.
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China.
| |
Collapse
|
19
|
Pedard M, Quirié A, Tessier A, Garnier P, Totoson P, Demougeot C, Marie C. A reconciling hypothesis centred on brain-derived neurotrophic factor to explain neuropsychiatric manifestations in rheumatoid arthritis. Rheumatology (Oxford) 2021; 60:1608-1619. [PMID: 33313832 DOI: 10.1093/rheumatology/keaa849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease characterized by synovitis leading to joint destruction, pain and disability. Despite efficient antirheumatic drugs, neuropsychiatric troubles including depression and cognitive dysfunction are common in RA but the underlying mechanisms are unclear. However, converging evidence strongly suggests that deficit in brain-derived neurotrophic factor (BDNF) signalling contributes to impaired cognition and depression. Therefore, this review summarizes the current knowledge on BDNF in RA, proposes possible mechanisms linking RA and brain BDNF deficiency including neuroinflammation, cerebral endothelial dysfunction and sedentary behaviour, and discusses neuromuscular electrical stimulation as an attractive therapeutic option.
Collapse
Affiliation(s)
- Martin Pedard
- INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Aurore Quirié
- INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Anne Tessier
- INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Philippe Garnier
- INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Perle Totoson
- EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, F-25030, France
| | - Céline Demougeot
- EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, F-25030, France
| | - Christine Marie
- INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| |
Collapse
|
20
|
Zhao S, Shang Y, Yang Z, Xiao X, Zhang J, Zhang T. Application of expert system and LSTM in extracting index of synaptic plasticity. Cogn Neurodyn 2021; 15:253-263. [PMID: 33854643 PMCID: PMC7969679 DOI: 10.1007/s11571-020-09610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022] Open
Abstract
The indexes of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), can usually be measured by evaluating the slope and/or magnitude of field excitatory postsynaptic potentials (fEPSPs). So far, the process depends on manually labeling the linear portion of fEPSPs one by one, which is not only a subjective procedure but also a time-consuming job. In the present study, a novel approach has been developed in order to objectively and effectively evaluate the index of synaptic plasticity. Firstly, we introduced an expert system applying symbolic rules to discard the contaminated waveform in an interpretable way, and further generate supervisory signals for subsequent seq 2seq model based on neural networks. For the propose of enhancing the system generalization ability to deal with the contaminated data of fEPSPs, we employed long short-term memory (LSTM) networks. Finally, the comparison was performed between the automatically labeling system and manually labeling system. These results show that the expert system achieves an accuracy of 96.22% on Type-I labels, and the LSTM supervised by the expert system obtains an accuracy of 96.73% on Type-II labels. Compared to the manually labeling system, the hybrids system is able to measure the index of synaptic plasticity more objectively and efficiently. The new system can reach the level of the human expert ability, and accurately produce the index of synaptic plasticity in a fast way.
Collapse
Affiliation(s)
- Shaokai Zhao
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yingchun Shang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Ze Yang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Xi Xiao
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Jianhai Zhang
- School of Computer Science & Technology, and Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018 People’s Republic of China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 People’s Republic of China
| |
Collapse
|
21
|
Wang W, Liu Y, Luo S, Guo X, Luo X, Zhang Y. Associations between brain-derived neurotrophic factor and cognitive impairment in panic disorder. Brain Behav 2020; 10:e01885. [PMID: 33047489 PMCID: PMC7749616 DOI: 10.1002/brb3.1885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Our study was designed to examine the relationship between Brain-Derived Neurotrophic Factor (BDNF) genotypes (rs6265, Val66Met), BDNF plasma levels, and cognitive impairment in Chinese patients with panic disorder (PD). METHODS Total 85 patients with PD and 91 healthy controls finally completed all assessments. The severity of panic symptoms and whole anxiety of PD was measured by Panic Disorder Severity Scale-Chinese Version (PDSS-CV) and Hamilton Anxiety Scale (HAMA-14). Montreal Cognitive Assessment (MoCA) and some neurocognitive measures were conducted to evaluate the cognitive performance. All participants were detected for the plasma BDNF levels and BDNF Val66Met polymorphism before assessment and treatment. RESULTS No significant differences were found in the BDNF allele frequencies and the BDNF genotype distributions between healthy controls and PD patients. BDNF Met/Met genotype was associated with lower BDNF plasma levels in PD patients, and PD patients with BDNF Met/Met genotype had the lower scores in the attention and speed of processing domains compared to those with Val/Val and Met/Val genotype (p's < .05). Among PD patients, the BDNF plasma levels showed moderate positive correlations with Stroop interference (r = .60, p < .001). Using the MoCA data, the BDNF plasma levels were correlated with delayed memory (r = .50, p < .001), verbal learning (r = .45, p < .001), and total scores of MoCA (r = .51, p < .001). CONCLUSIONS The BDNF Met/Met genotype may be associated with lower BDNF plasma levels and cognitive impairments in PD patients.
Collapse
Affiliation(s)
- Wenchen Wang
- Department of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, China
| | - Yuanyuan Liu
- Department of Cardiology, Chest Hospital of Tianjin, Tianjin, China
| | - Shuqing Luo
- Department of Obstetrics, Baoding Second Central Hospital, Hebei, China
| | - Xiaoyun Guo
- Department of psychiatry, Shanghai Mental Health Center, Shanghai, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yong Zhang
- Department of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
22
|
Song P, Li S, Wang S, Wei H, Lin H, Wang Y. Repetitive transcranial magnetic stimulation of the cerebellum improves ataxia and cerebello-fronto plasticity in multiple system atrophy: a randomized, double-blind, sham-controlled and TMS-EEG study. Aging (Albany NY) 2020; 12:20611-20622. [PMID: 33085647 PMCID: PMC7655163 DOI: 10.18632/aging.103946] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022]
Abstract
Cerebellar ataxia is the predominant motor feature of multiple system atrophy cerebellar subtype (MSA-C). Although repetitive transcranial magnetic stimulation (TMS) of the cerebellum is growingly applied in MSA, the mechanism is unknown. We examined dynamic connectivity changes of 20 patients with MSA and 25 healthy controls using TMS combined with electroencephalography. Observations that significantly decreased dynamic cerebello-frontal connectivity in patients have inspired attempts to modulate cerebellar connectivity in order to benefit MSA. We further explore the therapeutic potential of a 10-day treatment of cerebellar intermittent theta burst stimulation (iTBS) in MSA by a randomized, double-blind, sham-controlled trial. The functional reorganization of cerebellar networks was investigated after the end of treatment in active and sham groups. The severity of the symptoms was evaluated using the Scale for Assessment and Rating of Ataxia scores. Patients treated with active stimulation showed an improvement of cerebello-frontal connectivity and balance functions, as revealed by a significant decrease in the ataxia scores (P < 0.01). Importantly, the neural activity of frontal connectivity from 80 to 100 ms after a single TMS was significantly related to the severity of the disease. Our study provides new proof that cerebellar iTBS improves motor imbalance in MSA by acting on cerebello-cortical plasticity.
Collapse
Affiliation(s)
- Penghui Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Siran Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Suobin Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hua Wei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
| |
Collapse
|
23
|
Wang H, Liu J, Lu Z, Dai Y, Xie J, Xu S, Song Y, Xiao G, Gao F, Qu L, Cai X. Implanted multichannel microelectrode array for simultaneous electrophysiological signal detection of hippocampal CA1 and DG neurons of simulated microgravity rats. Biochem Biophys Res Commun 2020; 531:357-363. [PMID: 32800539 DOI: 10.1016/j.bbrc.2020.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 11/25/2022]
Abstract
Microgravity can cause body fluids to accumulate in the brain, resulting in brain damage. There are few studies that focus on the detection of electrophysiological signals in simulated microgravity rats, and the precise mechanisms are unknown. In this study, a new device was established to investigate the influence of microgravity on hippocampal neurons. A 16-channel microelectrode array was fabricated for in vivo multichannel electrophysiological recordings. In these experiments, microelectrode array was inserted into normal, 28-day tail suspension model, and 3-day recovered after modulation rats to record electrophysiological signals in the CA1 and DG regions of the hippocampus. Through analysis of electrophysiological signals, we obtained the following results: (1) spike signals of model rats sporadically showed brief periods of suspension involving most of the recorded neurons, which corresponded to slow and smooth peaks in local field potentials. For model rats, the firing rate was reduced, and the power in the frequency spectrum was concentrated in the slow frequency band (0-1 Hz); (2) after the detected hippocampal cells divided into pyramidal cells and interneurons, the spike duration of pyramidal cells showed remarkable latency, and their average firing rates showed a more significant decrease compared to interneurons. These results demonstrate that the hippocampal neurons were impaired after modulation in the cellular dimension, and pyramidal cells were more susceptible than interneurons.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Zeying Lu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Shengwei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Guihua Xiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Fei Gao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, PR China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China.
| |
Collapse
|
24
|
Li X, Yuan X, Kang Y, Pang L, Liu Y, Zhu Q, Lv L, Huang XF, Song X. A synergistic effect between family intervention and rTMS improves cognitive and negative symptoms in schizophrenia: A randomized controlled trial. J Psychiatr Res 2020; 126:81-91. [PMID: 32428747 DOI: 10.1016/j.jpsychires.2020.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The present study explored an efficient new therapy that combined repetitive transcranial magnetic stimulation (rTMS) and family intervention in addition to risperidone to improve schizophrenia. METHODS A randomized controlled trial (January 2016-September 2017) involving 200 patients, of which 188 patients completed the 12-week study, and 50 controls were conducted in the research. The patients were randomly assigned to 12 weeks of treatment with risperidone alone (risperidone group), rTMS and risperidone (rTMS group), family intervention and risperidone (family intervention group), rTMS and risperidone plus family intervention (combined group). MATRICS Consensus Cognitive Battery (MCCB) and the Positive and Negative Symptoms Scale (PANSS) were used to evaluate treatment efficacy. Repeated measures analysis of variance (RMANOVA) were performed to evaluate different treatment efficacy between four groups after 12 weeks of treatment. RESULTS (1) There were no significant differences in sex, age, education, cognitive function, or PANSS scores between the four groups at baseline (p's > 0.05). (2) There was a significant decrease in the PANSS scores and an increase in the MCCB scores after 12 weeks of treatment in all groups (time effect p's < 0.001). (3) The improvements in positive symptoms and negative symptoms were more obvious in the combined group than in other groups (p's < 0.05). (4) The combined group showed the superior effect in cognition function after 12 weeks. (5) And, interestingly, a remarkable synergistic effect between rTMS and family intervention therapy was observed. CONCLUSION There was a synergistic effect between rTMS and the family intervention as an effective combined therapy in improving schizophrenia. This study is registered with Chictr.org, number ChiCTR1900024422 (http://www.chictr.org.cn/edit.aspx?pid=34285&htm=4).
Collapse
Affiliation(s)
- Xue Li
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yulin Kang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Lijuan Pang
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- The Supervision Bureau of the Health and Family Planning Commission, Wancheng District, Nanyang City, China
| | - Qiyue Zhu
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Luxian Lv
- Henan Province Mental Hospital, The Second Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW2522, Australia.
| | - Xueqin Song
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|