1
|
Rosenblum S, Sharfi K, Elimelech OC, Regev S, Grinblat N. Predicting emotional consequences of disorganization among adults with neurodevelopmental disorders: a structural equation model. Disabil Rehabil 2025; 47:1954-1964. [PMID: 39119890 DOI: 10.1080/09638288.2024.2385733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE Previous studies exhibited differences in sensory processing, motor coordination, metacognitive executive functions (EF-MI), and sleep quality among adults with neurodevelopmental disorders (NDD). This study aims to find relationships between those abilities and organization-in-time, focusing on emotional responses after decreased organization abilities. MATERIALS AND METHODS This is a secondary data analysis of a larger sample from three previous studies conducted in one laboratory. Data were collected from 290 adults; 149 with NDD and 141 sex- and age- (20-50 years) matched controls completed the Adolescent/Adult Sensory Profile, Adult Developmental Coordination Disorder, Adults Behavioral Rating Inventory of Executive Functions, Mini Sleep, and Time Organization and Participation questionnaires. Structural equation model (SEM) analysed relationships and variable prediction. RESULTS Significant between-group differences were found for all variables; SEM indicated similar paths in both groups. Sensory processing affected EF-MI and sleep quality and significantly correlated with motor coordination, affecting EF-MI; EF-MI affected organization-in-time. Sleep quality significantly affected organization-in-time, affecting emotional responses. CONCLUSIONS Sensory, motor, EF, and sleep differences were associated with decreased organization-in-time abilities of adults with NDD, adversely affecting their emotional well-being. Early detection of such differences and targeted interventions may improve daily functioning and life quality and prevent negative emotional implications.
Collapse
Affiliation(s)
- Sara Rosenblum
- The Laboratory of Complex Human Activity and Participation (CHAP), Department of Occupational Therapy, University of Haifa, Haifa, Israel
| | - Kineret Sharfi
- Department of Occupational Therapy, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ortal Cohen Elimelech
- The Laboratory of Complex Human Activity and Participation (CHAP), Department of Occupational Therapy, University of Haifa, Haifa, Israel
| | - Sivan Regev
- Department of Occupational Therapy, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Health Policy and Management, Israel Implementation Science and Policy Engagement Centre (IS-PEC), Guilford Glazer Faculty of Business and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nufar Grinblat
- The Laboratory of Complex Human Activity and Participation (CHAP), Department of Occupational Therapy, University of Haifa, Haifa, Israel
| |
Collapse
|
2
|
Takahashi S, Sakurai N, Kuroiwa Y, Takahashi D, Kodama N. Construction and evaluation of a finger motor feedback system to improve finger dexterity. FRONTIERS IN NEUROERGONOMICS 2025; 6:1502492. [PMID: 40078333 PMCID: PMC11897288 DOI: 10.3389/fnrgo.2025.1502492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
Introduction Recently, a link has been established between cognitive function and hand dexterity in older adults. Declines in cognitive function have been shown to impair performance in finger tapping movements. Research suggest that hand training can improve dexterity, executive function, and cognitive function over time. This underscores the need for effective methods to improve hand and finger dexterity. Method In this study, we introduced a new hand training system that provides real-time feedback on finger movements during tapping tasks. We examined the system's impact on the finger dexterity of 32 healthy young participants by using a magnetic sensor finger tapping device (UB-2). During the finger tapping task, the participants performed opening and closing movements either in-phase or anti-phase on both left and right hands for 15 s. They were instructed to tap as quickly as possible. The number of taps, left-right balance, and other relevant data were measured using the UB-2 device. Results In terms of the number of tapping, a significant difference was found between 64.4 without feedback and 68.1 with feedback for the simultaneous opening and closing movements in the dominant hand. In the alternating open-close movement, the significant difference was 50.3 without feedback and 53.4 with feedback. The results showed that the system significantly improved the number and frequency of taps for both hands. Conclusion The improved tapping performance with feedback suggests that this system can improve hand dexterity.
Collapse
Affiliation(s)
- Shingo Takahashi
- Department of Healthcare Informatics, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Gunma, Japan
| | - Noriko Sakurai
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuki Kuroiwa
- Department of Healthcare Informatics, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Gunma, Japan
| | - Daishi Takahashi
- Department of Healthcare Informatics, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Gunma, Japan
| | - Naoki Kodama
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
3
|
Chua YW, Jiménez-Sánchez L, Ledsham V, O'Carroll S, Cox RFA, Andonovic I, Tachtatzis C, Boardman JP, Fletcher-Watson S, Rowe P, Delafield-Butt J. A multi-level analysis of motor and behavioural dynamics in 9-month-old preterm and term-born infants during changing emotional and interactive contexts. Sci Rep 2025; 15:952. [PMID: 39762299 PMCID: PMC11704203 DOI: 10.1038/s41598-024-83194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Computational analysis of infant movement has significant potential to reveal markers of developmental health. We report two studies employing dynamic analyses of motor kinematics and motor behaviours, which characterise movement at two levels, in 9-month-old infants. We investigate the effect of preterm birth (< 33 weeks of gestation) and the effect of changing emotional and social-interactive contexts in the still-face paradigm. First, multiscale permutation entropy was employed to analyse acceleration kinematic timeseries data collected from Inertial Measurement Unit (IMU) sensors on infants' torso, wrists, and ankles (N = 32: 10 term; 22 preterm). Second, Recurrence Quantification Analysis was used to characterise patterns of second-to-second behavioural changes, from observationally coded behavioural timeseries on infants' emotional self-regulation (N = 111: 61 term; 50 preterm). We found frequency-specific effects of context on permutation entropy. Relative to infants born at term (> 37 weeks of gestation), infants born preterm showed greater permutation entropy in their left ankle and torso movements, but not in right ankle or wrist movements. We did not find effects of preterm birth or emotional context on micro-level behavioural dynamics. Our methodology and findings inform future work using multiscale entropy to study infant development. Dynamic analysis of behaviour is a relatively young field, and applications to emotional self-regulation requires further methodological development.
Collapse
Affiliation(s)
- Yu Wei Chua
- Strathclyde Institute of Education, University of Strathclyde, Lord Hope Building, Glasgow, G4 0LT, UK.
- Laboratory for Innovation in Autism, University of Strathclyde, Graham Hills Building, Glasgow, G1 1QE, UK.
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK.
- Department of Public Health, Policy and Systems, Institute of Population Health, University of Liverpool, Liverpool, L69 3GF, UK.
| | - Lorena Jiménez-Sánchez
- Translational Neuroscience PhD Programme, Salvesen Mindroom Research Centre, The University of Edinburgh, Kennedy Tower, Morningside Terrace, Edinburgh, EH10 5HF, UK
| | - Victoria Ledsham
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Sinéad O'Carroll
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Ralf F A Cox
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| | - Ivan Andonovic
- Laboratory for Innovation in Autism, University of Strathclyde, Graham Hills Building, Glasgow, G1 1QE, UK
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Christos Tachtatzis
- Laboratory for Innovation in Autism, University of Strathclyde, Graham Hills Building, Glasgow, G1 1QE, UK
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - James P Boardman
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Sue Fletcher-Watson
- Salvesen Mindroom Research Centre, The University of Edinburgh, Kennedy Tower, Edinburgh, EH10 5HF, UK
| | - Philip Rowe
- Laboratory for Innovation in Autism, University of Strathclyde, Graham Hills Building, Glasgow, G1 1QE, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Jonathan Delafield-Butt
- Strathclyde Institute of Education, University of Strathclyde, Lord Hope Building, Glasgow, G4 0LT, UK
- Laboratory for Innovation in Autism, University of Strathclyde, Graham Hills Building, Glasgow, G1 1QE, UK
| |
Collapse
|
4
|
Yu B, You Y, Li Y, Chen J, Zhou H, Wang J, Huang J, Fan W, Xu J, Zuo G. Effects of intermittent visual feedback on EEG characteristics during motor preparation and execution in a goal-directed task. Front Hum Neurosci 2024; 18:1371476. [PMID: 39726693 PMCID: PMC11669603 DOI: 10.3389/fnhum.2024.1371476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Visual feedback plays a crucial role in goal-directed tasks, facilitating movement preparation and execution by allowing individuals to adjust and optimize their movements. Enhanced movement preparation and execution help to increase neural activity in the brain. However, our understanding of the neurophysiological mechanisms underlying different types of visual feedback during task preparation and execution remains limited. Therefore, our study aims to investigate the impact of different types of visual feedback on movement-related brain activity in goal-directed tasks, in order to identify more effective forms of visual feedback in goal-directed tasks. Methods The electroencephalographic (EEG) data from 18 healthy subjects were collected under both continuous and intermittent visual feedback conditions during a goal-directed reaching task. We analyzed the EEG characteristics of the event-related potential (ERP), event-related synchronization/desynchronization (ERS/ERD) in all subjects during motor preparation and execution of the goal-directed reaching task. Results The results showed that, the amplitude of motor-related cortical potential (MRCP) in subjects was larger in the intermittent visual feedback condition compared to the continuous visual feedback condition during motor preparation, and the amplitude was largest at the CPz electrode. Additionally, mu-ERD was more pronounced during both motor preparation and execution under intermittent visual feedback condition. Discussion In conclusion, intermittent visual feedback enhanced the characteristics of subject's brain activation and cortical excitability in the time and time-frequency domains.
Collapse
Affiliation(s)
- Baobao Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Yimeng You
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Yahui Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Jiaqi Chen
- Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Huilin Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Jun Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Junchen Huang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Weinv Fan
- Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Jialin Xu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guokun Zuo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Panconi G, Sorgente V, Guarducci S, Bravi R, Minciacchi D. The Role of Visual Information Quantity in Fine Motor Performance. J Funct Morphol Kinesiol 2024; 9:267. [PMID: 39728251 DOI: 10.3390/jfmk9040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Fine motor movements are essential for daily activities, such as handwriting, and rely heavily on visual information to enhance motor complexity and minimize errors. Tracing tasks provide an ecological method for studying these movements and investigating sensorimotor processes. To date, our understanding of the influence of different quantities of visual information on fine motor control remains incomplete. Our study examined how variations in the amount of visual feedback affect motor performance during handwriting tasks using a graphic pen tablet projecting on a monitor. METHODS Thirty-seven right-handed young adults (20 to 35 years) performed dot-to-dot triangle tracing tasks under nine experimental conditions with varying quantities of visual cues. The conditions and triangle shape rotations were randomized to avoid motor training or learning effects. Motor performance metrics, including absolute error, time of execution, speed, smoothness, and pressure, were analyzed. RESULTS As visual information increased, absolute error (from 6.64 mm to 2.82 mm), speed (from 99.28 mm/s to 57.19 mm/s), and smoothness (from 4.17 mm2/s6 to 0.80 mm2/s6) decreased, while time of execution increased (from 12.68 s to 20.85 s), reflecting a trade-off between accuracy and speed. Pressure remained constant across conditions (from 70.35 a.u. to 74.39). Spearman correlation analysis demonstrated a moderate to strong correlation between absolute error and time of execution across conditions. The Friedman test showed significant effects of experimental conditions on all motor performance metrics except for pressure, with Kendall's W values indicating a moderate to strong effect size. CONCLUSION These findings deepen our understanding of sensorimotor integration processes and could potentially have implications for optimizing motor skills acquisition and training and developing effective rehabilitation strategies.
Collapse
Affiliation(s)
- Giulia Panconi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy
| | - Vincenzo Sorgente
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy
| | - Sara Guarducci
- Department of Information Engineering, University of Florence, 50134 Firenze, Italy
| | - Riccardo Bravi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy
| | - Diego Minciacchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy
| |
Collapse
|
6
|
Shafer RL, Bartolotti J, Driggers A, Bojanek E, Wang Z, Mosconi MW. Visual feedback and motor memory contributions to sustained motor control deficits in autism spectrum disorder across childhood and into adulthood. RESEARCH SQUARE 2024:rs.3.rs-4831158. [PMID: 39281871 PMCID: PMC11398565 DOI: 10.21203/rs.3.rs-4831158/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Autistic individuals show deficits in sustained fine motor control which are associated with an over-reliance on visual feedback. Motor memory deficits also have been reported during sustained fine motor control in autism spectrum disorders (ASD). The development of motor memory and visuomotor feedback processes contributing to sustained motor control issues in ASD are not known. The present study aimed to characterize age-related changes in visual feedback and motor memory processes contributing to sustained fine motor control issues in ASD. Methods Fifty-four autistic participants and 31 neurotypical (NT) controls ages 10-25 years completed visually guided and memory guided sustained precision gripping tests by pressing on force sensors with their dominant hand index finger and thumb. For visually guided trials, participants viewed a stationary target bar and a force bar that moved upwards with increased force for 15s. During memory guided trials, the force bar was visible for 3s, after which participants attempted to maintain their force output without visual feedback for another 12s. To assess visual feedback processing, force accuracy, variability (standard deviation), and regularity (sample entropy) were examined. To assess motor memory, force decay latency, slope, and magnitude were examined during epochs without visual feedback. Results Relative to NT controls, autistic individuals showed a greater magnitude and steeper slope of force decay during memory guided trials. Across conditions, the ASD group showed reduced force accuracy (β = .41, R2 = 0.043, t79.3=2.36, p = 0.021) and greater force variability (β=-2.16, R2 = .143, t77.1=-4.04, p = 0.0001) and regularity (β=-.52, R2 = .021, t77.4=-2.21, p = 0.030) relative to controls at younger ages, but these differences normalized by adolescence (age × group interactions). Lower force accuracy and greater force variability during visually guided trials and steeper decay slope during memory guided trials were associated with overall autism severity. Conclusions Our findings that autistic individuals show a greater rate and magnitude of force decay than NT individuals following the removal of visual feedback indicate that motor memory deficits contribute to fine motor control issues in ASD. Findings that sensorimotor differences in ASD were specific to younger ages suggest delayed development across multiple motor control processes.
Collapse
Affiliation(s)
| | | | | | - Erin Bojanek
- University of Rochester School of Medicine and Dentistry
| | | | | |
Collapse
|
7
|
Conde CI, Lang C, Baumann CR, Easthope CA, Taylor WR, Ravi DK. Triggers for freezing of gait in individuals with Parkinson's disease: a systematic review. Front Neurol 2023; 14:1326300. [PMID: 38187152 PMCID: PMC10771308 DOI: 10.3389/fneur.2023.1326300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Background Freezing of Gait (FOG) is a motor symptom frequently observed in advanced Parkinson's disease. However, due to its paroxysmal nature and diverse presentation, assessing FOG in a clinical setting can be challenging. Before FOG can be fully investigated, it is critical that a reliable experimental setting is established in which FOG can be evoked in a standardized manner, but the efficacy of various gait tasks and triggers for eliciting FOG remains unclear. Objectives This study aimed to conduct a systematic review of the existing literature and evaluate the available evidence for the relationship between specific motor tasks, triggers, and FOG episodes in individuals with Parkinson's disease (PwPD). Methods We conducted a literature search on four online databases (PubMed, Web of Science, EMBASE, and Cochrane Library) using the keywords "Parkinson's disease," "Freezing of Gait", "triggers" and "tasks". A total of 128 articles met the inclusion criteria and were included in our analysis. Results The review found that a wide range of gait tasks were employed in studies assessing FOG among PD patients. However, three tasks (turning, dual tasking, and straight walking) emerged as the most frequently used. Turning (28%) appears to be the most effective trigger for eliciting FOG in PwPD, followed by walking through a doorway (14%) and dual tasking (10%). Conclusion This review thereby supports the utilisation of turning, especially a 360-degree turn, as a reliable trigger for FOG in PwPD. This finding could be beneficial to clinicians conducting clinical evaluations and researchers aiming to assess FOG in a laboratory environment.
Collapse
Affiliation(s)
| | - Charlotte Lang
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Christian R. Baumann
- Department of Neurology, University Hospital Zurich, Zürich, Switzerland
- The LOOP Zurich – Medical Research Center, Zürich, Switzerland
| | - Chris A. Easthope
- The LOOP Zurich – Medical Research Center, Zürich, Switzerland
- Lake Lucerne Institute, Vitznau, Switzerland
- creneo Foundation – Center for Interdisciplinary Research, Vitznau, Switzerland
| | - William R. Taylor
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- The LOOP Zurich – Medical Research Center, Zürich, Switzerland
| | - Deepak K. Ravi
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Nunes GS, de Oliveira J, Iacob GS, Signori LU, Diel AP, Schreiner R, Solner MW. Effectiveness of Interventions Aimed at Changing Movement Patterns in People With Patellofemoral Pain: A Systematic Review With Network Meta-analysis. J Orthop Sports Phys Ther 2023; 53:748-760. [PMID: 37707784 DOI: 10.2519/jospt.2023.11956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
OBJECTIVE: To summarize the effectiveness of interventions for changing movement during weight-bearing functional tasks in people with patellofemoral pain (PFP). DESIGN: Systematic review with network meta-analysis (NMA). LITERATURE SEARCH: Medline, Embase, CINAHL, SPORTDiscus, and Cochrane Library were searched from inception up to May 2023. STUDY SELECTION CRITERIA: Randomized controlled trials involving people with PFP and nonsurgical, nonpharmacological interventions on task kinematics were included. DATA SYNTHESIS: NMA was conducted for frontal knee movement data, and pairwise meta-analysis was used to pool data when NMA was not possible. Reduced movements were those changes that indicated movements occurring with less amplitude. The GRADE approach was used to grade the certainty of the evidence. RESULTS: Thirty-seven trials were included (n = 1235 participants). Combining knee/hip exercises with internal feedback had the strongest effect on reducing frontal knee movements (standardized mean difference [SMD] from NMA = -2.66; GRADE: moderate evidence). On pairwise comparisons, the same combination of interventions reduced frontal hip movements (SMD = -0.47; GRADE: moderate evidence) and increased sagittal knee movements (SMD = 1.03; GRADE: moderate evidence), with no effects on sagittal hip movements (GRADE: very low evidence), compared to knee/hip exercises alone. There was no effect for single applications of braces on the frontal knee movement (GRADE: very low evidence) and taping on movements of the knee, hip, and ankle (GRADE: very low to low evidence) compared to no intervention. CONCLUSION: Knee/hip exercises combined with internal feedback techniques may change knee and hip movements in people with PFP. The combination of these interventions can reduce frontal knee and hip movements, and can increase sagittal knee movements. J Orthop Sports Phys Ther 2023;53(12):1-13. Epub 14 September 2023. doi:10.2519/jospt.2023.11956.
Collapse
|
9
|
Rong P, Benson J. Intergenerational choral singing to improve communication outcomes in Parkinson's disease: Development of a theoretical framework and an integrated measurement tool. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 25:722-745. [PMID: 36106430 DOI: 10.1080/17549507.2022.2110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Purpose: This study presented an initial step towards developing the evidence base for intergenerational choral singing as a communication-focussed rehabilitative approach for Parkinson's disease (PD).Method: A theoretical framework was established to conceptualise the rehabilitative effect of intergenerational choral singing on four domains of communication impairments - motor drive, timing mechanism, sensorimotor integration, higher-level cognitive and affective functions - as well as activity/participation, and quality of life. A computer-assisted multidimensional acoustic analysis was developed to objectively assess the targeted domains of communication impairments. Voice Handicap Index and the World Health Organization's Quality of Life assessment-abbreviated version were used to obtain patient-reported outcomes at the activity/participation and quality of life levels. As a proof of concept, a single subject with PD was recruited to participate in 9 weekly 1-h intergenerational choir rehearsals. The subject was assessed before, 1 week post, and 8 weeks post-choir.Result: Notable trends of improvement were observed in multiple domains of communication impairments at 1 week post-choir. Some improvements were maintained at 8 weeks post-choir. Patient-reported outcomes exhibited limited pre-post changes.Conclusion: This study provided the theoretical groundwork and an empirical measurement tool for future validation of intergenerational choral singing as a novel rehabilitation for PD.
Collapse
Affiliation(s)
- Panying Rong
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, KS, USA and
| | | |
Collapse
|
10
|
Unruh KE, Bartolotti JV, McKinney WS, Schmitt LM, Sweeney JA, Mosconi MW. Functional connectivity of cortical-cerebellar networks in relation to sensorimotor behavior and clinical features in autism spectrum disorder. Cereb Cortex 2023; 33:8990-9002. [PMID: 37246152 PMCID: PMC10350826 DOI: 10.1093/cercor/bhad177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/30/2023] Open
Abstract
Sensorimotor issues are present in the majority of individuals with autism spectrum disorder (ASD) and are associated with core symptoms. The neural systems associated with these impairments remain unclear. Using a visually guided precision gripping task during functional magnetic resonance imaging, we characterized task-based connectivity and activation of cortical, subcortical, and cerebellar visuomotor networks. Participants with ASD (n = 19; ages 10-33) and age- and sex-matched neurotypical controls (n = 18) completed a visuomotor task at low and high force levels. Relative to controls, individuals with ASD showed reduced functional connectivity of right primary motor-anterior cingulate cortex and left anterior intraparietal lobule (aIPL)-right Crus I at high force only. At low force, increased caudate, and cerebellar activation each were associated with sensorimotor behavior in controls, but not in ASD. Reduced left aIPL-right Crus I connectivity was associated with more severe clinically rated ASD symptoms. These findings suggest that sensorimotor problems in ASD, particularly at high force levels, involve deficits in the integration of multimodal sensory feedback and reduced reliance on error-monitoring processes. Adding to literature positing that cerebellar dysfunction contributes to multiple developmental issues in ASD, our data implicate parietal-cerebellar connectivity as a key neural marker underlying both core and comorbid features of ASD.
Collapse
Affiliation(s)
- Kathryn E Unruh
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
| | - James V Bartolotti
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Walker S McKinney
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matthew W Mosconi
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
11
|
Sozzi S, Ghai S, Schieppati M. The 'Postural Rhythm' of the Ground Reaction Force during Upright Stance and Its Conversion to Body Sway-The Effect of Vision, Support Surface and Adaptation to Repeated Trials. Brain Sci 2023; 13:978. [PMID: 37508910 PMCID: PMC10377030 DOI: 10.3390/brainsci13070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
The ground reaction force (GRF) recorded by a platform when a person stands upright lies at the interface between the neural networks controlling stance and the body sway deduced from centre of pressure (CoP) displacement. It can be decomposed into vertical (VGRF) and horizontal (HGRF) vectors. Few studies have addressed the modulation of the GRFs by the sensory conditions and their relationship with body sway. We reconsidered the features of the GRFs oscillations in healthy young subjects (n = 24) standing for 90 s, with the aim of characterising the possible effects of vision, support surface and adaptation to repeated trials, and the correspondence between HGRF and CoP time-series. We compared the frequency spectra of these variables with eyes open or closed on solid support surface (EOS, ECS) and on foam (EOF, ECF). All stance trials were repeated in a sequence of eight. Conditions were randomised across different days. The oscillations of the VGRF, HGRF and CoP differed between each other, as per the dominant frequency of their spectra (around 4 Hz, 0.8 Hz and <0.4 Hz, respectively) featuring a low-pass filter effect from VGRF to HGRF to CoP. GRF frequencies hardly changed as a function of the experimental conditions, including adaptation. CoP frequencies diminished to <0.2 Hz when vision was available on hard support surface. Amplitudes of both GRFs and CoP oscillations decreased in the order ECF > EOF > ECS ≈ EOS. Adaptation had no effect except in ECF condition. Specific rhythms of the GRFs do not transfer to the CoP frequency, whereas the magnitude of the forces acting on the ground ultimately determines body sway. The discrepancies in the time-series of the HGRF and CoP oscillations confirm that the body's oscillation mode cannot be dictated by the inverted pendulum model in any experimental conditions. The findings emphasise the robustness of the VGRF "postural rhythm" and its correspondence with the cortical theta rhythm, shed new insight on current principles of balance control and on understanding of upright stance in healthy and elderly people as well as on injury prevention and rehabilitation.
Collapse
Affiliation(s)
| | - Shashank Ghai
- Department of Political, Historical, Religious and Cultural Studies, Karlstad University, 65188 Karlstad, Sweden
- Centre for Societal Risk Research, Karlstad University, 65188 Karlstad, Sweden
| | | |
Collapse
|
12
|
Guo J, Li L, Zheng Y, Quratul A, Liu T, Wang J. Effect of Visual Feedback on Behavioral Control and Functional Activity During Bilateral Hand Movement. Brain Topogr 2023:10.1007/s10548-023-00969-6. [PMID: 37198376 DOI: 10.1007/s10548-023-00969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Previous researches state vision as a vital source of information for movement control and more precisely for accurate hand movement. Further, fine bimanual motor activity may be associated with various oscillatory activities within distinct brain areas and inter-hemispheric interactions. However, neural coordination among the distinct brain areas responsible to enhance motor accuracy is still not adequate. In the current study, we investigated task-dependent modulation by simultaneously measuring high time resolution electroencephalogram (EEG), electromyogram (EMG) and force along with bi-manual and unimanual motor tasks. The errors were controlled using visual feedback. To complete the unimanual tasks, the participant was asked to grip the strain gauge using the index finger and thumb of the right hand thereby exerting force on the connected visual feedback system. Whereas the bi-manual task involved finger abduction of the left index finger in two contractions along with visual feedback system and at the same time the right hand gripped using definite force on two conditions that whether visual feedback existed or not for the right hand. Primarily, the existence of visual feedback for the right hand significantly decreased brain network global and local efficiency in theta and alpha bands when compared with the elimination of visual feedback using twenty participants. Brain network activity in theta and alpha bands coordinates to facilitate fine hand movement. The findings may provide new neurological insight on virtual reality auxiliary equipment and participants with neurological disorders that cause movement errors requiring accurate motor training. The current study investigates task-dependent modulation by simultaneously measuring high time resolution electroencephalogram, electromyogram and force along with bi-manual and unimanual motor tasks. The findings show that visual feedback for right hand decreases the force root mean square error of right hand. Visual feedback for right hand decreases local and global efficiency of brain network in theta and alpha bands.
Collapse
Affiliation(s)
- Jing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Long Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Yang Zheng
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Ain Quratul
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China.
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China.
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China.
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China.
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China.
| |
Collapse
|
13
|
Hybart RL, Ferris DP. Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review. IEEE Trans Neural Syst Rehabil Eng 2023; 31:657-668. [PMID: 37015690 PMCID: PMC10267288 DOI: 10.1109/tnsre.2022.3229563] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research on embodiment of objects external to the human body has revealed important information about how the human nervous system interacts with robotic lower limb exoskeletons. Typical robotic exoskeleton control approaches view the controllers as an external agent intending to move in coordination with the human. However, principles of embodiment suggest that the exoskeleton controller should ideally coordinate with the human such that the nervous system can adequately model the input-output dynamics of the exoskeleton controller. Measuring embodiment of exoskeletons should be a necessary step in the exoskeleton development and prototyping process. Researchers need to establish high fidelity quantitative measures of embodiment, rather than relying on current qualitative survey measures. Mobile brain imaging techniques, such as high-density electroencephalography, is likely to provide a deeper understanding of embodiment during human-machine interactions and advance exoskeleton research and development. In this review we show why future exoskeleton research should include quantitative measures of embodiment as a metric of success.
Collapse
|
14
|
Transcranial direct current stimulation influences repetitive bimanual force control and interlimb force coordination. Exp Brain Res 2023; 241:313-323. [PMID: 36512062 DOI: 10.1007/s00221-022-06526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the potential effect of bilateral transcranial direct current stimulation (tDCS) on repetitive bimanual force control and force coordination in healthy young adults. In this sham-controlled crossover study, 18 right-handed young adults were enrolled. Repetitive bimanual handgrip force control trials were performed by the participants at 40% of maximum voluntary contraction until task failure. We randomly provided bilateral active and sham tDCS to the primary motor cortex (M1) of each participant before conducting the repetitive bimanual force control task. We quantified the number of successful trials to assess the ability to maintain bimanual force control across multiple trials. Moreover, we estimated bimanual force control and force coordination by quantifying force accuracy, variability, regularity, and correlation coefficient in maximal and adjusted successful trials. Force asymmetry was calculated to examine potential changes in motor dependency on each hand during the task. Bilateral tDCS significantly increased the number of successful trials compared with sham tDCS. The adjusted successful trial revealed that participants who received bilateral tDCS maintained better bimanual force control and coordination, as indicated by decreased force variability and regularity as well as more negative correlation coefficient values in comparison with sham condition. Moreover, participants who received bilateral tDCS produced more force from the dominant hand than from the nondominant hand in both maximal and adjusted successful trials. These findings suggest that bilateral tDCS on M1 successfully maintains bimanual force control with better force coordination by modulating motor dependency.
Collapse
|
15
|
Guo J, Liu T, Wang J. Effects of auditory feedback on fine motor output and corticomuscular coherence during a unilateral finger pinch task. Front Neurosci 2022; 16:896933. [DOI: 10.3389/fnins.2022.896933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Auditory feedback is important to reduce movement error and improve motor performance during a precise motor task. Accurate motion guided by auditory feedback may rely on the neural muscle transmission pathway between the sensorimotor area and the effective muscle. However, it remains unclear how neural activities and sensorimotor loops play a role in enhancing performance. The present study uses an auditory feedback system by simultaneously recording electroencephalogram (EEG), electromyography (EMG), and exert force information to measure corticomuscular coherence (CMC), neural activity, and motor performance during precise unilateral right-hand pinch by using the thumb and the index finger with and without auditory feedback. This study confirms three results. First, compared with no auditory feedback, auditory feedback decreases movement errors. Second, compared with no auditory feedback, auditory feedback decreased the power spectrum in the beta band in the bimanual sensorimotor cortex and the alpha band in the ipsilateral sensorimotor cortex. Finally, CMC was computed between effector muscle of right hand and contralateral sensorimotor cortex. Analyses reveals that the CMC of beta band significantly decreases in auditory feedback condition compared with no auditory feedback condition. The results indicate that auditory feedback decreases the power spectral in the alpha and beta bands and decreases corticospinal connection in the beta band during precise hand control. This study provides a new perspective on the effect of auditory feedback on behavior and brain activity and offers a new idea for designing more suitable and effective rehabilitation and training strategies to improve fine motor performance.
Collapse
|
16
|
Bai J, Huang H, Ouyang H. Effects of Group-Play Moderate to Vigorous Intensity Physical Activity Intervention on Executive Function and Motor Skills in 4- to 5-Year-Old Preschoolers: A Pilot Cluster Randomized Controlled Trial. Front Psychol 2022; 13:847785. [PMID: 35783790 PMCID: PMC9240218 DOI: 10.3389/fpsyg.2022.847785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Abstract
The aim of the present study is to examine the effect of group-play intervention on executive function (EF) in preschoolers. This group-play intervention was integrated as moderate to vigorous physical activity and cognitively loaded exercise to promote EF in preschoolers. An 8-week group-play MVPA intervention program, consisting of a series of outdoor physical and cognitively loaded games, was designed to improve preschoolers' EF. This intervention program was implemented in group-play form, and conducted by teachers who received standardized training before the intervention. Two classes of second grade preschoolers (N = 62) were randomly allocated to experimental (n = 30, M age = 4.16, SD = 0.29) and control (n = 32, M age = 4.7, SD = 0.43) groups. The intervention group received the intervention three times a week, while the control group exercised as usual in preschool. Before, in the middle of, and after the intervention, 10-m running, standing broad jump, throwing, body flexion, balance beam, and skip jump were assessed as tests of motor skills. In addition, three components of EF were measured separately before, in the middle of, and after the intervention: inhibitory control was assessed by using the silly sound Stroop task, working memory was tested using the empty house task, and shifting was assessed using the dimensional change card sorting task. Although both groups showed an increasing trend in terms of motor skills and EF during the intervention, the increasing amounts of the intervention group were significantly higher than the control group. The findings of the present study suggested that group-play intervention has positive effects on aspects of EF in addition to motor skills in preschoolers.
Collapse
Affiliation(s)
- Jing Bai
- College of Preschool Education, Capital Normal University, Beijing, China
| | - Heqing Huang
- College of Preschool Education, Capital Normal University, Beijing, China
| | - Huahong Ouyang
- College of Teacher Education, Capital Normal University, Beijing, China
| |
Collapse
|
17
|
Abe T, Nakamae A, Toriyama M, Hirata K, Adachi N. Effects of limited previously acquired information about falling height on lower limb biomechanics when individuals are landing with limited visual input. Clin Biomech (Bristol, Avon) 2022; 96:105661. [PMID: 35588585 DOI: 10.1016/j.clinbiomech.2022.105661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/13/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inhibitions in the acquisition of accurate information about the environment can affect control of the lower extremities and lead to anterior cruciate ligament injury. This study aimed to clarify the effects of limited prior knowledge of the height of the fall, as well as limited visual input, on lower limb and trunk motion and ground reaction force during landing. METHODS Twenty healthy university students were recruited. Drop landings from a 30-cm platform were measured under three conditions: (1) unknown, without prior knowledge of the height of the fall and without visual input; (2) known, with prior knowledge of the height of the fall and without visual input; and (3) control, with prior knowledge of the height of the fall and visual input. FINDINGS In the unknown condition, the peak ground reaction force for the vertical and posterior directions was significantly higher than that in the known and control conditions; leg and knee stiffness, ankle joint work, and joint flexion motion of the knee, ankle, and trunk after landing were decreased as well. In the known condition, there were no significant differences in leg and knee stiffness and vertical ground reaction force compared to the control condition. INTERPRETATION The results of this study indicate that the risk of anterior cruciate ligament injury during landing increases when individuals have limited visual input and prior knowledge of the height of the fall. This finding suggests that an accurate perception of the surrounding environment may help prevent anterior cruciate ligament injuries.
Collapse
Affiliation(s)
- Takumi Abe
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Atsuo Nakamae
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Minoru Toriyama
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kazuhiko Hirata
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
18
|
Visual feedback improves bimanual force control performances at planning and execution levels. Sci Rep 2021; 11:21149. [PMID: 34707163 PMCID: PMC8551182 DOI: 10.1038/s41598-021-00721-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to determine the effect of different visual conditions and targeted force levels on bilateral motor synergies and bimanual force control performances. Fourteen healthy young participants performed bimanual isometric force control tasks by extending their wrists and fingers under two visual feedback conditions (i.e., vision and no-vision) and three targeted force levels (i.e., 5%, 25%, and 50% of maximum voluntary contraction: MVC). To estimate bilateral motor synergies across multiple trials, we calculated the proportion of good variability relative to bad variability using an uncontrolled manifold analysis. To assess bimanual force control performances within a trial, we used the accuracy, variability, and regularity of total forces produced by two hands. Further, analysis included correlation coefficients between forces from the left and right hands. In addition, we examined the correlations between altered bilateral motor synergies and force control performances from no-vision to vision conditions for each targeted force level. Importantly, our findings revealed that the presence of visual feedback increased bilateral motor synergies across multiple trials significantly with a reduction of bad variability as well as improved bimanual force control performances within a trial based on higher force accuracy, lower force variability, less force regularity, and decreased correlation coefficients between hands. Further, we found two significant correlations in (a) increased bilateral motor synergy versus higher force accuracy at 5% of MVC and (b) increased bilateral motor synergy versus lower force variability at 50% of MVC. Together, these results suggested that visual feedback effectively improved both synergetic coordination behaviors across multiple trials and stability of task performance within a trial across various submaximal force levels.
Collapse
|
19
|
Zhang N, Li K, Li G, Nataraj R, Wei N. Multiplex Recurrence Network Analysis of Inter-Muscular Coordination During Sustained Grip and Pinch Contractions at Different Force Levels. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2055-2066. [PMID: 34606459 DOI: 10.1109/tnsre.2021.3117286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Production of functional forces by human motor systems require coordination across multiple muscles. Grip and pinch are two prototypes for grasping force production. Each grasp plays a role in a range of hand functions and can provide an excellent paradigm for studying fine motor control. Despite previous investigations that have characterized muscle synergies during general force production, it is still unclear how intermuscular coordination differs between grip and pinch and across different force outputs. Traditional muscle synergy analyses, such as non-negative matrix factorization or principal component analysis, utilize dimensional reduction without consideration of nonlinear characteristics of muscle co-activations. In this study, we investigated the novel method of multiplex recurrence networks (MRN) to assess the inter-muscular coordination for both grip and pinch at different force levels. Unlike traditional methods, the MRN can leverage intrinsic similarities in muscle contraction dynamics and project its layers to the corresponding weighted network (WN) to better model muscle interactions. Twenty-four healthy volunteers were instructed to grip and pinch an apparatus with force production at 30%, 50%, and 70% of their respective maximal voluntary contraction (MVC). The surface electromyography (sEMG) signals were recorded from eight muscles, including intrinsic and extrinsic muscles spanning the hand and forearm. The sEMG signals were then analyzed using MRNs and WNs. Interlayer mutual information ( I ) and average edge overlap ( ω ) of MRNs and average shortest path length ( L ) of WNs were computed and compared across groups for grasp types (grip vs. pinch) and force levels (30%, 50% and 70% MVC). Results showed that the extrinsic, rather than the intrinsic muscles, had significant differences in network parameters between both grasp types ( ), and force levels ( ), and especially at higher force levels. Furthermore, I and ω were strengthened over time ( ) except with pinch at 30% MVC. Results suggest that the central nervous system (CNS) actively increases cortical oscillations over time in response to increasing force levels and changes in force production with different sustained grasping types. Muscle coupling in extrinsic muscles was higher than in intrinsic muscles for both grip and pinch. The MRNs may be a valuable tool to provide greater insights into inter-muscular coordination patterns of clinical populations, assess neuromuscular function, or stabilize force control in prosthetic hands.
Collapse
|
20
|
Walsh GS. Visuomotor control dynamics of quiet standing under single and dual task conditions in younger and older adults. Neurosci Lett 2021; 761:136122. [PMID: 34293417 DOI: 10.1016/j.neulet.2021.136122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Visual input facilitates stable postural control; however, ageing alters visual gaze strategies and visual input processing times. Understanding the complex interaction between visual gaze behaviour and the effects of age may inform future interventions to improve postural control in older adults. The purpose of this study was to determine effects of age and dual task on gaze and postural sway dynamics, and the sway-gaze complexity coupling to explore the coupling between sensory input and motor output. Ten older and 10 younger adults performed single and dual task quiet standing while gaze behaviour and centre of mass motion were recorded. The complexity and stability of postural sway, saccade characteristics, visual input duration and complexity of gaze were calculated in addition to sway-gaze coupling quantified by cross-sample entropy. Dual tasking increased complexity and decreased stability of sway with increased gaze complexity and visual input duration, suggesting greater automaticity of sway with greater exploration of the visual field but with longer visual inputs to maintain postural stability in dual task conditions. In addition, older adults had lower complexity and stability of sway than younger adults indicating less automated and stable postural control. Older adults also demonstrated lower gaze complexity, longer visual input durations and greater sway-gaze coupling. These findings suggest older adults adopted a strategy to increase the capacity for visual information input, whilst exploring less of the visual field than younger adults.
Collapse
Affiliation(s)
- Gregory S Walsh
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
21
|
Shafer RL, Lewis MH, Newell KM, Bodfish JW. Atypical neural processing during the execution of complex sensorimotor behavior in autism. Behav Brain Res 2021; 409:113337. [PMID: 33933522 PMCID: PMC8188828 DOI: 10.1016/j.bbr.2021.113337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/02/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022]
Abstract
Stereotyped behavior is rhythmic, repetitive movement that is essentially invariant in form. Stereotypy is common in several clinical disorders, such as autism spectrum disorders (ASD), where it is considered maladaptive. However, it also occurs early in typical development (TD) where it is hypothesized to serve as the foundation on which complex, adaptive motor behavior develops. This transition from stereotyped to complex movement in TD is thought to be supported by sensorimotor integration. Stereotypy in clinical disorders may persist due to deficits in sensorimotor integration. The present study assessed whether differences in sensorimotor processing may limit the expression of complex motor behavior in individuals with ASD and contribute to the clinical stereotypy observed in this population. Adult participants with ASD and TD performed a computer-based stimulus-tracking task in the presence and absence of visual feedback. Electroencephalography was recorded during the task. Groups were compared on motor performance (root mean square error), motor complexity (sample entropy), and neural complexity (multiscale sample entropy of the electroencephalography signal) in the presence and absence of visual feedback. No group differences were found for motor performance or motor complexity. The ASD group demonstrated greater neural complexity and greater differences between feedback conditions than TD individuals, specifically in signals relevant to sensorimotor processing. Motor performance and motor complexity correlated with clinical stereotypy in the ASD group. These findings support the hypothesis that individuals with ASD have differences in sensorimotor processing when executing complex motor behavior and that stereotypy is associated with low motor complexity.
Collapse
Affiliation(s)
- Robin L Shafer
- Vanderbilt Brain Institute, Vanderbilt University, 6133 Medical Research Building III, 465 21(st) Avenue South, Nashville, TN, 37232, USA.
| | - Mark H Lewis
- Department of Psychiatry, University of Florida College of Medicine, PO Box 100256, L4-100 McKnight Brain Institute, 1149 Newell Drive, Gainesville, FL, 3261, USA.
| | - Karl M Newell
- Department of Kinesiology, University of Georgia, G3 Aderhold Hall, 110 Carlton Street, Athens, GA, 30602, USA.
| | - James W Bodfish
- Vanderbilt Brain Institute, Vanderbilt University, 6133 Medical Research Building III, 465 21(st) Avenue South, Nashville, TN, 37232, USA; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 8310 Medical Center East, 1215 21(st) Avenue South, Nashville, TN, 37232, USA.
| |
Collapse
|
22
|
da Silva TD, da Silva PL, Valenzuela EDJ, Dias ED, Simcsik AO, de Carvalho MG, Fontes AMGG, Alberissi CADO, de Araújo LV, Brandão MVDC, Dawes H, Monteiro CBDM. Serious Game Platform as a Possibility for Home-Based Telerehabilitation for Individuals With Cerebral Palsy During COVID-19 Quarantine - A Cross-Sectional Pilot Study. Front Psychol 2021; 12:622678. [PMID: 33633648 PMCID: PMC7901904 DOI: 10.3389/fpsyg.2021.622678] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction There is a need to maintain rehabilitation activities and motivate movement and physical activity during quarantine in individuals with Cerebral Palsy (CP). Objective This paper sets out to evaluate the feasibility and potential benefits of using computer serious game in a non-immersive virtual reality (VR) implemented and evaluated completely remotely in participants with CP for Home-Based Telerehabilitation during the quarantine period for COVID-19. Methods Using a cross-sectional design, a total of 44 individuals participated in this study between March and June 2020, 22 of which had CP (14 males and 8 females, mean age = 19 years, ranging between 11 and 28 years) and 22 typically developing individuals, matched by age and sex to the individuals with CP. Participants practiced a coincident timing game1 and we measured movement performance and physical activity intensity using the rating of perceived exertion Borg scale. Results All participants were able to engage with the VR therapy remotely, reported enjoying sessions, and improved performance in some practice moments. The most important result in this cross-sectional study was the significant increasing in rating of perceived exertion (through Borg scale) in both groups during practice and with CP presenting a higher rating of perceived exertion. Conclusion Children with CP enjoyed participating, were able to perform at the same level as their peers on certain activities and increased both their performance and physical activity intensity when using the game, supporting the use of serious games for this group for home therapy and interactive games. Clinical Trials Registration https://Clinicaltrials.gov, NCT04402034. Registered on May 20, 2020.
Collapse
Affiliation(s)
- Talita Dias da Silva
- Departamento de Medicina (Cardiologia), Escola Paulista de Medicina da Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação da Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (PATER EACH USP), São Paulo, Brazil.,Faculdade de Medicina, Universidade Cidade de São Paulo (UNICID), São Paulo, Brazil
| | - Paula Lumy da Silva
- Fundação Hermínio Ometto (FHO-UNIARARAS), São Paulo, Brazil.,Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina, Universidade de São Paulo (FOFITO - USP), São Paulo, Brazil
| | - Elisa de Jesus Valenzuela
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina, Universidade de São Paulo (FOFITO - USP), São Paulo, Brazil
| | - Eduardo Dati Dias
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação da Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (PATER EACH USP), São Paulo, Brazil
| | - Amanda Orasmo Simcsik
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação da Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (PATER EACH USP), São Paulo, Brazil
| | - Mariana Giovanelli de Carvalho
- Departamento de Medicina (Cardiologia), Escola Paulista de Medicina da Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação da Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (PATER EACH USP), São Paulo, Brazil
| | - Anne Michelli Gomes Gonçalves Fontes
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina, Universidade de São Paulo (FOFITO - USP), São Paulo, Brazil
| | - Camila Aparecida de Oliveira Alberissi
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação da Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (PATER EACH USP), São Paulo, Brazil
| | - Luciano Vieira de Araújo
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação da Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (PATER EACH USP), São Paulo, Brazil
| | - Murilo Vinícius da Costa Brandão
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação da Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (PATER EACH USP), São Paulo, Brazil
| | - Helen Dawes
- Institute of Nursing and Allied Health Research, Oxford Brookes University, Oxford, United Kingdom.,Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Carlos Bandeira de Mello Monteiro
- Grupo de Pesquisa e Aplicações Tecnológicas em Reabilitação da Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (PATER EACH USP), São Paulo, Brazil.,Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina, Universidade de São Paulo (FOFITO - USP), São Paulo, Brazil
| |
Collapse
|
23
|
Lee JH, Kang N. Effects of online-bandwidth visual feedback on unilateral force control capabilities. PLoS One 2020; 15:e0238367. [PMID: 32941453 PMCID: PMC7498075 DOI: 10.1371/journal.pone.0238367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/15/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose The purpose of this study was to examine how different threshold ranges of online-bandwidth visual feedback influence unilateral force control capabilities in healthy young women. Methods Twenty-five right-handed young women (mean±standard deviation age = 23.6±1.5 years) participated in this study. Participants unilaterally executed hand-grip force control tasks with their dominant and non-dominant hands, respectively. Each participant completed four experimental blocks in a different order of block presentation for each hand condition: (a) 10% of maximum voluntary contraction (MVC) with ±5% bandwidth threshold range (BTR), (b) 10% of MVC with ±10% BTR, (c) 40% of MVC with ±5% BTR, and (d) 40% of MVC with ±10% BTR. Outcome measures on force control capabilities included: (a) force accuracy, (b) force variability, (c) force regularity, and (d) the number of times and duration out of BTR. Results The non-dominant hand showed significant improvements in force control capabilities, as indicated by higher force accuracy, less force variability, and decreased force regularity from ±10% BTR to ±5% BTR during higher targeted force level task. For both hands, the number of times and duration out of BTR increased from ±10% BTR to ±5% BTR. Conclusions The current findings suggested that the narrow threshold range of online-bandwidth visual feedback effectively revealed transient improvements in unilateral isometric force control capabilities during higher targeted force level tasks.
Collapse
Affiliation(s)
- Joon Ho Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea
- * E-mail:
| |
Collapse
|