1
|
Zhang Q, Wang SS, Zhang Z, Chu SF. PKM2-mediated metabolic reprogramming of microglia in neuroinflammation. Cell Death Discov 2025; 11:149. [PMID: 40189596 PMCID: PMC11973174 DOI: 10.1038/s41420-025-02453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Microglia, the resident immune cells of the central nervous system, undergo metabolic reprogramming during neuroinflammation, playing a crucial role in the pathogenesis of neurological disorders such as Parkinson's disease. This review focuses on Pyruvate Kinase M2 (PKM2), a key glycolytic enzyme, and its impact on microglial metabolic reprogramming and subsequent neuroinflammation. We explore the regulatory mechanisms governing PKM2 activity, its influence on microglial activation and immune responses, and its contribution to the progression of various neurological diseases. Finally, we highlight the therapeutic potential of targeting PKM2 as a novel strategy for treating neuroinflammation-driven neurological disorders. This review provides insights into the molecular mechanisms of PKM2 in neuroinflammation, aiming to inform the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Qi Zhang
- Basic medicine college, China Three Gorges University, Yichang, China
| | - Sha-Sha Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shi-Feng Chu
- Basic medicine college, China Three Gorges University, Yichang, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Saad HM, Atef E, Elsayed AE. New Insights on the Potential Role of Pyroptosis in Parkinson's Neuropathology and Therapeutic Targeting of NLRP3 Inflammasome with Recent Advances in Nanoparticle-Based miRNA Therapeutics. Mol Neurobiol 2025:10.1007/s12035-025-04818-4. [PMID: 40100493 DOI: 10.1007/s12035-025-04818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder characterized by the gradual degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). This review aims to summarize the recent advancements in the pathophysiological mechanisms of pyroptosis, mediated by NLRP3 inflammasome, in advancing PD and the anti-pyroptotic agents that target NLRP3 inflammatory pathways and miRNA. PD pathophysiology is primarily linked to the aggregation of α-synuclein, the overproduction of reactive oxygen species (ROS), and the development of neuroinflammation due to microglial activation. Prior research indicated that a significant quantity of microglia is activated in both PD patients and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models, triggering neuroinflammation and resulting in a cascade of cellular death. Microglia possess an inflammatory complex pathway termed the nucleotide-binding oligomerization domain-, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome. Activation of the NLRP-3 inflammasome results in innate cytokines maturation, including IL-18 and IL-1β, which initiates the neuroinflammatory signal and induces a type of inflammatory cell death known as pyroptosis. Upon neuronal damage, intracellular levels of damage-associated molecular patterns (DAMPs), including reactive oxygen species (ROS), would build. DAMPs induce unregulated cell death and subsequent release of oxidative intermediates and pro-inflammatory cytokines, leading to the progression of PD. Thus, targeting of neuroinflammation using antipyroptotic medications can be efficiently achieved by blocking NLRP3 and obstructing IL-1β signaling and release. Furthermore, many research studies showed that miRNAs have been identified as regulators of the NLRP3 inflammasome and Nrf2 signal, which subsequently modulate the NLRP3-Nrf2 axis in PD. Nanotechnology promises potential for the advancement of miRNA-based therapies. Nanoparticles that ensure miRNA stability, traverse the blood-brain barrier (BBB) and distribute miRNA targeting regions needed to be created. In conclusion, targeting the pyroptosis pathway via NLRP3 or miRNA may serve as a prospective therapeutic strategy for PD in the future.
Collapse
Affiliation(s)
- Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Esraa Atef
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Abeer E Elsayed
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| |
Collapse
|
3
|
Zuo X, Bai HJ, Zhao QL, Zhang SH, Zhao X, Feng XZ. 17β-Trenbolone Exposure Enhances Muscle Activity and Exacerbates Parkinson's Disease Progression in Male Mice. Mol Neurobiol 2025; 62:3053-3066. [PMID: 39222261 DOI: 10.1007/s12035-024-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder, and while the neuroprotective effects of estrogen are well-documented, the impact of androgens on neurological disorders remains understudied. The consequences of exposure to 17-trenbolone (17-TB), an environmental endocrine disruptor with androgen-like properties, on the mammalian nervous system have received limited attention. Therefore, in this study, we aimed to investigate the biological effects of 17-TB exposure on PD. In our investigation using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we discovered that 17-TB exposure elevated testosterone hormone levels prevented androgen receptor (AR) reduction, upregulated the expression of muscular dystrophic factors (Atrogin1, MuRF1, Musa1, and Myostatin), improved muscle strength, and enhanced locomotor activity in the open field test. However, it is noteworthy that exposure to 17-TB also led to an upregulation of neuroinflammatory cytokines (NLRP3, IL-6, IL-1α, and IL-1β) in PD mice. Crucially, 17-TB exposure induced downregulation of nigral apoptotic proteins DJ-1 and Bcl-2 while upregulating Bax and Caspase-3 in PD mice. This exacerbated neuronal apoptosis, ultimately intensifying dopaminergic neuronal degeneration and death in the substantia nigra and striatum of PD mice. In conclusion, our findings indicate that while 17-TB mitigates muscle atrophy and enhances motor activity in PD mice, it concurrently exacerbates neuroinflammation, induces neuronal apoptosis, and worsens dopaminergic neuronal death, thereby aggravating the progression of MPTP-induced Parkinsonism. This underscores the importance of considering potential environmental risks in neurodegeneration associated with Parkinson's disease, providing a cautionary tale for our daily exposure to environmental endocrine chemical disruptors.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Hui-Juan Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qi-Li Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Shu-Hui Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China.
| | - Xi-Zeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Li J, Li X, Liu H. Sesquiterpene lactones and cancer: new insight into antitumor and anti-inflammatory effects of parthenolide-derived Dimethylaminomicheliolide and Micheliolide. Front Pharmacol 2025; 16:1551115. [PMID: 40051564 PMCID: PMC11882563 DOI: 10.3389/fphar.2025.1551115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
The isolation and application of biological macromolecules (BMMs) have become central in applied science today, with these compounds serving as anticancer, antimicrobial, and anti-inflammatory agents. Parthenolide (PTL), a naturally occurring sesquiterpene lactone derived from Tanacetum parthenium (feverfew), is among the most important of these BMMs. PTL has been extensively studied for its anticancer and anti-inflammatory properties, making it a promising candidate for further research and drug development. This review summarizes the anticancer and anti-inflammatory effects of PTL and its derivatives, with a focus on Micheliolide (MCL) and Dimethylaminomicheliolide (DMAMCL). These compounds, derived from PTL, have been developed to overcome PTL's instability in acidic and basic conditions and its low solubility. We also explore their potential in targeted and combination therapies, providing a comprehensive overview of their therapeutic mechanisms and highlighting their significance in future cancer treatment strategies.
Collapse
Affiliation(s)
| | | | - Hongwei Liu
- Department of Thyroid Head and Neck Surgery, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Wang SY, Li MM, Wu JT, Sun Y, Pan J, Guan W, Naseem A, Algradi AM, Kuang HX, Jiang YK, Yao HY, He XX, Li H, Yang BY, Liu Y. Lignans of Schisandra chinensis (Turcz.) Baill inhibits Parkinson's disease progression through mediated neuroinflammation-TRPV1 expression in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156146. [PMID: 39454375 DOI: 10.1016/j.phymed.2024.156146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Schisandra chinensis (Turcz.) Baill (S. chinensis), a member of the Magnoliaceae family, is renowned for its distinctive medicinal attributes and is commonly employed in the treatment of disorders affecting the CNS. PURPOSE The potential therapeutic effects of a lignan-enriched extract derived from Schisandra chinensis (Turcz.) Baill (LSC) on PD is assessed, which focuses on its mechanisms of action in addressing neuroinflammation. METHODS The LSC has been obtained by purifying the ethyl alcohol extract of S. chinensis. The Orbitrap-MS method has been employed to analyze the chemical composition of the LSC. In LPS-induced BV2 cells, LSC-induced changes in M1/M2 type inflammatory cytokines have been examined using the Griess reaction, Elisa, JC-1, flow cytometry, IF, and WB methods. A model of PD has been established by treatment of MPTP in C57BL/6 mice. The effect of LSC on behavioral changes, inflammatory factor levels, expression of TH and IBA-1, and production of autophagy in the midbrain has been investigated by TEM, immunohistochemistry, Elisa, and WB. RESULTS LSC has relieved sports injuries and pathological damage, and targeted the TRPV1-AMPK-NLRP3 signaling pathway, which affected neuroinflammation and autophagy in vivo. Furthermore, in vitro investigations demonstrated that LSC has activated M1/M2 transformation, its related inflammatory factors, and protein expressions of the NLRP3-Caspase1 signaling pathway in LPS-BV2 cells. The research notably demonstrated that the LSC promoted autophagy and suppressed inflammation through targeting TRPV1. CONCLUSION In the investigation, LSC focused on TRPV1 and controlled neuroinflammation-autophagy by regulating AMPK-NLRP3, which has been proven for the first time. The study has presented molecular data supporting the use of LSC in treating PD and offers references for developing drugs. Remarkably, LSC has the potential to be utilized as a therapeutic or health medication that could significantly decrease PD.
Collapse
Affiliation(s)
- Si-Yi Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Meng-Meng Li
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Jia-Tong Wu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Ye Sun
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Juan Pan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Wei Guan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Anam Naseem
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Adnan Mohammed Algradi
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Yi-Kai Jiang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Hong-Yan Yao
- Heilongjiang Jiren Pharmaceutical Co., LTD, Harbin 150040, PR China
| | - Xiao-Xue He
- Heilongjiang Jiren Pharmaceutical Co., LTD, Harbin 150040, PR China
| | - Hua Li
- Fujian University of Traditional Chinese Medicine, Fujian 350122, PR China
| | - Bing-You Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China.
| | - Yan Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China.
| |
Collapse
|
6
|
Kashkooe A, Jalali A, Zarshenas MM, Hamedi A. Exploring the Phytochemistry, Signaling Pathways, and Mechanisms of Action of Tanacetum parthenium (L.) Sch.Bip.: A Comprehensive Literature Review. Biomedicines 2024; 12:2297. [PMID: 39457613 PMCID: PMC11505096 DOI: 10.3390/biomedicines12102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The traditional use of Tanacetum parthenium (L.) Sch.Bip., commonly known as feverfew, extends across various medical conditions, notably those associated with pain and inflammation. In alignment with the growing trend towards developing medications that target specific signaling pathways for enhanced efficacy and reduced side effects, extensive research has been conducted to investigate and validate the pharmacological effects of feverfew. Among its bioactive compounds, parthenolide stands out as the most potent, categorized as a germacranolide-type sesquiterpene lactone, and has been extensively studied in multiple investigations. Significantly, the anti-inflammatory properties of feverfew have been primarily attributed to its capacity to inhibit nuclear factor-kappa B (NF-κB), resulting in a reduction in pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α). Furthermore, the anticancer properties of feverfew have been associated with the modulation of Mitogen-Activated Protein Kinase (MAPK) and NF-κB signaling pathways. This study further delves into the neuroprotective potential of feverfew, specifically in the management of conditions such as migraine headaches, epilepsy, and neuropathic pain through various mechanisms. The core objective of this study is to elucidate the phytochemical composition of feverfew, with a particular emphasis on understanding the molecular mechanisms and examining the signaling pathways that contribute to its pharmacological and therapeutic effects. Additionally, the safety, toxicity, and potential adverse effects of feverfew are comprehensively evaluated, with an overarching goal of providing valuable insights into the plant's potential for targeted and effective treatments.
Collapse
Affiliation(s)
- Ali Kashkooe
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (A.K.)
| | - Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (A.K.)
| | - Mohammad M. Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (A.K.)
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| |
Collapse
|
7
|
Shariat Razavi SA, Vafaei F, Ebrahimi SM, Abbasinezhad-Moud F, Shahini A, Qoorchi Moheb Seraj F, Alavi MS, Fadavieslam A, Ferns GA, Bahrami A. The protective effect of parthenolide in an in vitro model of Parkinson's disease through its regulation of nuclear factor-kappa B and oxidative stress. Mol Biol Rep 2024; 51:819. [PMID: 39017801 DOI: 10.1007/s11033-024-09779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, and is due to the degeneration of dopaminergic neurons. It is multifactorial, caused by genetic and environmental factors and currently has no definitive cure. We have investigated the protective effects of parthenolide (PTN), a compound with known anti-inflammatory and antioxidant properties, in an in vitro model of PD, that is induced by 6-OHDA, and that causes neurotoxicity in SH-SY5Y human neuroblastoma cells. METHODS AND RESULTS SH-SY5Y cells were pretreated with PTN to assess its protective effects in 6-OHDA-induced cellular damage. Cell viability was measured using Alamar blue. Apoptosis was evaluated using an Annexin V-FITC/PI kit. Reactive oxygen species (ROS) levels were quantified, and expression levels of apoptotic markers (Bax, Bcl-2, p53) and NF-κB were analyzed via Western blotting and Quantitative real-time- (qRT-) PCR. We found that 6-OHDA reduced cell viability, that was inhibited significantly by pre-treatment with PTN (p < 0.05). Flow cytometry revealed that PTN reduced apoptosis induced by 6-OHDA. PTN also reduced the ROS levels raised by 6-OHDA (p < 0.05). Moreover, PTN decreased the expression of Bax, p53, NF-κB, and p-NF-κB that were increased by treatment with 6-OHDA. CONCLUSION These findings indicate the potential beneficial effects of PTN in an in vitro model of PD via mitigating oxidative stress and inflammation, suggested PTN as a promising agent to be used for PD therapy, warranting further investigation in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Farzane Vafaei
- Department of Pharmacy, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, PO 311-86145, Iran
| | - Seyyed Moein Ebrahimi
- Department of Biochemistry, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Farzaneh Abbasinezhad-Moud
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farid Qoorchi Moheb Seraj
- Endovascular Section, Neurosurgical Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Fadavieslam
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Afsane Bahrami
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Fu Q, Shen N, Fang T, Zhang H, Di Y, Liu X, Du C, Guo J. ACT001 alleviates inflammation and pyroptosis through the PPAR-γ/NF-κB signaling pathway in LPS-induced alveolar macrophages. Genes Genomics 2024; 46:323-332. [PMID: 37831404 DOI: 10.1007/s13258-023-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND ACT001 is an anti-inflammatory agent that has been widely investigated for its role in tumors, intracranial diseases, and fibrotic diseases, but its effect on acute lung injury is less known. OBJECTIVE The purpose of this study was to investigate the effect and mechanism of ACT001 on regulating inflammation and pyroptosis in lipopolysaccharide (LPS)-induced alveolar macrophages. METHODS NR8383 alveolar macrophages treated with LPS were used to replicate the proinflammatory macrophage phenotype observed during acute lung injury. After ACT001 treatment, we measured the secretion and expression levels of critical inflammatory cytokines, the rate of pyroptosis, and the expression of NLRP3 inflammasome-associated proteins and pyroptosis-associated proteins. In addition, we assessed the role of the PPAR-γ/NF-κB signaling pathways and further validated the results with a PPAR-γ inhibitor. RESULTS Our findings confirmed that ACT001 reduced the expression and release of inflammatory factors, attenuated cell pyroptosis, and downregulated the expression of NLRP3, ASC, caspase-1 p20, and GSDMD-N. These effects may be achieved by activating PPAR-γ expression and then inhibiting the NF-κB signaling pathway. When macrophages were treated with the PPAR-γ inhibitor, the protective effects of ACT001 were reversed. CONCLUSION ACT001 significantly ameliorated inflammation and pyroptosis via the PPAR-γ/NF-κB signaling pathways in LPS-induced NR8383 alveolar macrophages.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Intensive Care Unit, Tianjin 4th Central Hospital, No.1 Zhongshan Road, Tianjin, 300140, China.
| | - Na Shen
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Tao Fang
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Hewei Zhang
- Department of Intensive Care Unit, Tianjin 4th Central Hospital, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Yanbo Di
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Xuan Liu
- Pharmacy Department, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Chao Du
- Emergency Surgical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| |
Collapse
|
9
|
Alkholifi FK, Devi S, Aldawsari MF, Foudah AI, Alqarni MH, Salkini MA, Sweilam SH. Effects of Tiliroside and Lisuride Co-Treatment on the PI3K/Akt Signal Pathway: Modulating Neuroinflammation and Apoptosis in Parkinson's Disease. Biomedicines 2023; 11:2735. [PMID: 37893109 PMCID: PMC10604177 DOI: 10.3390/biomedicines11102735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Researchers are actively exploring potential bioactive compounds to enhance the effectiveness of Lisuride (Lis) in treating Parkinson's disease (PD) over the long term, aiming to mitigate the serious side effects associated with its extended use. A recent study found that combining the dietary flavonoid Tiliroside (Til) with Lis has potential anti-Parkinson's benefits. The study showed significant improvements in PD symptoms induced by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) when Til and Lis were given together, based on various behavioral tests. This combined treatment significantly improved motor function and protected dopaminergic neurons in rats with PD induced by MPTP. It also activated important molecular pathways related to cell survival and apoptosis control, as indicated by the increased pAkt/Akt ratio. Til and Lis together increased B-cell lymphoma 2 (Bcl-2), decreased caspase 3 activity, and prevented brain cell decay. Co-administration also reduced tumor necrosis factor alpha (TNF-α) and Interleukin-1 (IL-1). Antioxidant markers such as superoxide dismutase (SOD), catalase, and reduced glutathione significantly improved compared to the MPTP-induced control group. This study shows that using Til and Lis together effectively treats MPTP-induced PD in rats, yielding results comparable to an 8 mg/kg dose of levodopa, highlighting their potential as promising Parkinson's treatments.
Collapse
Affiliation(s)
- Faisal K. Alkholifi
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.)
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.)
| | - Mohamad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.)
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| |
Collapse
|
10
|
Liu J, Cui M, Wang Y, Wang J. Trends in parthenolide research over the past two decades: A bibliometric analysis. Heliyon 2023; 9:e17843. [PMID: 37483705 PMCID: PMC10362189 DOI: 10.1016/j.heliyon.2023.e17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Parthenolide (PTL) is a new compound extracted from traditional Chinese medicine. In recent years, it has been proven to play an undeniable role in tumors, autoimmune diseases, and inflammatory diseases. Similarly, an increasing number of experiments have also confirmed the biological mechanism of PTL in these diseases. In order to better understand the development trend and potential hot spots of PTL in cancer and other diseases, we conducted a detailed bibliometric analysis. The purpose of presenting this bibliometric analysis was to highlight and inform researchers of the important research directions, co-occurrence relationships and research status in this field. Publications related to PTL research from 2002 to 2022 were extracted on the web of science core collection (WoSCC) platform. CiteSpace, VOSviewers and R package "bibliometrix" were applied to build relevant network diagrams. The bibliometric analysis was presented in terms of performance analysis (including publication statistics, top publishing countries, top publishing institutions, publishing journals and co-cited journals, authors and co-cited authors, co-cited references statistics, citation bursts statistics, keyword statistics and trend topic statistics) and science mapping (including citations by country, citations by institution, citations by journal, citations by author, co-citation analysis, and keyword co-occurrence). The detailed discussion of the results explained the focus and latest trends from the bibliometric analysis. Finally, the current status and shortcomings of the research field on PTLwere clearly pointed out for reference by scholars.
Collapse
Affiliation(s)
- Jiye Liu
- Department of Family Medicine, Shengjing Hospital of China Medical University, 110000 Shenyang, Liaoning, China
- Department of Rehabilitation Medicine, Huludao Central Hospital, 125000 Huludao, Liaoning, China
| | - Meng Cui
- Department of Hospice Care, Shengjing Hospital of China Medical University, 110004 Shenyang, Liaoning, China
| | - Yibing Wang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 110000 Shenyang, Liaoning, China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, 110000 Shenyang, Liaoning, China
| |
Collapse
|
11
|
Arslan ME, Türkez H, Sevim Y, Selvitopi H, Kadi A, Öner S, Mardinoğlu A. Costunolide and Parthenolide Ameliorate MPP+ Induced Apoptosis in the Cellular Parkinson's Disease Model. Cells 2023; 12:cells12070992. [PMID: 37048065 PMCID: PMC10093699 DOI: 10.3390/cells12070992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Monoamine oxidase B (MAO-B) is an enzyme that metabolizes several chemicals, including dopamine. MAO-B inhibitors are used in the treatment of Parkinson's Disease (PD), and the inhibition of this enzyme reduces dopamine turnover and oxidative stress. The absence of dopamine results in PD pathogenesis originating from decreased Acetylcholinesterase (AChE) activity and elevated oxidative stress. Here, we performed a molecular docking analysis for the potential use of costunolide and parthenolide terpenoids as potential MAO-B inhibitors in the treatment of PD. Neuroprotective properties of plant-originated costunolide and parthenolide terpenoids were investigated in a cellular PD model that was developed by using MPP+ toxicity. We investigated neuroprotection mechanisms through the analysis of oxidative stress parameters, acetylcholinesterase activity and apoptotic cell death ratios. Our results showed that 100 µg/mL and 50 µg/mL of costunolide, and 50 µg/mL of parthenolide applied to the cellular disease model ameliorated the cytotoxicity caused by MPP+ exposure. We found that acetylcholinesterase activity assays exhibited that terpenoids could ameliorate and restore the enzyme activity as in negative control levels. The oxidative stress parameter analyses revealed that terpenoid application could enhance antioxidant levels and decrease oxidative stress in the cultures. In conclusion, we reported that these two terpenoid molecules could be used in the development of efficient treatment strategies for PD patients.
Collapse
Affiliation(s)
- Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Yasemin Sevim
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Harun Selvitopi
- Department of Mathematics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Abdurrahim Kadi
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Sena Öner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
12
|
Sesquiterpene Lactones and Cancer: New Insight into Antitumor and Anti-inflammatory Effects of Parthenolide-Derived Dimethylaminomicheliolide and Micheliolide. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3744837. [PMID: 35898475 PMCID: PMC9313921 DOI: 10.1155/2022/3744837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/28/2022]
Abstract
Applied science nowadays works on the isolation and application of biological macromolecules (BMM). These BMM are isolates from plants using different techniques and used as anticancer, antimicrobial, and anti-inflammatory drugs. Parthenolide (PLT) is one of the most important biological macromolecules and a naturally occurring sesquiterpene lactone that is isolated from a plant species Tanacetum parthenium (T. parthenium). The anti-cancer and anti-inflammatory effects of PTL isolated from T. parthenium were previously reported and summarized in detail. These biological activities make it a vital candidate for further researches and drugs development. As per the previously obtained findings, the sesquiterpene is very much known for some biological activities; therefore, the anti-cancer and anti-inflammatory activities of the sesquiterpene were critically reviewed. During the research process, PTL was found to be unstable in both acidic and basic conditions with low solubility, so structurally related compounds micheliolide (MCL) and Dimethylaminomicheliolide (DMAMCL) (a prodrug of MCL) were developed. In this article, we briefly review the therapeutic effects of PTL and its derivative DMAPT on inflammatory diseases and tumors, focusing on the current application of PTL in targeted therapy and combination therapy, together with anti-inflammatory and anti-tumor functions of MCL and DMAMCL. The uniqueness of this biological macromolecule is not to harm the normal cell but target the cancerous cells. Therefore, the current literature review might be helpful and useful for prospects based on the effects of MCL and DMAMCL on cancer.
Collapse
|
13
|
Zhang T, Lin C, Wu S, Jin S, Li X, Peng Y, Wang X. ACT001 Inhibits TLR4 Signaling by Targeting Co-Receptor MD2 and Attenuates Neuropathic Pain. Front Immunol 2022; 13:873054. [PMID: 35757727 PMCID: PMC9218074 DOI: 10.3389/fimmu.2022.873054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/03/2022] [Indexed: 01/05/2023] Open
Abstract
Neuropathic pain is a common and challenging neurological disease, which renders an unmet need for safe and effective new therapies. Toll-like receptor 4 (TLR4) expressed on immune cells in the central nervous system arises as a novel target for treating neuropathic pain. In this study, ACT001, an orphan drug currently in clinical trials for the treatment of glioblastoma, was identified as a TLR4 antagonist. In vitro quenching titrations of intrinsic protein fluorescence and saturation transfer difference (STD)-NMR showed the direct binding of ACT001 to TLR4 co-receptor MD2. Cellular thermal shift assay (CETSA) showed that ACT001 binding affected the MD2 stability, which implies that MD2 is the endogenous target of ACT001. In silico simulations showed that ACT001 binding decreased the percentage of hydrophobic area in the buried solvent-accessible surface areas (SASA) of MD2 and rendered most regions of MD2 to be more flexible, which is consistent with experimental data that ACT001 binding decreased MD2 stability. In keeping with targeting MD2, ACT001 was found to restrain the formation of TLR4/MD2/MyD88 complex and the activation of TLR4 signaling axes of NF-κB and MAPKs, therefore blocking LPS-induced TLR4 signaling downstream pro-inflammatory factors NO, IL-6, TNF-α, and IL-1β. Furthermore, systemic administration of ACT001 attenuated allodynia induced by peripheral nerve injury and activation of microglia and astrocyte in vivo. Given the well-established role of neuroinflammation in neuropathic pain, these data imply that ACT001 could be a potential drug candidate for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Siru Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Sha Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaodong Li
- Beijing Changping Huayou Hospital, Beijing, China
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
14
|
Cai L, Gong Q, Qi L, Xu T, Suo Q, Li X, Wang W, Jing Y, Yang D, Xu Z, Yuan F, Tang Y, Yang G, Ding J, Chen H, Tian H. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway. Cell Commun Signal 2022; 20:56. [PMID: 35461293 PMCID: PMC9035258 DOI: 10.1186/s12964-022-00862-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Microglia-mediated neuroinflammatory response following traumatic brain injury (TBI) is considered as a vital secondary injury factor, which drives trauma-induced neurodegeneration and is lack of efficient treatment. ACT001, a sesquiterpene lactone derivative, is reportedly involved in alleviation of inflammatory response. However, little is known regarding its function in regulating innate immune response of central nervous system (CNS) after TBI. This study aimed to investigate the role and underlying mechanism of ACT001 in TBI.
Methods
Controlled cortical impact (CCI) models were used to establish model of TBI. Cresyl violet staining, evans blue extravasation, neurobehavioral function assessments, immunofluorescence and transmission electron microscopy were used to evaluate therapeutic effects of ACT001 in vivo. Microglial depletion was induced by administering mice with colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622. Cell-cell interaction models were established as co-culture system to simulate TBI conditions in vitro. Cytotoxic effect of ACT001 on cell viability was assessed by cell counting kit-8 and activation of microglia cells were induced by Lipopolysaccharides (LPS). Pro-inflammatory cytokines expression was determined by Real-time PCR and nitric oxide production. Apoptotic cells were detected by TUNEL and flow cytometry assays. Tube formation was performed to evaluate cellular angiogenic ability. ELISA and western blot experiments were used to determine proteins expression. Pull-down assay was used to analyze proteins that bound ACT001.
Results
ACT001 relieved the extent of blood-brain barrier integrity damage and alleviated motor function deficits after TBI via reducing trauma-induced activation of microglia cells. Delayed depletion of microglia with PLX5622 hindered therapeutic effect of ACT001. Furthermore, ACT001 alleviated LPS-induced activation in mouse and rat primary microglia cells. Besides, ACT001 was effective in suppressing LPS-induced pro-inflammatory cytokines production in BV2 cells, resulting in reduction of neuronal apoptosis in HT22 cells and improvement of tube formation in bEnd.3 cells. Mechanism by which ACT001 functioned was related to AKT/NFκB/NLRP3 pathway. ACT001 restrained NFκB nuclear translocation in microglia cells through inhibiting AKT phosphorylation, resulting in decrease of NLRP3 inflammasome activation, and finally down-regulated microglial neuroinflammatory response.
Conclusions
Our study indicated that ACT001 played critical role in microglia-mediated neuroinflammatory response and might be a novel potential chemotherapeutic drug for TBI.
Collapse
|
15
|
Ma J, Sun W, Chen S, Wang Z, Zheng J, Shi X, Li M, Li D, Gu Q. The long noncoding RNA GAS5 potentiates neuronal injury in Parkinson's disease by binding to microRNA-150 to regulate Fosl1 expression. Exp Neurol 2021; 347:113904. [PMID: 34755654 DOI: 10.1016/j.expneurol.2021.113904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been the focus of recent studies of neurodegenerative disorders, including Parkinson's disease (PD). However, the specific mechanism of action of growth arrest-specific 5 (GAS5) in PD has not yet been characterized. First, the GSE8030 and GSE16658 datasets were analyzed to obtain differentially expressed genes (DEGs), followed by the development of a PD mouse model. The effects of shRNA targeting fos-like antigen-1 (shFosl1) and microRNA (miR)-150 agomiR on PD mouse behavior and neuronal injury were evaluated in vitro and in vivo. After the determination of target lncRNAs using bioinformatics tools, cell models were developed in SH-SY5Y and N2a cells using MPP+ to verify the effects of GAS5, miR-150 and Fosl1 on cell viability. Knockdown of Fosl1 and GAS5 or overexpression of miR-150 alleviated neuronal injury in mice after MPTP treatment and significantly increased the activity of SH-SY5Y and N2a cells after MPP treatment. GAS5 bound to miR-150, while miR-150 targeted Fosl1. Fosl1 activated the PTEN/AKT/mTOR pathway, thus promoting apoptosis and inhibiting neuronal activity in the PD model. Overall, our findings illuminated that GAS5 accelerated PD progression by targeting the miR-150/Fosl1 axis.
Collapse
Affiliation(s)
- Jianjun Ma
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, Henan, PR China.
| | - Wenhua Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Zhidong Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Jinhua Zheng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Xiaoxue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Mingjian Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Dongsheng Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Qi Gu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, Henan, PR China
| |
Collapse
|
16
|
Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. PHYTOMEDICINE 2021; 91:153664. [PMID: 34391082 DOI: 10.1016/j.phymed.2021.153664] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND As common, progressive, and chronic causes of disability and death, neurodegenerative diseases (NDDs) significantly threaten human health, while no effective treatment is available. Given the engagement of multiple dysregulated pathways in neurodegeneration, there is an imperative need to target the axis and provide effective/multi-target agents to tackle neurodegeneration. Recent studies have revealed the role of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) in some diseases and natural products with therapeutic potentials. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating various neuronal disorders via the PI3K/Akt/mTOR signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was done based on the PubMed, Scopus, Web of Science, and Cochrane electronic databases. Two independent investigators followed the PRISMA guidelines and included papers on PI3K/Akt/mTOR and interconnected pathways/mediators targeted by phytochemicals in NDDs. RESULTS Natural products are multi-target agents with diverse pharmacological and biological activities and rich sources for discovering and developing novel therapeutic agents. Accordingly, recent studies have shown increasing phytochemicals in combating Alzheimer's disease, aging, Parkinson's disease, brain/spinal cord damages, depression, and other neuronal-associated dysfunctions. Amongst the emerging targets in neurodegeneration, PI3K/Akt/mTOR is of great importance. Therefore, attenuation of these mediators would be a great step towards neuroprotection in such NDDs. CONCLUSION The application of plant-derived secondary metabolites in managing and/or treating various neuronal disorders through the PI3K/Akt/mTOR signaling pathway is a promising strategy towards neuroprotection.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Ranjbari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA.
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China.
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
17
|
The Combination of Tradition and Future: Data-Driven Natural-Product-Based Treatments for Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9990020. [PMID: 34335855 PMCID: PMC8294954 DOI: 10.1155/2021/9990020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder in elderly people. The personalized diagnosis and treatment remain challenges all over the world. In recent years, natural products are becoming potential therapies for many complex diseases due to their stability and low drug resistance. With the development of informatics technologies, data-driven natural product discovery and healthcare is becoming reality. For PD, however, the relevant research and tools for natural products are quite limited. Here in this review, we summarize current available databases, tools, and models for general natural product discovery and synthesis. These useful resources could be used and integrated for future PD-specific natural product investigations. At the same time, the challenges and opportunities for future natural-product-based PD care will also be discussed.
Collapse
|
18
|
Jaffar J, Glaspole I, Symons K, Westall G. Inhibition of NF-κB by ACT001 reduces fibroblast activity in idiopathic pulmonary fibrosis. Biomed Pharmacother 2021; 138:111471. [PMID: 33730605 DOI: 10.1016/j.biopha.2021.111471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease of unknown etiology and poor prognosis. In IPF, aberrant extracellular matrix production by activated, hyperproliferative fibroblasts drives disease progression but the exact mechanisms by which this occurs remains undefined. The transcription factor nuclear factor kappa-B (NF-ĸB) has been suggested as a potential therapeutic target in IPF and therefore the aim of this study was to investigate the efficacy of ACT001, an NF-ĸB inhibitor, on primary fibroblasts derived from patients with and without IPF. Primary lung fibroblasts derived from eight patients with IPF and eight age-matched non-diseased controls (NDC) were treated with 0-10 µM ACT001 and the effects on fibroblast activity (viability and proliferation, fibroblast-to-myofibroblast transition, fibronectin expression), interleukin (IL)-6 and IL-8 cytokine release were quantified. ACT001 inhibited fibroblast activity in a concentration-dependent manner in both groups of fibroblasts. ACT001 inhibited IL-6 but not IL-8 production in unstimulated fibroblasts. ACT001 is a water-soluble compound with a stable half-life in plasma, thus making it an attractive candidate for further investigation as a therapeutic in IPF. This study adds to the growing body of literature that demonstrates anti-fibrotic activity of NF-ĸB inhibition in the context of IPF.
Collapse
Affiliation(s)
- Jade Jaffar
- Department of Respiratory Medicine, The Alfred Hospital, 99 Commercial Rd, Melbourne, VIC 3000, Australia; Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia; N.M.H.R.C. Centre of Research Excellence in Pulmonary Fibrosis, Australia.
| | - Ian Glaspole
- Department of Respiratory Medicine, The Alfred Hospital, 99 Commercial Rd, Melbourne, VIC 3000, Australia; Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia; N.M.H.R.C. Centre of Research Excellence in Pulmonary Fibrosis, Australia
| | - Karen Symons
- Department of Respiratory Medicine, The Alfred Hospital, 99 Commercial Rd, Melbourne, VIC 3000, Australia
| | - Glen Westall
- Department of Respiratory Medicine, The Alfred Hospital, 99 Commercial Rd, Melbourne, VIC 3000, Australia; Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia; N.M.H.R.C. Centre of Research Excellence in Pulmonary Fibrosis, Australia
| |
Collapse
|
19
|
Chen Z, Wang Y, Yi Y, Liu F. Reactive Oxygen Species/Caspase 3 Promotes Autophagy of Nigral Dopaminergic Neuron in Parkinson’s Disease. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Parkinson’s disease (PD) is characterized as bradykinesia and sleep disorder, troubling numerous people. In the present study, we aimed to explore whether reactive oxygen species (ROS)/caspase 3 promotes PD to provide a basis for novel treatments of PD. Firstly, we applied 1-methyl-4-phenylpyridinium
(MPP+) to stimulate PC12 cell lines to establish a PD cell model. Western blot and qRT-PCR analyses detected protein and mRNA expression of caspase 3, IL-1β, Bax, and BCL2. Finally, ROS detection kit determined ROS content. Compared with the controls, MPP+-treated PC12 exhibited
significantly elevated caspase 3, caspase 3, and IL-1β at the protein level (p < 0.001). In addition, MMP + treatment increased Bax protein level in vitro, while decreased Bcl-2 protein expression (p <0.001). Moreover, MPP + induced oxidative stress which
contributes to autophagy. The ROS in MPP + group was increased significantly (p < 0.001). ROS and caspase 3 participate in the pathogenesis of PD and enhances autophagy of nigral dopaminergic neuron.
Collapse
Affiliation(s)
- Zejie Chen
- Department of Neurology, No. 80 Army Hospital of the Chinese People’s Liberation Army, Weifang City, Shandong Province, 261021, China
| | - Yamin Wang
- Department of Neurology, No. 80 Army Hospital of the Chinese People’s Liberation Army, Weifang City,Shandong Province, 261021, China
| | - Yanchun Yi
- Department Rheumatology, Immunlogy Sunshine Union Hospital, Weifang City, Shandong Province, 261000, China
| | - Fengrong Liu
- Department of Neurology, No. 80 Army Hospital of the Chinese People’s Liberation Army, Weifang City, Shandong Province, 261021, China
| |
Collapse
|
20
|
Prasad EM, Hung SY. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson's Disease. Antioxidants (Basel) 2020; 9:E1007. [PMID: 33081318 PMCID: PMC7602991 DOI: 10.3390/antiox9101007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, neurodegenerative diseases are a major cause of disability around the world. Parkinson's disease (PD) is the second-leading cause of neurodegenerative disorder after Alzheimer's disease. In PD, continuous loss of dopaminergic neurons in the substantia nigra causes dopamine depletion in the striatum, promotes the primary motor symptoms of resting tremor, bradykinesia, muscle rigidity, and postural instability. The risk factors of PD comprise environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular injury, aging, and hereditary defects. The pathologic features of PD include impaired protein homeostasis, mitochondrial dysfunction, nitric oxide, and neuroinflammation, but the interaction of these factors contributing to PD is not fully understood. In neurotoxin-induced PD models, neurotoxins, for instance, 6-hydroxydopamine (6-OHDA), 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-Methyl-4-phenylpyridinium (MPP+), paraquat, rotenone, and permethrin mainly impair the mitochondrial respiratory chain, activate microglia, and generate reactive oxygen species to induce autooxidation and dopaminergic neuronal apoptosis. Since no current treatment can cure PD, using a suitable PD animal model to evaluate PD motor symptoms' treatment efficacy and identify therapeutic targets and drugs are still needed. Hence, the present review focuses on the latest scientific developments in different neurotoxin-induced PD animal models with their mechanisms of pathogenesis and evaluation methods of PD motor symptoms.
Collapse
Affiliation(s)
- E. Maruthi Prasad
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
- Department of Medical Research, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan
| |
Collapse
|
21
|
Zhang S, Wang S, Shi X, Feng X. Polydatin alleviates parkinsonism in MPTP-model mice by enhancing glycolysis in dopaminergic neurons. Neurochem Int 2020; 139:104815. [PMID: 32758587 DOI: 10.1016/j.neuint.2020.104815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. Damage to energy metabolism and reduced adenosine triphosphate (ATP) levels in dopaminergic neurons are common features of PD. Previous studies suggested that the occurrence of PD often affects glucose metabolism and ATP production in the brain, and increased glycolysis or ATP production protects dopaminergic neuronal degeneration in the brain of PD patients. These systems may provide new potential therapeutic targets for the prevention of PD. The present study investigated the inhibitory action of polydatin (PLD) on early dopaminergic neuronal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results showed that PLD protected against MPTP-induced early dopaminergic neuronal degeneration. PLD reduced the MPTP-induced loss of dopaminergic neurons in substantia nigra and striatum, inhibited the occurrence of neural apoptosis, and restored motor function in mice. PLD also increased the continuous activity duration and rhythm amplitude in mice during the circadian activity test. PLD improved glucose metabolism in the brain and restored ATP production levels. These observations suggest that PLD attenuates MPTP-induced early PD-like symptoms, and its mechanism of action may be associated with the promotion of glucose metabolism in neurons.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Sijie Wang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xingzhu Shi
- College of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|