1
|
Pires CS, da Rocha MJ, Presa MH, Zuge NP, Besckow EM, Ledebuhr KNB, Kuntz NEB, Godoi B, Bortolatto CF, Brüning CA. Dopaminergic receptors involvement in the antidepressant-like effect of N-(3-((3-(trifluoromethyl)phenyl)selanyl)prop-2-yn-1-yl) benzamide in mice. Neurosci Lett 2025; 849:138144. [PMID: 39889880 DOI: 10.1016/j.neulet.2025.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Major Depressive Disorder (MDD) directly impacts the lives of countless individuals worldwide, yet its causes remain incompletely understood. However, it is recognized that a deficiency in monoamines, including dopamine, may contribute to this disorder. N-(3-((3-(trifluoromethyl)phenyl)selenyl)prop-2-yn-1-yl) (CF3SePB) is an organoselenium compound that presented antidepressant-like effect in mice related to modulation of serotonergic, but not noradrenergic system. To expand the knowledge about CF3SePB mechanisms of action, this study aimed to evaluate the involvement of dopaminergic system in its antidepressant-like effect. Male Swiss mice were pre-treated with the haloperidol (0.05 mg/kg, i.p., a non-selective D2 receptor antagonist), SCH 23390 (0.01 mg/kg, s.c., a D1 receptor antagonist), and sulpiride (50 mg/kg, i.p., a D2 receptor antagonist) 15 min before CF3SePB (50 mg/kg, i.g.), and after 30 min of CF3SePB administration the forced swimming test (FST) was performed. CF3SePB presented an anti-immobility effect in the FST, demonstrated by increase in the latency to first episode of immobility and reduction of total immobility of mice, and the pre-treatment of mice with haloperidol, SCH 23390 and sulpiride prevented these effects, showing that the antidepressant-like effect of CF3SePB is related to the modulation of the dopaminergic system, specifically the D1 and D2 receptors. In addition, in silico pharmacokinetic profiling of CF3SePB predicted its low likelihood of inducing adverse effects and potential to cross the blood-brain barrier. These results expand the understanding of CF3SePB mechanisms for its antidepressant-like effect, reinforcing the potential of this organonoselenium compound for developing new antidepressants.
Collapse
Affiliation(s)
- Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Narryman Pinto Zuge
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Kauane Nayara Bahr Ledebuhr
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Natália Emanuele Biolosor Kuntz
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Campus Cerro Largo, Cerro Largo, RS, Brazil
| | - Benhur Godoi
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Campus Cerro Largo, Cerro Largo, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil.
| |
Collapse
|
2
|
Pyka P, Garbo S, Fioravanti R, Jacob C, Hittinger M, Handzlik J, Zwergel C, Battistelli C. Selenium-containing compounds: a new hope for innovative treatments in Alzheimer's disease and Parkinson's disease. Drug Discov Today 2024; 29:104062. [PMID: 38871111 DOI: 10.1016/j.drudis.2024.104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Neurodegenerative diseases are challenging to cure. To date, no cure has been found for Alzheimer's disease or Parkinson's disease, and current treatments are able only to slow the progression of the diseases and manage their symptoms. After an introduction to the complex biology of these diseases, we discuss the beneficial effect of selenium-containing agents, which show neuroprotective effects in vitro or in vivo. Indeed, selenium is an essential trace element that is being incorporated into innovative organoselenium compounds, which can improve outcomes in rodent or even primate models with neurological deficits. Herein, we critically discuss recent findings in the field of selenium-based applications in neurological disorders.
Collapse
Affiliation(s)
- Patryk Pyka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 15, 31-530 Krakow, Poland; Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Sabrina Garbo
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Marius Hittinger
- Pharmbiotec gGmbH, Department of Drug Discovery, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany; Pharmbiotec gGmbH, Department of Drug Discovery, Nußkopf 39, 66578 Schiffweiler, Germany.
| | - Cecilia Battistelli
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
3
|
da Rocha MJ, Presa MH, Nunes GD, Zuge NP, Pires CS, Besckow EM, Gomes CS, Dapper LH, Lenardão EJ, Penteado F, Bortolatto CF, Brüning CA. 1-(Phenylselanyl)-2-(p-tolyl)indolizine: A selenoindolizine with potential antidepressant-like activity in mice mediated by the modulation of dopaminergic and noradrenergic systems. Brain Res 2024; 1834:148904. [PMID: 38561086 DOI: 10.1016/j.brainres.2024.148904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
1-(Phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) is a selenoindolizine with an antidepressant-like effect in mice by regulation of the serotonergic system. This study investigated the involvement of dopaminergic and noradrenergic systems in the antidepressant-like action of MeSeI. For this purpose, Swiss male mice were pretreated with different antagonists, after 15 min, the MeSeI was administrated by intragastric (i.g.) via; after 30 min, the mouse behavior was assessed in the forced swimming test (FST). The action of MeSeI on the activity of monoamine oxidase (MAO) was determined. The pretreatment of mice with haloperidol (0.05 mg/kg, intraperitoneally, i.p.; non-selective dopamine receptor antagonist), sulpiride (50 mg/kg, i.p.; D2 receptor antagonist), yohimbine (1 mg/kg, i.p.; α2 receptor antagonist), and propranolol (2 mg/kg, i.p.; non-selective β receptor antagonist), inhibited the anti-immobility action of MeSeI (50 mg/kg, i.g.) in the FST. This blocking effect was not observed when SCH23390 (0.01 mg/kg, i.p.; D1 receptor antagonist), and prazosin (1 mg/kg, i.p.; α1 receptor antagonist) were administered. The coadministration of subeffective doses of bupropion (3 mg/kg. i.g.; dopamine and noradrenaline reuptake inhibitor) and MeSeI (0.5 mg/kg. i.g.) reduced the immobility time in the FST. Furthermore, MeSeI inhibited MAO-A and B activities in vitro and ex vivo tests. These results suggest that MeSeI exerts its antidepressant-like effect via regulation of the D2, α2, and β1 receptors and the inhibition of MAO-A and B activities. Molecular docking investigations corroborated these results. This study provides comprehensive insights into the antidepressant-like mechanism of MeSeI in mice, suggesting its potential as a novel antidepressant candidate.
Collapse
Affiliation(s)
- Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Gustavo D'Avila Nunes
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Narryman Pinto Zuge
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Caroline Signorini Gomes
- Laboratory of Clean Organic Synthesis (LASOL), Graduate Program in Chemistry (PPGQ), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Luiz Henrique Dapper
- Laboratory of Clean Organic Synthesis (LASOL), Graduate Program in Chemistry (PPGQ), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Eder João Lenardão
- Laboratory of Clean Organic Synthesis (LASOL), Graduate Program in Chemistry (PPGQ), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Filipe Penteado
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil.
| |
Collapse
|
4
|
Azevedo AR, Cordeiro P, Strelow DN, de Andrade KN, Neto MRS, Goetze Fiorot R, Brüning CA, Braga AL, Lião LM, Bortolatto CF, Neto JSS, Nascimento V. Green Approach for the Synthesis of Chalcogenyl- 2,3-dihydrobenzofuran Derivatives Through Allyl-phenols/ Naphthols and Their Potential as MAO-B Inhibitors. Chem Asian J 2023:e202300586. [PMID: 37733585 DOI: 10.1002/asia.202300586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
This work presents the design, synthesis, and MAO-B inhibitor activity of a series of chalcogenyl-2,3-dihydrobenzofurans derivatives. Using solvent- and metal-free methodology, a series of chalcogen-containing dihydrobenzofurans 7-9 was obtained with yields ranging from 40% to 99%, using an I2 /DMSO catalytic system. All compounds were fully structurally characterized using 1 H and 13 C NMR analysis, and the unprecedented compounds were additionally analyzed using high-resolution mass spectrometry (HRMS). In addition, the mechanistic proposal that iodide is the most likely species to act in the transfer of protons along the reaction path was studied through theoretical calculations. Finally, the compounds 7b-e, 8a-e, and 9a showed great promise as inhibitors against MAO-B activity.
Collapse
Affiliation(s)
- Amanda R Azevedo
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Niterói, Institute of Chemistry, Campus do Valonguinho, 24020-141, RJ, Brazil
| | - Pâmella Cordeiro
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Niterói, Institute of Chemistry, Campus do Valonguinho, 24020-141, RJ, Brazil
| | - Dianer N Strelow
- Molecular Biochemistry and Neuropharmacology Laboratory (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas Pelotas, 96010-900, RS, Brazil
| | - Karine N de Andrade
- Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense Niterói, Outeiro São João Batista, s/n, 24020-141, RJ, Brazil
| | - Marcos R S Neto
- LabSelen, Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, 88040-900, SC, Brazil
| | - Rodolfo Goetze Fiorot
- Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense Niterói, Outeiro São João Batista, s/n, 24020-141, RJ, Brazil
| | - César A Brüning
- Molecular Biochemistry and Neuropharmacology Laboratory (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas Pelotas, 96010-900, RS, Brazil
| | - Antonio L Braga
- LabSelen, Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, 88040-900, SC, Brazil
| | - Luciano M Lião
- LabRMN, Chemistry Institute, Federal University of Goiás Goiânia, 74690-900, GO, Brazil
| | - Cristiani F Bortolatto
- Molecular Biochemistry and Neuropharmacology Laboratory (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas Pelotas, 96010-900, RS, Brazil
| | - José S S Neto
- LabRMN, Chemistry Institute, Federal University of Goiás Goiânia, 74690-900, GO, Brazil
| | - Vanessa Nascimento
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Niterói, Institute of Chemistry, Campus do Valonguinho, 24020-141, RJ, Brazil
| |
Collapse
|
5
|
Strelow DN, Magalhães LS, Paim MP, Krüger LD, Neto JSS, Brüning CA, Bortolatto CF. Depressive-like behavior and cognitive impairment induced by acute administration of dexamethasone: Pharmacological effects of 2-phenyl-3-(phenylselanyl)benzofuran in female Swiss mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110772. [PMID: 37075882 DOI: 10.1016/j.pnpbp.2023.110772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Synthetic glucocorticoid administration has been reported to play a role in depression and cognitive decline. The present study investigated the 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1) effects against the depressive-like behavior, memory impairment, and neurochemical alterations caused by acute dexamethasone administration in female Swiss mice. A dexamethasone dose-response curve (0.07-0.5 mg/kg, subcutaneous route, s.c.) was initially performed to validate the depressive-like behavior induction, in which the 0.25 mg/kg dose was more effective. Two experimental sets were performed to test the SeBZF1 (5 and 50 mg/kg, intragastric route, i.g.) pharmacological effect in this animal model. The 1st set revealed that the SeBZF1 reverses the dexamethasone-induced depressive-like behavior in the tail suspension test and in the splash test. In the 2nd experimental set, the compound effects of reversing the depressive-like behavior in the forced swimming test and the memory deficit in the Y-maze test induced by acute treatment with dexamethasone were demonstrated. Furthermore, SeBZF1 reversed the increase in the monoamine oxidase (MAO) activity in the prefrontal cortex (isoforms A and B) and in the hypothalamus (isoform A) caused by dexamethasone. However, no changes were observed in hippocampal MAO activity. Furthermore, animals treated with dexamethasone and SeBZF1 demonstrated a partially lower acetylcholinesterase activity in the prefrontal cortex compared with the induced group. In summary, the present study demonstrated that SeBZF1 reverses depressive-like behavior and memory deficits caused by acute dexamethasone treatment in female Swiss mice. Possibly the compound exerts its antidepressant-like action by increasing the availability of monoamines, while its effects on memory are still partially understood.
Collapse
Affiliation(s)
- Dianer Nornberg Strelow
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Larissa Sander Magalhães
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Mariana Parron Paim
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Letícia Devantier Krüger
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | | | - César Augusto Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil.
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
6
|
Matcha Tea Powder's Antidepressant-like Effect through the Activation of the Dopaminergic System in Mice Is Dependent on Social Isolation Stress. Nutrients 2023; 15:nu15030581. [PMID: 36771286 PMCID: PMC9921318 DOI: 10.3390/nu15030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Matcha tea powder is believed to have various physiological benefits; however, its detailed mechanism of action has been poorly understood. Here, we investigated whether the mental state of mice, due to social isolation stress, affects the antidepressant-like effect of Matcha tea powder by using the tail suspension test. Oral administration of Matcha tea powder reduced the duration of immobility in the stress-susceptible C57BL/6J strain, but not in BALB/c strain. In C57BL/6J mice, SCH23390, a dopamine D1 receptor blocker, prevented Matcha tea powder from exerting its antidepressant-like effect. Matcha tea powder also increased the number of c-Fos-positive cells in the prefrontal cortex (PFC) region and the nucleus accumbens (NAc) region in C57BL/6J mice, but not in BALB/c mice. In contrast, Matcha tea powder did not change the number of c-Fos-positive cells in the ventral tegmental area (VTA) region. Notably, C57BL/6J mice with a shorter immobility time had a higher number of c-Fos-positive cells in the PFC, NAc, and VTA regions. However, no such correlation was observed in the stress-tolerant BALB/c mice. These results suggest that Matcha tea powder exerts an antidepressant-like effect through the activation of the dopaminergic system including the PFC-NAc-VTA circuit and that mental states are important factors affecting the physiological benefits of Matcha tea powder.
Collapse
|
7
|
Goulart HA, Araujo DR, Barcellos AM, Jacob RG, Lenardão EJ, Perin G. One‐pot Sequential Strategy to Prepare Organoselanyl and Organotellanyl Isoquinolinium Imides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Helen A. Goulart
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA Universidade Federal de Pelotas – UFPel 96010-900 Postbox 534 Pelotas RS Brazil
| | - Daniela R. Araujo
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA Universidade Federal de Pelotas – UFPel 96010-900 Postbox 534 Pelotas RS Brazil
| | - Angelita M. Barcellos
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA Universidade Federal de Pelotas – UFPel 96010-900 Postbox 534 Pelotas RS Brazil
| | - Raquel G. Jacob
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA Universidade Federal de Pelotas – UFPel 96010-900 Postbox 534 Pelotas RS Brazil
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA Universidade Federal de Pelotas – UFPel 96010-900 Postbox 534 Pelotas RS Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA Universidade Federal de Pelotas – UFPel 96010-900 Postbox 534 Pelotas RS Brazil
| |
Collapse
|
8
|
da Silva Teixeira Rech T, Gonçalves Alves A, Nornberg Strelow D, Devantier Krüger L, Carraro Júnior LR, Dos Santos Neto JS, Braga AL, Brüning CA, Folharini Bortolatto C. 2-Phenyl-3-(phenylselanyl)benzofuran elicits acute antidepressant-like action in male Swiss mice mediated by modulation of the dopaminergic system and reveals therapeutic efficacy in both sexes. Psychopharmacology (Berl) 2021; 238:3013-3024. [PMID: 34312682 DOI: 10.1007/s00213-021-05921-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE Depression is a psychiatric disorder that constitutes one of the leading causes of disability worldwide. 2-Phenyl-3-(phenylselanyl)benzofuran (SeBZF1) has been studied as a potential antidepressant drug, but its pharmacological action needs more investigation. OBJECTIVES AND METHODS Our aim was to extend information about the antidepressant-like action of SeBZF1 using the mouse tail suspension test (TST). Initial experiments investigated the mechanisms involved in the acute antidepressant-like action of SeBZF1 in male Swiss mice. For this purpose, males received noradrenergic or dopaminergic receptor antagonists before acute SeBZF1 administration (50 mg/kg, per oral). In parallel, effects of combined treatment with SeBZF1 and bupropion at sub-effective doses (1 and 3 mg/kg, respectively) were tested. The next experiments were designed to determine the acute effects of SeBZF1 in females through a dose-response curve (5-50 mg/kg). Lastly, the efficacy of a 7-day repeated treatment with SeBZF1 (1 and 5 mg/kg) in mice of both sexes and its safety were evaluated. TST and the open-field test (OFT) were employed in all behavioral experiments. RESULTS Pre-administration of dopaminergic antagonists (SCH23390, a selective D1R antagonist; sulpiride, a selective D2/D3R antagonist; and haloperidol, a non-selective antagonist), but not of adrenergic α1, α2, and β-R antagonists, blocked the acute antidepressant-like effects of SeBZF1 in males. Co-administration of sub-effective doses of SeBZF1 and bupropion reduced the depressive phenotype. In addition, acute treatment with SeBZF1 at 50 mg/kg produced a reduction of female immobility. Finally, repeated treatment with SeBZF1 (1 and 5 mg/kg) was effective in causing antidepressant-like effects in both sexes. Locomotor activity, plasma transaminases, and urea levels remained unaltered after SeBZF1 exposure. CONCLUSION Our findings provide evidence of the involvement of the dopaminergic system in the acutely antidepressant-like action of SeBZF1 in male mice and reveal the compound efficacy when acute or repeatedly administered in both sexes.
Collapse
Affiliation(s)
- Taís da Silva Teixeira Rech
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil
| | - Amália Gonçalves Alves
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil
| | - Dianer Nornberg Strelow
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil
| | - Letícia Devantier Krüger
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil
| | - Luiz Roberto Carraro Júnior
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil
| | - José Sebastião Dos Santos Neto
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese de Derivados de Selênio E Telúrio (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, CEP 88040-900, Brasil
| | - Antonio Luiz Braga
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese de Derivados de Selênio E Telúrio (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, CEP 88040-900, Brasil
| | - César Augusto Brüning
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil.
| | - Cristiani Folharini Bortolatto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil.
| |
Collapse
|
9
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|