1
|
Yao Y, Wang Z, Huang X, Wei T, Liu N, Zou L, Niu Y, Hu Y, Fang Q, Wang X, Qiao D, Li C, Chen M, Guan S, Xue Y, Wu T, Zhang T, Tang M. Adverse Outcome Pathway-Based Strategies to Mitigate Ag 2Se Quantum Dot-Induced Neurotoxicity. ACS NANO 2025; 19:11029-11048. [PMID: 40063898 DOI: 10.1021/acsnano.4c16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Silver selenide quantum dots (Ag2Se QDs) show great advantages in tumor imaging due to their excellent optical performance and good biocompatibility. However, the ultrasmall particle size of Ag2Se QDs allows them to cross the blood-brain barrier, thus potentially affecting the central nervous system. Therefore, risk assessment and response strategies for Ag2Se QDs are important. The adverse outcome pathway (AOP) framework makes it possible to develop risk management strategies based on toxicity mechanisms. In this study, using the AOP framework, we constructed causal mechanism relationship diagrams at different biological levels of Ag2Se QD neurotoxicity. In this framework, excess mitochondrial reactive oxygen species (mtROS) triggered Nod-like receptor protein 3 (NLRP3) inflammasome activation in microglia was molecular initiation event (MIE). Proinflammatory mediator secretion and microglia activation were key events (KEs) at the cellular level. Neuroinflammation and neuronal damage were KEs at the organ/tissue level. Altered hippocampal physiology was the adverse outcome (AO) at the individual level. Based on the established AOP framework, further studies confirmed that mtROS-activated nuclear-factor-E2-related factor 2 (Nrf2)/PTEN-induced kinase 1 (PINK1)- mitophagy contributed to weaken the MIE. Molecular docking-assisted molecular biology experiments demonstrated that quercetin (Qu) enhanced this process. This article emphasizes the importance of the AOP in the risk management of nanomaterials. Furthermore, this paper guides the use of natural small-molecule drugs as a strategy to mitigate nanomaterial-induced neurotoxicity.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- School of Public Health, Wannan medical college, Wuhu 241002, People's Republic of China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- Department of Sport, Huainan Normal University, Huainan 232038, People's Republic of China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, People's Republic of China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yuanyuan Hu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Qing Fang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- Taizhou Center for Disease Control and Prevention, Taizhou 318000, People's Republic of China
| | - Dong Qiao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- Gusu District Center for Disease Control and Prevention, Soochow 215000, People's Republic of China
| | - Congcong Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- Yancheng Kindergarten Teachers College, Yancheng 224005, People's Republic of China
| | - Shujing Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| |
Collapse
|
2
|
Aschner M, Skalny AV, Lu R, Martins AC, Tizabi Y, Nekhoroshev SV, Santamaria A, Sinitskiy AI, Tinkov AA. Mitochondrial pathways of copper neurotoxicity: focus on mitochondrial dynamics and mitophagy. Front Mol Neurosci 2024; 17:1504802. [PMID: 39703721 PMCID: PMC11655512 DOI: 10.3389/fnmol.2024.1504802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Copper (Cu) is essential for brain development and function, yet its overload induces neuronal damage and contributes to neurodegeneration and other neurological disorders. Multiple studies demonstrated that Cu neurotoxicity is associated with mitochondrial dysfunction, routinely assessed by reduction of mitochondrial membrane potential. Nonetheless, the role of alterations of mitochondrial dynamics in brain mitochondrial dysfunction induced by Cu exposure is still debatable. Therefore, the objective of the present narrative review was to discuss the role of mitochondrial dysfunction in Cu-induced neurotoxicity with special emphasis on its influence on brain mitochondrial fusion and fission, as well as mitochondrial clearance by mitophagy. Existing data demonstrate that, in addition to mitochondrial electron transport chain inhibition, membrane damage, and mitochondrial reactive oxygen species (ROS) overproduction, Cu overexposure inhibits mitochondrial fusion by down-regulation of Opa1, Mfn1, and Mfn2 expression, while promoting mitochondrial fission through up-regulation of Drp1. It has been also demonstrated that Cu exposure induces PINK1/Parkin-dependent mitophagy in brain cells, that is considered a compensatory response to Cu-induced mitochondrial dysfunction. However, long-term high-dose Cu exposure impairs mitophagy, resulting in accumulation of dysfunctional mitochondria. Cu-induced inhibition of mitochondrial biogenesis due to down-regulation of PGC-1α further aggravates mitochondrial dysfunction in brain. Studies from non-brain cells corroborate these findings, also offering additional evidence that dysregulation of mitochondrial dynamics and mitophagy may be involved in Cu-induced damage in brain. Finally, Cu exposure induces cuproptosis in brain cells due mitochondrial proteotoxic stress, that may also contribute to neuronal damage and pathogenesis of certain brain diseases. Based on these findings, it is assumed that development of mitoprotective agents, specifically targeting mechanisms of mitochondrial quality control, would be useful for prevention of neurotoxic effects of Cu overload.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anatoly V. Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Sergey V. Nekhoroshev
- Problem Research Laboratory, Khanty-Mansiysk State Medical Academy, Khanty-Mansiysk, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Anton I. Sinitskiy
- Department of Biochemistry, South Ural State Medical University, Chelyabinsk, Russia
| | - Alexey A. Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
3
|
Gao M, Yang Z, Zhang Z, Chen L, Xu B. Nervous system exposure of different classes of nanoparticles: A review on potential toxicity and mechanistic studies. ENVIRONMENTAL RESEARCH 2024; 259:119473. [PMID: 38908667 DOI: 10.1016/j.envres.2024.119473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Nanoparticles (NPs) are generally defined as very small particles in the size range of 1-100 nm. Due to the rapid development of modern society, many new materials have been developed. The widespread use of NPs in medical applications, the food industry and the textile industry has led to an increase in NPs in the environment and the possibility of human contact, which poses a serious threat to human health. The nervous system plays a leading role in maintaining the integrity and unity of the body and maintaining a harmonious balance with the external environment. Therefore, based on two categories of organic and inorganic NPs, this paper systematically summarizes the toxic effects and mechanisms of NPs released into the nervous system. The results showed that exposure to NPs may damage the nervous system, decrease learning and cognitive ability, and affect embryonic development. Finally, a remediation scheme for NPs entering the body via the environment is also introduced. This scheme aims to reduce the neurotoxicity caused by NPs by supplementing NPs with a combination of antioxidant and anti-inflammatory compounds. The results provide a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Mingyang Gao
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ziye Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhen Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| |
Collapse
|
4
|
Goma AA, Salama AR, Tohamy HG, Rashed RR, Shukry M, El-Kazaz SE. Examining the Influence of Zinc Oxide Nanoparticles and Bulk Zinc Oxide on Rat Brain Functions: a Comprehensive Neurobehavioral, Antioxidant, Gene Expression, and Histopathological Investigation. Biol Trace Elem Res 2024; 202:4654-4673. [PMID: 38190061 PMCID: PMC11339107 DOI: 10.1007/s12011-023-04043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024]
Abstract
The study aimed to assess the impact of zinc oxide nanoparticles (ZnONPs) on rats' neurobehavior compared to bulk zinc oxide (BZnO). Thirty male Sprague-Dawley rats were randomly assigned to five groups. The control group received Tween 80 (10%), while the ZnONP groups were given ZnONPs at 5 and 10 mg/kg body weight dosages, and the bulk zinc oxide (BZnO) groups received BZnO at the same dosages. Behavioral observations, neurobehavioral examinations, and assessments of brain tissue oxidative markers, neurotransmitter levels, and histopathological changes were performed. The results indicated that ZnONP at a dosage of 5 mg/kg improved general behavior, locomotor activity, memory, and recognition and reduced fearfulness in rats. Conversely, the higher dosage of 10 mg/kg and the bulk form had adverse effects on general behavior, locomotor activity, and learning ability, with the bulk form demonstrating the most severe impact-znONP-5 treatment increased antioxidant enzyme levels and decreased inflammatory markers. BZnO-5 exhibited lower oxidative stress markers, although still higher than BZnO-10. Furthermore, ZnONP-5 and BZnO-5 increased neurotransmitter levels compared to higher dosages. ZnONP-5 upregulated the expression of brain-derived neurotrophic factor (BDNF) mRNA, while BZnO-5 showed increased BDNF mRNA expression and decreased expression of genes related to apoptosis and inflammation. In summary, ZnONPs at 5 mg/kg demonstrated positive effects on rat brain function and behavior, while higher dosages and the bulk form had detrimental effects. In conclusion, the studies emphasized the importance of further assessing various doses and forms of zinc oxide on brain health, highlighting the significance of dosage considerations when using nanomaterials.
Collapse
Affiliation(s)
- Amira A Goma
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Alyaa R Salama
- Department of Pathology, Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Rashed R Rashed
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt.
| | - Sara E El-Kazaz
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| |
Collapse
|
5
|
Lohrasbi F, Naghdi Babaei F, Ghasemi-Kasman M, Sadeghi-Chahnasir F, Shirzad M, Zabihi E. Effect of sub-acute exposure of metal-organic framework-199 on cognitive function and oxidative stress level of brain tissue in rat. Food Chem Toxicol 2024; 191:114866. [PMID: 39002791 DOI: 10.1016/j.fct.2024.114866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Metal-Organic Framework-199 (MOF-199) is a subgroup of MOFs that is utilized in different medical fields such as drug delivery. In the current study, the effect of sub-acute exposure to MOF-199 on spatial memory, working memory, inflammatory mediators' expression, and oxidative stress level of brain tissue has been investigated. Thirty-two male Wistar rats were randomly divided into four groups as vehicle, MOF-199 at doses 0.3, 3, or 6 mg/kg. After four injections of relevant interventions via tail vein during 14 days, behavioral parameters were investigated using Y-maze and Morris Water Maze (MWM) tests. Oxidative stress was measured by ferric reducing antioxidant power (FRAP) and thiobarbituric acid-reacting substance (TBARS) tests. The expression levels of TNF-α and IL-1β were assessed by quantitative real-time reverse-transcription PCR (qRT-PCR). No significant differences were observed in working memory, spatial learning and memory of MOF-199 receiving rats. Additionally, the level of oxidative stress and inflammatory genes expression were not remarkably changed in the brain tissues of MOF-199 treated rats. Despite the lack of remarkable toxic effects of sub-acute exposure to MOF-199, more studies with a longer duration of administration are necessary to use this substance for drug delivery systems in diseases related to the nervous system.
Collapse
Affiliation(s)
- Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | | - Moein Shirzad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Khalil HMA, Deraz NM, S M EG. Neuroprotective Assessment of Betaine against Copper Oxide Nanoparticle-Induced Neurotoxicity in the Brains of Albino Rats: A Histopathological, Neurochemical, and Molecular Investigation. ACS Chem Neurosci 2024; 15:1684-1701. [PMID: 38564598 DOI: 10.1021/acschemneuro.3c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1β and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1β, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1β and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nasrallah M Deraz
- Physical Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
7
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
8
|
Wang L, Han Y, Gu Z, Han M, Hu C, Li Z. Boosting the therapy of glutamine-addiction glioblastoma by combining glutamine metabolism therapy with photo-enhanced chemodynamic therapy. Biomater Sci 2023; 11:6252-6266. [PMID: 37534821 DOI: 10.1039/d3bm00897e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The complete treatment of high grade invasive glioblastoma (GBM) remains to be a great challenge, and it is of great importance to develop innovative therapeutic approaches. Herein, we found that GBM derived from U87 MG cells is a glutamine-addiction tumor, and jointly using glutamine-starvation therapy and photo-enhanced chemodynamic therapy (CDT) can significantly boost its therapy. We rationally fabricated tumor cell membrane coated Cu2-xSe nanoparticles (CS NPs) and an inhibitor of glutamine metabolism (Purpurin) for combined therapy, because glutamine rather than glucose plays a crucial role in the proliferation and growth of GBM cells, and serves as a precursor for the synthesis of glutathione (GSH). The resultant CS-P@CM NPs can be specifically delivered to the tumor site to inhibit glutamine metabolism in tumor cells, suppress tumor intracellular GSH, and increase H2O2 content, which benefit the CDT catalyzed by CS NPs. The cascade reaction can be further enhanced by irradiation with the second near-infrared (NIR-II) light at the maximum concentration of H2O2, which can be monitored by photoacoustic imaging. The NIR-II light irradiation can generate a large amount of reactive oxygen species (ROS) within a short time to kill tumor cells and enhance the CDT efficacy. This is the first work on the treatment of orthotopic malignant GBM through combined glutamine metabolism therapy and photo-enhanced CDT, and provides insights into the treatment of other solid tumors by modulating the metabolism of tumor cells.
Collapse
Affiliation(s)
- Ling Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Zhengpeng Gu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Mengxiao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| |
Collapse
|
9
|
Bilal M, Ihsanullah I, Hassan Shah MU, Bhaskar Reddy AV, Aminabhavi TM. Recent advances in the removal of dyes from wastewater using low-cost adsorbents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115981. [PMID: 36029630 DOI: 10.1016/j.jenvman.2022.115981] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
The presence of hazardous dyes in wastewater cause disastrous effects on living organisms and the environment. The conventional technologies for the remediation of dyes from water have several bottlenecks such as high cost and complex operation. This review aims to present a comprehensive outlook of various bio-sorbents that are identified and successfully employed for the removal of dyes from aqueous environments. The effect of physicochemical characteristics of adsorbents such as surface functional groups, pore size distribution and surface areas are critically evaluated. The adsorption potential at different experimental conditions of diverse bio-sorbents has been also explored and the influence of certain key parameters like solution pH, temperature, concentration of dyes, dosage of bio-sorbent and agitation speed is carefully evaluated. The mechanism of dyes adsorption, regeneration potential of the employed bio-sorbents and their comparison with other commercial adsorbents are discussed. The cost comparison of different adsorbents and key technological challenges are highlighted followed by the recommendations for future research.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mansoor Ul Hassan Shah
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan.
| | | | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi-580 031, India; Department of Biotechnology, Engineering and Food Technology, Chandigarh University, Mohali, Punjab, 140 413 India.
| |
Collapse
|
10
|
Köktürk M, Altindag F, Nas MS, Calimli MH. Ecotoxicological Effects of Bimetallic PdNi/MWCNT and PdCu/MWCNT Nanoparticles onto DNA Damage and Oxidative Stress in Earthworms. Biol Trace Elem Res 2022; 200:2455-2467. [PMID: 34313947 DOI: 10.1007/s12011-021-02821-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Bimetallic nanoparticles are synthesized using two different metal elements and used recently in many fields. However, limited studies related to the ecotoxic effects of nanoparticles available in the literature. The purpose of this study is to synthesize and characterize bimetallic PdCu/MWCNT and PdNi/MWCNT NPs and investigate their ecotoxic effects on earthworms. For this purpose, we injected approximately 20 µL of various concentrations of bimetallic PdCu/MWCNT and PdNi/MWCNT NPs (1, 10, 100, 1000, and 2000 mg/L) into the coelomic space of earthworms. We evaluated survival rate, malformations, reactive oxygen species (ROS) level, 8-OHdG content, and histopathological changes in earthworms at the 48th hour after exposure. PdCu/MWCNT and PdNi/MWCNT NPs were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) pattern, and Raman-scattering spectroscopy. Toxicological examinations showed that PdCu/MWCNT NPs reduced the survival rate of earthworms (2000 mg/L, 84%) and caused various malformations (various lesions, thinning, swelling, and rupture), but nonsignificant effects of survival rate and malformations were observed in earthworms using PdNi/MWCNT NPs. The histopathological examinations of earthworm tissues exposed with PdNi/MWCNT determined that tissues in all treatment groups had a normal histological appearance. However, at a concentration of 2000 mg/L of PdCu/MWCNT NPs, atrophy in the longitudinal muscle layer and less degenerative cells in the epidermis layer were observed in earthworm tissues. It was determined that PdNi/MWCNT and PdCu/MWCNT NPs caused significant increases in ROS levels and 8-OHdG activity in earthworm tissues after 48 h. Finally, our results demonstrated that the toxicity of PdNi/MWCNT NPs was detected to be lower than PdCu/MWCNT NPs. However, both nanoparticles may pose a toxicological risk at high concentrations (1000 and 2000 mg/L). These findings will provide valuable information to studies on the use of PdNi/MWCNT NPs in wastewater treatment systems, industrial and medical fields, which have been determined to have less ecotoxicological risk.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, College of Applied Sciences, Igdır University, Igdır, Turkey
| | - Fikret Altindag
- Department of Histology and Embryology, Medical School, Van Yüzüncü Yıl University, Van, Turkey
| | - Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, University of Igdır, Igdır, Turkey
| | - Mehmet Harbi Calimli
- Department of Medical Services and Techniques, Tuzluca Vocational School, University of Igdır, Igdır, Turkey.
| |
Collapse
|
11
|
Tohamy HG, El Okle OS, Goma AA, Abdel-Daim MM, Shukry M. Hepatorenal protective effect of nano-curcumin against nano‑copper oxide-mediated toxicity in rats: Behavioral performance, antioxidant, anti-inflammatory, apoptosis, and histopathology. Life Sci 2022; 292:120296. [PMID: 35045342 DOI: 10.1016/j.lfs.2021.120296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Metal oxide nanoparticles (NPs) induce oxidative stress that can cause cellular toxicity. A natural antioxidant that can be used to protect tissues from oxidative stress is curcumin. PURPOSE In the present study, we evaluated the protective effect of curcumin nanoparticles (curcumin-NPs) against copper oxide nanoparticles (CuO-NPs)-mediated hepatorenal effects on behavioral performance, biochemical markers, antioxidants, inflammation, apoptosis, and histopathology in rats. STUDY DESIGN Twenty Wistar adult male rats were randomly divided into four groups (n = 5); Group Ι served as a control, group ΙΙ was orally gavaged with curcumin-NPs (100 mg/Kg), group ΙΙI orally received CuO-NPs (100 mg/kg), and group ΙV received both CuO-NPs and curcumin-NPs orally for 14 days. METHODS Behavioral performance, biochemical markers, antioxidants, inflammatory mediators, and apoptotic gene expression were evaluated in addition to histopathological and immunohistochemical examination. RESULTS The results revealed that rats exposed to CuO-NPs suffered from behavioral alterations and hepatic and renal damages, which indicated by a marked elevation of serum biochemical parameters, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, urea, uric acid, and creatinine and a decline of total protein. Moreover, there was a significant downregulation in the expression of antioxidants genes, whereas inflammatory mediators expression were upregulated. The histopathological and immunohistochemical examination also corroborated these findings. In contrast, rats co-treated with curcumin-NPs exhibited better behavioral performance, biochemical profile, gene expression, histological architecture, and immunohistochemical staining results. CONCLUSION These findings strongly indicated that curcumin-NPs exert significant protection against the behavioral and hepatorenal disorders induced by CuO-NPs toxicity by modulating oxidative stress regulators and gene expression.
Collapse
Affiliation(s)
- Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Osama S El Okle
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Amira A Goma
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
12
|
Liu F, Dong YY, Lei G, Zhou Y, Liu P, Dang YH. HINT1 Is Involved in the Chronic Mild Stress Elicited Oxidative Stress and Apoptosis Through the PKC ε/ALDH-2/4HNE Pathway in Prefrontal Cortex of Rats. Front Behav Neurosci 2021; 15:690344. [PMID: 34177485 PMCID: PMC8219906 DOI: 10.3389/fnbeh.2021.690344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023] Open
Abstract
Major depressive disorder (MDD) is a severe, highly heterogeneous, and life-threatening psychiatric disease which affects up to 21% of the population worldwide. A new hypothesis suggests that the mitochondrial dysfunction causing oxidative stress (OS) and dysregulation of apoptosis in brain might be one of the key pathophysiological factors in MDD. Histidine triad nucleotide binding protein 1 (HINT1), which was first supposed to be protein kinase C (PKC) inhibitor, has been gradually demonstrated to be involved in diverse neuropsychiatric diseases. It still remains elusive that how HINT1 involves in depression. The present study utilized a rat model exposed to chronic mild stress (CMS) to explore the involvement of HINT1 in depression. Face validity, construct validity and predictive validity of CMS model were comprehensive evaluated in this study. Behavioral tests including sucrose preference test, open field test, and elevated plus maze and forced swimming test revealed that stressed rats displayed elevated level of anxiety and depression compared with the controls. CMS rats showed a significant decrease of superoxide dismutase, and a marked increase malondialdehyde levels in prefrontal cortex (PFC). We also found the CMS rats had elevated expression of HINT1, decreased levels of phosphorylated-PKC ε and aldehyde dehydrogenase-two (ALDH-2), and accumulated 4-hydroxynonenal (4HNE) in PFC. Moreover, CMS increased the levels of cleaved caspase-3 and Bax, and decreased the level of Bcl-2 in PFC. The alterations in behavior and molecule were prevented by antidepressant venlafaxine. These results demonstrated that HINT1 was involved in the CMS elicited OS and apoptosis in PFC, probably through the PKC ε/ALDH-2/4HNE pathway. The results suggest that the suppression of HINT1 might have potential as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ying-Ying Dong
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuan Zhou
- Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Peng Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong-Hui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|