1
|
Petrenko O, Badziukh S, Korsa V, Kolosovych I, Tykhomyrov A. Topical Application of Autologous Plasma-Derived Plasminogen Accelerates Healing of Chronic Foot Ulcers in Type 2 Diabetes Patients. INT J LOW EXTR WOUND 2024:15347346241256025. [PMID: 38758187 DOI: 10.1177/15347346241256025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Plasminogen (Pg) is currently considered a master regulator of wound healing, but the molecular mechanisms of its efficacy in improving impaired closure of chronic skin ulcers in type 2 diabetes patients remain unclear. Here, we investigated wound healing effects of autologous plasma-derived Pg in diabetes patients with chronic foot ulcers and evaluated Pg-induced changes in levels of key protein markers related to wound repair. Type 2 diabetes patients with chronic wounds of lower extremities were included in the study and received topical applications of Pg in a dose of 1.0 mg/mL every 2 days during 20 days, in addition to the standard wound management treatment. Patients treated only according to conventional protocol served as a control. Wound closure rates were monitored by digital planimetry of wound areas. Plasminogen supplementary treatment significantly accelerated relative wound closure as compared with diabetes patients from the control group (24 ± 4 days vs 120 ± 17 days, respectively, P < .01). As shown by Western blot, Pg application reduced expression of protein regulators of hypoxia events, angiogenesis, and autophagy such as hypoxia-inducible factor-1α (by 6.3-folds, P < .01), angiostatins (by 2.5-folds, P < .05), and autophagy marker LC3-II/LC3-I (by 8.6-folds, P < .05), while increasing vascular endothelial growth factor level by 1.9-folds (P < .05). Gelatin zymography showed that Pg-supplemented therapy decreased activity of matrix metalloproteinase-9 (MMP-9) by 3.5-folds at the end of treatment period (P < .01). We report here for the first time that topically applied plasma-derived Pg has a pronounced beneficial effect in promoting foot ulcer healing in patients with type 2 diabetes through preventing hypoxia-induced signaling, reducing autophagy flux, diminishing excessive MMP activity, and enhancing angiogenesis.
Collapse
Affiliation(s)
- Oleg Petrenko
- Department of Surgery, Bogomolets National Medical University, Kyiv, Ukraine
| | - Sergiy Badziukh
- Department of Surgery, Bogomolets National Medical University, Kyiv, Ukraine
| | - Victoria Korsa
- Department of Enzyme Chemistry & Biochemistry, Palladin Institute of Biochemistry of NAS of Ukraine, Kyiv, Ukraine
| | - Ihor Kolosovych
- Department of Surgery, Bogomolets National Medical University, Kyiv, Ukraine
| | - Artem Tykhomyrov
- Department of Enzyme Chemistry & Biochemistry, Palladin Institute of Biochemistry of NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
2
|
Wang E, Zhou S, Zeng D, Wang R. Molecular regulation and therapeutic implications of cell death in pulmonary hypertension. Cell Death Discov 2023; 9:239. [PMID: 37438344 DOI: 10.1038/s41420-023-01535-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Pulmonary hypertension (PH) is a clinical and pathophysiological syndrome caused by changes in pulmonary vascular structure or function that results in increased pulmonary vascular resistance and pulmonary arterial pressure, and it is characterized by pulmonary endothelial dysfunction, pulmonary artery media thickening, pulmonary vascular remodeling, and right ventricular hypertrophy, all of which are driven by an imbalance between the growth and death of pulmonary vascular cells. Programmed cell death (PCD), different from cell necrosis, is an active cellular death mechanism that is activated in response to both internal and external factors and is precisely regulated by cells. More than a dozen PCD modes have been identified, among which apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and cuproptosis have been proven to be involved in the pathophysiology of PH to varying degrees. This article provides a summary of the regulatory patterns of different PCD modes and their potential effects on PH. Additionally, it describes the current understanding of this complex and interconnected process and analyzes the therapeutic potential of targeting specific PCD modes as molecular targets.
Collapse
Affiliation(s)
- Enze Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei, 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei third clinical college of Anhui Medical University, Hefei, 230022, China
| | - Daxiong Zeng
- Department of pulmonary and critical care medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215006, China.
| | - Ran Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei, 230022, China.
| |
Collapse
|
3
|
Gavrylyak IV. PROTEIN MARKERS OF HYPOXIA AND ANGIOGENESIS IN TEAR FLUID OF PATIENTS WITH TRAUMATIC CORNEAL INJURY. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of our study was to evaluate tear levels of some protein endpoints that can reflect intensities of hypoxia, angiogenesis and tissue remodeling in wounded cornea. Methods. We examined 21 patients (21 eyes) with nonpenetrating corneal injuries. The patients underwent standard ophthalmological examination including previous history and ocular symptoms, visual acuity test, complete anterior and posterior eye segments examination using slit lamp biomicroscopy, evaluation of corneal staining with fluorescein, ophthalmoscopy. Healthy volunteers (n = 10) served as a control. Tear fluid was collected from patients and control volunteers with the use of a disposable tip micropipette. From the lower arch of the conjunctiva without instillation of anesthetic, tears were collected in a sterile plastic Eppendorf tube and frozen at -20 oC before laboratory examination. Proteins of tear fluids were separated by SDS-PAGE (loading 50 µg total protein per track). Then, levels of hypoxia inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and angiostatins were measured by western blot. Active MMP-9 levels were evaluated by gelatin zymography. The results of blot and zymography assays were processed by densitometric software and then analyzed statistically with the use of Mann-Whitney U-test. Results. Elevated HIF-1α (P<0.001) and angiostatins (P<0.05) levels were revealed by western blot in tear fluid samples collected from patients with injured cornea in comparison with the control group. It is noteworthy that extremely low amounts of VEGF were detected in tear fluid from injured eyes, in spite of abundance of its transcription inducer HIF-1α. Dramatically increased levels of active MMP-9 were found in the tear fluids of patients with corneal wounds, while no significant collagenolytic activity was observed in tears from healthy eyes. There is a strong correlation between extent of corneal lesions and changes in markers expression. Conclusions. Tear levels of HIF-1α and angiostatin as well as MMP-9 activity could represent valuable biomarkers of corneal injury severity in traumatic eye.
Collapse
|
4
|
Łuczak A, Małecki R, Kulus M, Madej M, Szahidewicz-Krupska E, Doroszko A. Cardiovascular Risk and Endothelial Dysfunction in Primary Sjogren Syndrome Is Related to the Disease Activity. Nutrients 2021; 13:nu13062072. [PMID: 34204342 PMCID: PMC8235705 DOI: 10.3390/nu13062072] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
The aim of our study was to evaluate if endothelial-dysfunction (ED) occurs in patients with primary Sjogren syndrome (pSS) and whether it is associated with the disease characteristics and activity. A total of 46 patients with pSS and 30 controls, without known cardiovascular disease, were enrolled in this study. A flow-mediated-dilation (FMD) of the brachial artery, plasma concentrations of the nitric oxide (NO) metabolic pathway (ADMA, L-arginine, SDMA, cGMP), and markers of endothelial inflammatory function (PAI-1, sE-selectin) and angiogenesis (angiostatin, VEGF) were analyzed. The FMD was significantly lower in pSS patients (7.56 ± 3.08 vs. 10.91 ± 1.02%, p = 0.043) and positively correlated with the Ro/SS-A-antibodies (r = 0.34, p = 0.03), pulmonary involvement (r = 0.52, p = 0.001) and inversely with ADMA (r = −0.35, p = 0.04). Plasma ADMA, L-arginine and angiostatin levels were significantly higher in pSS patients (0.39 ± 0.08 vs. 0.36 ± 0.06 µmol/L, p = 0.05; 29.07 ± 6.7 vs. 25.4 ± 5.23 µmol/L, p = 0.01; 152.25 ± 60.99 vs. 120.07 ± 38.7 pg/mL, p = 0.0, respectively). ADMA was associated with ESSDAI (r = 0.33, p = 0.02), SCORE (r = 0.57, p = 0.00003) and focus score (r = 0.38, p = 0.04). In the multiple regression analysis, the ESSDAI was significantly and independently associated with plasma ADMA levels (β = 0.24, p = 0.04). Moreover, plasma cGMP concentrations were negatively correlated with the disease duration (r = −0.31, p = 0.03). Endothelial function is impaired in patients with pSS and associated with the measures of disease activity, which supports the key-role of inflammation in developing and maintaining accelerated atherosclerosis.
Collapse
Affiliation(s)
- Anna Łuczak
- Department of Rheumatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.Ł.); (M.M.)
| | - Rafał Małecki
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Michał Kulus
- Department of Histology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-367 Wroclaw, Poland;
| | - Marta Madej
- Department of Rheumatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.Ł.); (M.M.)
| | - Ewa Szahidewicz-Krupska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Adrian Doroszko
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-736-4000
| |
Collapse
|
5
|
Levels of angiogenic regulators and MMP-2, -9 activities in Martorell ulcer: a case report. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.01.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
6
|
Tykhomyrov AA, Nedzvetsky VS, Zabida AA, Ağca CA, Kuryata OV. l-Arginine treatment improves angiogenic response and reduces matrix metalloproteinase activity in chronic heart failure patients with coronary artery disease. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Ribeiro EL, Fragoso IT, Gomes FODS, Oliveira AC, Silva AKSE, Silva PME, Ciambarella BT, Ramos IPR, Peixoto CA. Diethylcarbamazine: A potential treatment drug for pulmonary hypertension? Toxicol Appl Pharmacol 2017; 333:92-99. [PMID: 28851623 DOI: 10.1016/j.taap.2017.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 01/16/2023]
Abstract
The present study demonstrated the potential effects of diethylcarbamazine (DEC) on monocrotaline (MCT)-induced pulmonary hypertension. MCT solution (600mg/kg) was administered once per week, and 50mg/kg body weight of DEC for 28days. Three C57Bl/6 male mice groups (n=10) were studied: Control; MCT28, and MCT28/DEC. Echocardiography analysis was performed and lung tissues were collected for light microscopy (hematoxylin-eosin and Masson's trichrome staining), immunohistochemistry (αSMA, FADD, caspase 8, caspase 3, BAX, BCL2, cytochrome C and caspase 9) western blot (FADD, caspase 8, caspase 3, BAX, BCL2, cytochrome C and caspase 9) and qRt-PCR (COL-1α and αSMA). Echocardiography analysis demonstrated an increase in the pulmonary arterial blood flow gradient and velocity in the systole and RV area in the MCT28 group, while treatment with DEC resulted in a significant reduction in these parameters. Deposition of collagen fibers and αSMA staining around the pulmonary arteries was evident in the MCT28 group, while treatment with DEC reduced both. Western blot analysis revealed a decrease in BMPR2 in the MCT28 group, in contrast DEC treatment resulted in a significant increase in the level of BMPR2. DEC also significantly reduced the level of VEGF compared to the MCT28 group. Apoptosis extrinsic and intrinsic pathway markers were reduced in the MCT28 group. After treatment with DEC these levels returned to baseline. The results of this study indicate that DEC attenuates PH in an experimental monocrotaline-induced model by inhibiting a series of markers involved in cell proliferation/death.
Collapse
Affiliation(s)
- Edlene Lima Ribeiro
- Laboratory of Ultrastructure, Aggeu Magalhães Research Center - CPqAM, Pernambuco, Brazil; Federal University of Pernambuco, Brazil
| | - Ingrid Tavares Fragoso
- Laboratory of Ultrastructure, Aggeu Magalhães Research Center - CPqAM, Pernambuco, Brazil; Federal University of Pernambuco, Brazil
| | | | - Amanda Costa Oliveira
- Laboratory of Ultrastructure, Aggeu Magalhães Research Center - CPqAM, Pernambuco, Brazil; Federal University of Pernambuco, Brazil
| | - Amanda Karoline Soares E Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Research Center - CPqAM, Pernambuco, Brazil; Federal University of Pernambuco, Brazil
| | | | | | - Isalira Peroba Rezende Ramos
- National Center Structural Biology and Bio-imaging, Carlos Chagas Filho Biophysics Institute, Department of Radiology, University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
8
|
Park YM, Kim MA, Jung HT, Kang HJ, Yoo HS, Kang IC. Nutriproteomic Analysis of Hwangmaemok-Induced Antiangiogenic Effect Using Antibody-Arrayed Protein Chip Assay. J Med Food 2017; 20:586-591. [PMID: 28581882 DOI: 10.1089/jmf.2016.3775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the antiangiogenic effects of Lindera obtusiloba Blume (Hwangmaemok, HMM), which is a plant in the Lauraceae family that is commonly used to treat colds and gastritis. Moreover, given that a recent study reported the inhibitory effects of HMM extract on cancer metastasis, we hypothesized that HMM extract might possess and antiangiogenic function. Thus, this study was conducted to investigate the effects of HMM extract on endothelial cell proliferation, migration, and neovascularization in chick chorioallantoic membrane (CAM), and investigated the molecular mechanism of antiangiogenesis using a ProteoChip-based proteomics technology. To examine the effects of HMM extracts on endothelial cell proliferation and migration, we conducted basic fibroblast growth factor (bFGF)-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration. To assess the molecular mechanism of the antiangiogenic effects of HMM extract, a ProteoChip-based forwarded phase antibody array was employed to identify the differential expression of cell cycle proteins in HMM-treated HUVECs. HMM extract inhibited bFGF-induced HUVEC proliferation and migration in a dose-dependent manner and CAM angiogenesis. The ProteoChip-based antibody microarray data showed upregulation of Nibrin/NBS1 and downregulation of Plk-1 and Cyclin E, which are involved in cell division and controlling the cell cycle in bFGF-induced HUVECs. These data suggest that HMM may be a potent antitumor medicinal herb. The present study demonstrates that the antiangiogenic effect of HMM may be due to suppression of endothelial cell proliferation and migration. Taken together, these results emphasize the potential to use HMM extract as a potent angiogenesis inhibitor to treat cancer.
Collapse
Affiliation(s)
- Yu Mi Park
- 1 Department of Biological Science, College of Life and Health Sciences, Hoseo University , Asan, Korea
| | - Min-A Kim
- 1 Department of Biological Science, College of Life and Health Sciences, Hoseo University , Asan, Korea
| | - Hee Tae Jung
- 2 East-West Cancer Center, Dunsan Korean Medical Hospital of Daejeon University , Daejeon, Korea
| | - Hwa Jeong Kang
- 1 Department of Biological Science, College of Life and Health Sciences, Hoseo University , Asan, Korea
| | - Hwa-Seung Yoo
- 2 East-West Cancer Center, Dunsan Korean Medical Hospital of Daejeon University , Daejeon, Korea
| | - In-Cheol Kang
- 1 Department of Biological Science, College of Life and Health Sciences, Hoseo University , Asan, Korea
| |
Collapse
|
9
|
Kang H, Park BR, Yoo HS, Kwon KR, Kang IC. Anti-angiogenic function of a Korean Ginseng and Toad venom complex, Doksamsumsu-dan (DSSSD) analyzed by a forwarded phase antibody microarray. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-015-9308-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Tykhomyrov AA, Shram SI, Grinenko TV. [Role of angiostatins in diabetic complications]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:41-56. [PMID: 25762598 DOI: 10.18097/pbmc20156101041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Angiogenesis is a process through which new blood vessels form from pre-existing vessels. Angiogenesis is regulated by a number of factors of peptide nature. Disbalance of angiogenic system appears to be the major causative factor contributing vascular abnormalities in diabetes mellitus, resulting in various complications. Angiostatins, which are kringle-containing fragments of plasminogen/plasmin, are known to be powerful physiological inhibitors of neovascularization. In the present review, current literature data on peculiarities of production of angiostatins and their functioning at diabetes mellitus are summarized and analyzed for the first time. Also, role of angiostatins in the pathogenesis of typical diabetic complications, including retinopathies, nephropathies and cardiovascular diseases, is discussed. Data presented in this review may be useful for elaboration of novel effective approaches for diagnostics and therapy of vascular abnormalities in diabetes mellitus.
Collapse
|
11
|
Ishrat T, Pillai B, Soliman S, Fouda AY, Kozak A, Johnson MH, Ergul A, Fagan SC. Low-dose candesartan enhances molecular mediators of neuroplasticity and subsequent functional recovery after ischemic stroke in rats. Mol Neurobiol 2014; 51:1542-53. [PMID: 25084762 DOI: 10.1007/s12035-014-8830-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/22/2014] [Indexed: 01/19/2023]
Abstract
We have previously reported that angiotensin type 1 receptor (AT1R) blockade with candesartan exerts neurovascular protection after experimental cerebral ischemia. Here, we tested the hypothesis that a low, subhypotensive dose of candesartan enhances neuroplasticity and subsequent functional recovery through enhanced neurotrophic factor expression in rats subjected to ischemia reperfusion injury. Male Wistar rats (290-300 g) underwent 90 min of middle cerebral artery occlusion (MCAO) and received candesartan (0.3 mg/kg) or saline at reperfusion and then once every 24 h for 7 days. Functional deficits were assessed in a blinded manner at 1, 3, 7, and 14 days after MCAO. Animals were sacrificed 14-day post-stroke and the brains perfused for infarct size by cresyl violet. Western blot and immunohistochemistry were used to assess the expression of growth factors and synaptic proteins. Candesartan-treated animals showed a significant reduction in the infarct size [t (13) = -5.5, P = 0.0001] accompanied by functional recovery in Bederson [F (1, 13) = 7.9, P = 0.015], beam walk [F (1, 13) = 6.7, P = 0.023], grip strength [F (1, 13) = 15.2, P = 0.0031], and rotarod performance [F (1, 14) = 29.8, P < 0.0001]. In addition, candesartan-treated animals showed significantly higher expression of active metalloproteinase-3 (MMP-3), laminin, and angiopoietin-1 (Ang-1). The expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) and its receptor was significantly increased in the animals treated with candesartan. Also, we observed significant increases in neuroplasticity markers, synaptophysin, and PSD-95. These results indicate that low-dose candesartan had a large and enduring effect on measures of plasticity, and this accompanied the functional recovery after ischemic stroke.
Collapse
|
12
|
Plasmid transfer of plasminogen K1-5 reduces subcutaneous hepatoma growth by affecting inflammatory factors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:656527. [PMID: 24895598 PMCID: PMC4034484 DOI: 10.1155/2014/656527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022]
Abstract
There is evidence that plasminogen K1-5 (PlgK1-5) directly affects tumour cells and inflammation. Therefore, we analysed if PlgK1-5 has immediate effects on hepatoma cells and inflammatory factors in vitro and in vivo. In vitro, effects of plasmid encoding PlgK1-5 (pK1-5) on Hepa129, Hepa1-6, and HuH7 cell viability, apoptosis, and proliferation as well as VEGF and TNF-alpha expression and STAT3-phosphorylation were investigated. In vivo, tumour growth, proliferation, vessel density, and effects on vascular endothelial growth factor (VEGF) and tumour necrosis factor alpha (TNF-alpha) expression were examined following treatment with pK1-5. In vivo, pK1-5 halved cell viability; cell death was increased by up to 15% compared to the corresponding controls. Proliferation was not affected. VEGF, TNF-alpha, and STAT3-phosphorylation were affected following treatment with pK1-5. In vivo, ten days after treatment initiation, pK1-5 reduced subcutaneous tumour growth by 32% and mitosis by up to 77% compared to the controls. Vessel density was reduced by 50%. TNF-alpha levels in tumour and liver tissue were increased, whereas VEGF levels in tumours and livers were reduced after pK1-5 treatment. Taken together, plasmid gene transfer of PlgK1-5 inhibits hepatoma (cell) growth not only by reducing vessel density but also by inducing apoptosis, inhibiting proliferation, and triggering inflammation.
Collapse
|
13
|
Tykhomyrov AA, Shram SI, Grinenko TV. The role of angiostatins in diabetic complications. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2014. [DOI: 10.1134/s1990750814020140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Chade AR, Stewart NJ, Peavy PR. Disparate effects of single endothelin-A and -B receptor blocker therapy on the progression of renal injury in advanced renovascular disease. Kidney Int 2013; 85:833-44. [PMID: 24352153 PMCID: PMC3972340 DOI: 10.1038/ki.2013.477] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022]
Abstract
We hypothesized that chronic specific endothelin (ET)-A receptor blockade therapy would reverse renal dysfunction and injury in advanced experimental renovascular disease. To test this, unilateral renovascular disease was induced in 19 pigs and after 6 weeks, single-kidney hemodynamics and function was quantified in vivo using computed-tomography. All pigs with renovascular disease were divided such that 7 were untreated, 7 were treated with ET-A blockers, and 5 were treated with ET-B blockers. Four weeks later, all pigs were re-studied in vivo, then euthanized and ex vivo studies performed on the stenotic kidney to quantify microvascular density, remodeling, renal oxidative stress, inflammation, and fibrosis. RBF, GFR, and redox status were significantly improved in the stenotic kidney after ET-A but not ET-B blockade. Furthermore, only ET-A blockade therapy reversed renal microvascular rarefaction and diminished remodeling, which was accompanied by a marked decreased in renal inflammatory and fibrogenic activity. Thus, ET-A but not ET-B blockade ameliorated renal injury in pigs with advanced renovascular disease by stimulating microvascular proliferation and decreasing the progression of microvascular remodeling, renal inflammation and fibrosis in the stenotic kidney. These effects were functionally consequential since ET-A blockade improved single kidney microvascular endothelial function, RBF, and GFR, and decreased albuminuria.
Collapse
Affiliation(s)
- Alejandro R Chade
- 1] Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA [2] Department of Medicine, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA [3] Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nicholas J Stewart
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Patrick R Peavy
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
15
|
Abstract
Endothelial cell (EC) apoptosis and apoptosis resistant proliferation have been proposed to play crucial roles in the development of featured plexiform lesions in the pathogenesis of pulmonary hypertension (PH). Subsequently, EC injury associated smooth muscle cell (SMC) proliferation facilitates vascular remodeling and eventually leads to narrowed vascular lumen, increased pulmonary vascular resistance, increased pulmonary arterial pressure, and right heart failure. The imbalance between cell death and proliferation occurs in every stage of pulmonary vascular remodeling and pathogenesis of PH, and involves every cell type in the vasculature including, but not limited to ECs, SMCs, and fibroblasts. Despite extensive studies, the detailed cellular and molecular mechanisms on how the transition from initial apoptosis of ECs to apoptosis resistant proliferation on ECs and SMCs remains unclear. Recent knowledge on autophagy, a conservative and powerful regulatory machinery existing in almost all mammalian cells, has shed light on the complex and delicate control on cell fate in the development of vascular remodeling in PH. In this review, we will discuss the recent understandings on how the cross-talk between apoptosis and autophagy regulates cell death or proliferation in PH pathogenesis, particularly in pulmonary vascular remodeling involving ECs and SMCs.
Collapse
Affiliation(s)
- Yang Jin
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
16
|
Zhang PL, Lu HT, Zhao JG, Li MH. Protective effect of dl-3n-butylphthalide preconditioning on focal cerebral ischaemia-reperfusion injury in rats. Acta Neuropsychiatr 2013; 25:12-7. [PMID: 26953069 DOI: 10.1111/j.1601-5215.2012.00649.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the effect of dl-3n-butylphthalide (NBP) on the protection of cerebral tissue and possible mechanism on ischaemia-reperfusion injury, and to find out whether NBP therapy can extend the reperfusion window in an experimental stroke model in rats. METHODS Seventy-two Sprague-Dawley rats were randomly divided into sham operation, ischaemia-reperfusion and ischaemia-reperfusion with NBP groups. Focal cerebral ischaemia was induced using the modified intraluminal thread method and maintained for 2, 3 or 4 h. The ischaemia-reperfusion group received reperfusion immediately after ischaemia-reperfusion. The NBP group received intraperitoneal injection of NBP immediately after ischaemia, followed by reperfusion. The sham operation group received only injection of physiological saline. The cerebral infarction volume and neurological deficit were analysed, and vascular endothelial growth factor (VEGF) expression in brain tissues was visualised by immunohistochemistry. RESULTS NBP treatment caused a significant decrease in both infarction volume and neurological deficit compared with the ischaemia-reperfusion group at corresponding time points in each (p < 0.05). In the NBP group, the infarction volume and neurological deficit did not change with different ischaemia times. The expression of VEGF was significantly decreased in the ischaemia-reperfusion group compared with the sham group (p < 0.01), while this change was partly prevented in the NBP group (p < 0.01). The expression of VEGF in brain tissue in both the NBP and ischaemia-reperfusion groups gradually decreased when the ischaemic period was prolonged. CONCLUSION NBP treatment has a protective effect against cerebral ischaemia; this possible mechanism maybe related to the VEGF expression and may extend the reperfusion window for subsequent salvage of cerebral ischaemia by reperfusion.
Collapse
Affiliation(s)
- Pei-Lei Zhang
- Department of Diagnostic and Interventinal Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Hai-Tao Lu
- Department of Diagnostic and Interventinal Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Jun-Gong Zhao
- Department of Diagnostic and Interventinal Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Ming-Hua Li
- Department of Diagnostic and Interventinal Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| |
Collapse
|
17
|
Radziwon-Balicka A, Ramer C, Moncada de la Rosa C, Zielnik-Drabik B, Jurasz P. Angiostatin inhibits endothelial MMP-2 and MMP-14 expression: a hypoxia specific mechanism of action. Vascul Pharmacol 2012; 58:280-91. [PMID: 23220260 DOI: 10.1016/j.vph.2012.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 11/15/2012] [Accepted: 11/22/2012] [Indexed: 01/08/2023]
Abstract
Angiostatin is an angiogenesis inhibitor in part generated by and released from platelets. Since platelets upon thrombus formation can give rise to areas of hypoxia, we investigated the effects of angiostatin on endothelial cell migration and apoptosis during hypoxia. Human microvascular endothelial cells (HMVEC-L) were exposed to angiostatin under normoxic or hypoxic conditions. Apoptosis was measured by flow-cytometry. HMVEC-L migration was studied using a modified Boyden Chamber assay, in which migration is MMP-dependent. MMP-2, MMP-14, and VEGF levels were measured using immunoblot, Q-PCR and ELISA. During hypoxia HMVEC-L were protected from angiostatin-induced apoptosis due to increased hypoxia-induced VEGF expression. However, MMP-dependent migration of HMVEC-L was inhibited by angiostatin under hypoxic but not normoxic conditions. Angiostatin decreased MMP-2 at the gene and protein levels only in HMVEC-L exposed to hypoxia. A similar result was obtained for MMP-14. Higher angiostatin concentrations, as would be seen during thrombosis, induced HMVEC-L apoptosis, which was not rescued by VEGF. Under hypoxic conditions angiostatin's primary anti-angiogenic mechanism is likely inhibition of endothelial cell MMP-dependent endothelial cell migration. Only at higher concentrations does angiostatin induce endothelial cell death. This study identifies a novel angiostatin anti-angiogenesis mechanism that is only triggered under pathological-like conditions.
Collapse
Affiliation(s)
- Aneta Radziwon-Balicka
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | | | |
Collapse
|
18
|
Schmitz V, Sauerbruch T, Raskopf E. Anti-tumoural effects of PlgK1-5 are directly linked to reduced ICAM expression, resulting in hepatoma cell apoptosis. Int J Colorectal Dis 2012; 27:1029-38. [PMID: 22451253 DOI: 10.1007/s00384-012-1418-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE Angiostatin and angiostatin-like molecules are known as anti-angiogenic factors, which inhibit endothelial cell functions resulting in reduced tumour growth. Recent data indicate that these molecules, especially PlgK1-5, directly affect tumour cells, which could explain the strong anti-tumoural effects of PlgK1-5. Therefore, we have analysed whether PlgK1-5 alters tumour cell functions and expression levels of cell adhesion molecules in murine and human hepatoma cells in vitro and in vivo. METHODS First, effects on tumour growth, proliferation and apoptosis were investigated in vivo in a subcutaneous tumour model. In vitro, effects of PlgK1-5 on tumour cell apoptosis, clonal expansion, migration, corresponding ICAM expression and intracellular signal transduction in murine Hepa129 and human HuH7 hepatoma cells have been analysed. RESULTS In vivo, subcutaneous tumour growth was reduced by 75% in PlgK1-5-treated animals compared to the controls. This was accompanied by increased tumour cell apoptosis (up to 33%) and decreased tumour cell proliferation (by up to 21%). In vitro, PlgK1-5 induced apoptosis in hepatoma cells, corresponding to increased caspase-8 cleavage and reduced AKT phosphorylation. Migration and clonal expansion was also diminished in PlgK1-5-treated Hepa129, corresponding to decreased ICAM expression levels. CONCLUSIONS Here, we show that PlgK1-5 directly affects tumour cells by decreasing cell adhesion resulting-at least partly-in apoptosis. This is mediated by altered intracellular signal transduction and by activation of the caspase cascade. These findings further underscore the potential therapeutic role of PlgK1-5 in the treatment of HCC.
Collapse
Affiliation(s)
- Volker Schmitz
- Department of Internal Medicine I, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | | | | |
Collapse
|
19
|
microRNA-125b inhibits tube formation of blood vessels through translational suppression of VE-cadherin. Oncogene 2012; 32:414-21. [PMID: 22391569 DOI: 10.1038/onc.2012.68] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Angiogenesis is controlled positively or negatively by extrinsic and intrinsic molecular cues in endothelial cells (ECs); in the tumor microenvironment, the action of positive regulators exceeds that of negative regulators. Thus, overinduction of negative regulators may inhibit tumor angiogenesis. MicroRNAs (miRNAs or miRs) are endogenous short noncoding RNAs regulating gene expression either through translational inhibition or destabilization of target mRNA. Here, we show that miR-125b expression is transiently induced in ECs on stimulation with vascular endothelial growth factor or by ischemia. miR-125b inhibits translation of vascular endothelial (VE)-cadherin mRNA and in vitro tube formation by ECs. Injection of miR-125b into the tumor inhibited VE-cadherin expression by ECs and induced nonfunctional blood vessel formation, resulting in inhibition of tumor growth. It has been suggested that pro-angiogenic signals in ECs also upregulate anti-angiogenic molecules simultaneously via negative feedback. Because miR-125b induction in ECs is transient after pro-angiogenic stimulation, prolonged overexpression of miR-125b could result in blood vessel regression. Thus, miR-125b may be useful in cancer therapy by causing the collapse of the lumen of ECs.
Collapse
|
20
|
|
21
|
Gutiérrez-Fernández M, Rodríguez-Frutos B, Fuentes B, Vallejo-Cremades MT, Alvarez-Grech J, Expósito-Alcaide M, Díez-Tejedor E. CDP-choline treatment induces brain plasticity markers expression in experimental animal stroke. Neurochem Int 2011; 60:310-7. [PMID: 22226841 DOI: 10.1016/j.neuint.2011.12.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 12/23/2011] [Indexed: 11/28/2022]
Abstract
We investigated the effect of CDP-choline on brain plasticity markers expression in the acute phase of cerebral infarct in an experimental animal model. Male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion (pMCAO) and treated or not with CDP-choline (500 mg/kg) daily for 14 days starting 30 min after pMCAO. Functional status was evaluated with Roger's test; lesion volume with magnetic resonance imaging (MRI) and hematoxylin and eosin staining (H&E); cell death with TUNEL; cellular proliferation with BrdU immunohistochemistry; vascular endothelial growth factor (VEGF), synaptophysin, glial fibrillary acidic protein (GFAP) and low-density lipoprotein receptor-related protein (LRP) by immunofluorescence and Western-blot techniques. CDP-choline significantly improved functional recovery and decreased lesion volume on MRI, TUNEL-positive cell number and LRP levels at 14 days. In addition, CDP-choline significantly increased BrdU, VEGF and synaptophysin values and decreased GFAP levels in the peri-infarct zone compared with the infarct group. In conclusion, our data indicate that CDP-choline improved functional recovery after permanent middle cerebral artery occlusion in association with reductions in lesion volume, cell death and LRP expression. In fact, CDP-choline increased cell proliferation, vasculogenesis and synaptophysin levels and reduced GFAP levels in the peri-infarct area of the ischemic stroke.
Collapse
Affiliation(s)
- María Gutiérrez-Fernández
- Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neurosciences Area of IdiPAZ, Health Research Institute, Autónoma University of Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Bang JY, Kim KS, Kim EY, Yoo HS, Lee YW, Cho CK, Choi Y, Jeong HJ, Kang IC. Anti-angiogenic effects of the water extract of HangAmDan (WEHAD), a Korean traditional medicine. SCIENCE CHINA-LIFE SCIENCES 2011; 54:248-54. [PMID: 21416324 DOI: 10.1007/s11427-011-4144-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 12/29/2010] [Indexed: 11/28/2022]
Abstract
We investigated the anti-angiogenic effects of the water extract of HangAmDan (WEHAD), which is a crude extract of nine Korean medicinal substances of animal and plant origin. In human umbilical vein endothelial cells, WEHAD significantly inhibited bFGF-induced proliferation, adhesion, migration, and capillary tube formation. We used an antibody array to perform an analysis of signaling proteins, which showed up-regulated expression of various proteins including RAD51, RAD52, and p73, and down-regulated expression of pFAK. Blood vessel formation in a chick chorioallantoic membrane (CAM) treated with WEHAD was markedly reduced in length compared with a PBS-treated control group. These results suggest that inhibition of angiogenesis by WEHAD may be the mechanism of action for the anti-cancer effects of HAD.
Collapse
Affiliation(s)
- Ji-Young Bang
- InnoPharmasceen Inc., Hoseo University, Asan, 336-795, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cromer W, Jennings MH, Odaka Y, Mathis JM, Alexander JS. Murine rVEGF164b, an inhibitory VEGF reduces VEGF-A-dependent endothelial proliferation and barrier dysfunction. Microcirculation 2011; 17:536-47. [PMID: 21040119 DOI: 10.1111/j.1549-8719.2010.00047.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the effects of the murine inhibitory vascular endothelial growth factor (VEGF, rVEGF164b), we generated an adenoviral vector encoding rVEGF164b, and examined its effects on endothelial barrier, growth, and structure. METHOD Mouse vascular endothelial cells (MVEC) proliferation was determined by an MTT assay. Barrier of MVEC monolayers was measured by trans-endothelial electrical resistance (TEER). Reorganization of actin and zonula occludens-1 (ZO-1) were determined by fluorescent microscopy. RESULTS Mouse venous endothelial cells treated with murine VEGF-A (VEGF-A) (50 ng/mL) increased proliferation (60.7 ± 0.1%) within 24 hours (p < 0.05) and rVEGF164b inhibited VEGF-A-induced proliferation. TEER was significantly decreased by VEGF-A (81.7 ± 6.2% of control). Treatment with rVEGF164b at 50 ng/mL transiently reduced MVEC barrier (p < 0.05) at 30 minutes post-treatment (87.9 ± 1.7% of control TEER), and returned to control levels by 40 minutes post-treatment. Treatment with rVEGF164b prevented barrier changes by subsequent exposure to VEGF-A. Treatment of MVECS with VEGF-A reorganized F-actin and ZO-1, which was attenuated by rVEGF164b. CONCLUSIONS VEGF-A may dysregulate endothelial barrier through junctional cytoskeleton processes, which can be attenuated by rVEGF164b. The VEGF-A stimulated MVEC proliferation, barrier dysregulation, and cytoskeletal rearrangement. However, rVEGF164b blocks these effects, therefore it may be useful for regulation studies of VEGF-A/VEGF-R signaling in many different models.
Collapse
Affiliation(s)
- Walter Cromer
- Gene Therapy Program, Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | |
Collapse
|
24
|
Cromer WE, Mathis JM, Granger DN, Chaitanya GV, Alexander JS. Role of the endothelium in inflammatory bowel diseases. World J Gastroenterol 2011; 17:578-93. [PMID: 21350707 PMCID: PMC3040330 DOI: 10.3748/wjg.v17.i5.578] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/29/2010] [Accepted: 07/06/2010] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are a complex group of diseases involving alterations in mucosal immunity and gastrointestinal physiology during both initiation and progressive phases of the disease. At the core of these alterations are endothelial cells, whose continual adjustments in structure and function coordinate vascular supply, immune cell emigration, and regulation of the tissue environment. Expansion of the endothelium in IBD (angiogenesis), mediated by inflammatory growth factors, cytokines and chemokines, is a hallmark of active gut disease and is closely related to disease severity. The endothelium in newly formed or inflamed vessels differs from that in normal vessels in the production of and response to inflammatory cytokines, growth factors, and adhesion molecules, altering coagulant capacity, barrier function and blood cell recruitment in injury. This review examines the roles of the endothelium in the initiation and propagation of IBD pathology and distinctive features of the intestinal endothelium contributing to these conditions.
Collapse
|
25
|
Analysis of anti-angiogenic mechanism of HangAmDan-B (HAD-B), a Korean traditional medicine, using antibody microarray chip. BIOCHIP JOURNAL 2010. [DOI: 10.1007/s13206-010-4412-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Zhu HF, Wan D, Luo Y, Zhou JL, Chen L, Xu XY. Catalpol increases brain angiogenesis and up-regulates VEGF and EPO in the rat after permanent middle cerebral artery occlusion. Int J Biol Sci 2010; 6:443-53. [PMID: 20827397 PMCID: PMC2935667 DOI: 10.7150/ijbs.6.443] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/01/2010] [Indexed: 11/05/2022] Open
Abstract
To investigate the role and mechanism of catalpol in brain angiogenesis in a rat model of stroke, the effect of catalpol (5 mg/kg; i.p) or vehicle administered 24 hours after permanent middle cerebral artery occlusion (pMCAO) on behavior, angiogenesis, ultra-structural integrity of brain capillary endothelial cells, and expression of EPO and VEGF were assessed. Repeated treatments with Catalpol reduced neurological deficits and significantly improved angiogenesis, while significantly increasing brain levels of EPO and VEGF without worsening BBB edema. These results suggested that catalpol might contribute to infarcted-brain angiogenesis and ameliorate the edema of brain capillary endothelial cells (BCECs) by upregulating VEGF and EPO coordinately.
Collapse
Affiliation(s)
- Hui-Feng Zhu
- School of Pharmaceutical Sciences & School of Chinese Medicine, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | |
Collapse
|
27
|
Aurora AB, Aurora AB, Biyashev D, Mirochnik Y, Zaichuk TA, Sánchez-Martinez C, Renault MA, Losordo D, Volpert OV. NF-kappaB balances vascular regression and angiogenesis via chromatin remodeling and NFAT displacement. Blood 2010; 116:475-84. [PMID: 20203265 PMCID: PMC2913457 DOI: 10.1182/blood-2009-07-232132] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 01/13/2010] [Indexed: 12/12/2022] Open
Abstract
Extracellular factors control the angiogenic switch in endothelial cells (ECs) via competing survival and apoptotic pathways. Previously, we showed that proangiogenic and antiangiogenic factors target the same signaling molecules, which thereby become pivots of angiogenic balance. Here we show that in remodeling endothelium (ECs and EC precursors) natural angiogenic inhibitors enhance nuclear factor-kappaB (NF-kappaB) DNA binding, which is critical for antiangiogenesis, and that blocking the NF-kappaB pathway abolishes multiple antiangiogenic events in vitro and in vivo. NF-kappaB induction by antiangiogenic molecules has a dual effect on transcription. NF-kappaB acts as an activator of proapoptotic FasL and as a repressor of prosurvival cFLIP. On the FasL promoter, NF-kappaB increases the recruitment of HAT p300 and acetylated histones H3 and H4. Conversely, on cFLIP promoter, NF-kappaB increases histone deacetylase 1 (HDAC1), decreases p300 and histone acetylation, and reduces the recruitment of NFAT, a transcription factor critical for cFLIP expression. Finally, we found a biphasic effect, when HDAC inhibitors (HDACi) were used to test the dependence of pigment epithelial-derived factor activity on histone acetylation. The cooperative effect seen at low doses switches to antagonistic as the concentrations increase. Our study defines an interactive transcriptional network underlying angiogenic balance and points to HDACi as tools to manipulate the angiogenic switch.
Collapse
Affiliation(s)
- Arin B Aurora
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Emara M, Obaid L, Johnson S, Bigam DL, Cheung PY. Angiostatins decrease in the kidney of newborn piglets after hypoxia-reoxygenation. Eur J Pharmacol 2010; 644:203-8. [PMID: 20621087 DOI: 10.1016/j.ejphar.2010.06.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 06/11/2010] [Accepted: 06/24/2010] [Indexed: 02/06/2023]
Abstract
Little is known about the expression of kidney angiostatin in the hypoxia and reoxygenation of neonates. In this study, we compared the effect of 21% and 100% reoxygenation on kidney levels of angiostatin and its related factors in newborn piglets subjected to hypoxia-reoxygenation. Newborn piglets were subjected to 2h hypoxia followed by 1h of reoxygenation with either 21% or 100% oxygen and observed for 4days. There were 3 isoforms (38, 43 and 50kDa) of angiostatins identified in the kidney tissue of newborn piglets with the 38kDa being the major isoform (~60%). The 38kDa, but not 43 and 50kDa, angiostatin isoform correlated significantly with the levels of total angiostatin and plasminogen (r=0.95 and r=0.58, respectively). On day 4 of recovery in 100% hypoxic-reoxygenated group, there were decreases in kidney tissue levels of plasminogen, total angiostatin, angiostatin (38 and 43kDa, but not 50kDa), whereas no significant changes were found in the 21% hypoxic-reoxygenated group when compared to the sham-operated piglets with no hypoxia-reoxygenation. Both 21% and 100% hypoxic-reoxygenated groups did not show significant changes in kidney tissue levels of 50kDa angiostatin, MMP-2, MMP-9 and HIF-1alpha. In comparison to 21% oxygen, neonatal resuscitation with 100% oxygen decreased the kidney tissue levels of plasminogen and angiostatin that may play a role in neonatal kidney injury and altered renal development in adulthood.
Collapse
Affiliation(s)
- Marwan Emara
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | |
Collapse
|
29
|
Albini A, Indraccolo S, Noonan DM, Pfeffer U. Functional genomics of endothelial cells treated with anti-angiogenic or angiopreventive drugs. Clin Exp Metastasis 2010; 27:419-39. [PMID: 20383568 DOI: 10.1007/s10585-010-9312-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/16/2010] [Indexed: 01/28/2023]
Abstract
Angiogenesis is a highly regulated physiological process that has been studied in considerable detail given its importance in several chronic pathologies. Many endogenous factors and hormones intervene in the regulation of angiogensis and classical as well as targeted drugs have been developed for its control. Angiogenesis inhibition has come off the bench and entered into clinical application for cancer therapy, particularly for metastatic disease. While the clinical benefit is currently in terms of months, preclinical data suggest that novel drugs and drug combinations could lead to substantial improvement. The many targets of endogenous angiogenesis inhibitors reflect the complexity of the process; in contrast, current clinical therapies mainly target the vascular endothelial growth factor system. Cancer chemopreventive compounds can retard tumor insurgence and delay or prevent metastasis and many of these molecules hinder angiogenesis, a mechanism that we termed angioprevention. Angiopreventive drugs appear to prevalently act through the inhibition of the pro-inflammatory and anti-apoptotic player NFkappaB, thus contrasting inflammation dependent angiogenesis. Relatively little is known concerning the effects of these angiogenesis inhibitors on gene expression of endothelial cells, the main target of many of these molecules. Here we provide an exhaustive list of anti-angiogenic molecules, and summarize their effects, where known, on the transcriptome and functional genomics of endothelial cells. The regulation of specific genes can be crucial to preventive or therapeutic intervention. Further, novel targets might help to circumvent resistance to anti-angiogenic therapy. The studies we review are relevant not only to cancer but also to other chronic degenerative diseases involving endothelial cells, such as cardiovascular disorders, diabetes, rheumatoid arthritis and retinopaties, as well as vessel aging.
Collapse
Affiliation(s)
- Adriana Albini
- MultiMedica Castellanza (VA) and Oncology Research, IRCCS MultiMedica, 20138 Milan, Italy.
| | | | | | | |
Collapse
|
30
|
Busti C, Falcinelli E, Momi S, Gresele P. Matrix metalloproteinases and peripheral arterial disease. Intern Emerg Med 2010; 5:13-25. [PMID: 19626421 DOI: 10.1007/s11739-009-0283-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/18/2009] [Indexed: 01/01/2023]
Abstract
Matrix metalloproteinases (MMPs), a family of enzymes that degrade extracellular matrix, are emerging as important modulators of atherothrombosis. MMPs are produced by inflammatory cells; some of them are also released by activated platelets and play a crucial role in the remodeling processes, leading to atherosclerotic plaque formation, plaque rupture, arterial aneurysm development, and critical limb ischemia. Independent from their matrix degrading activity, MMPs also regulate some cell functions relevant to atherothrombosis, such as platelet activation, neutrophil activation, and vascular reactivity. Plasma levels of some MMPs are increasingly being recognized as a biomarker of atherosclerosis and cardiovascular risk. In peripheral arterial disease, MMPs have been shown to be involved in angiogenesis, arteriogenesis, and the development of arterial calcifications. Increased plasma levels of some MMPs (MMP-2, MMP-9) have been correlated with PAD development and severity. Single nucleotide polymorphisms of the genes encoding for some MMPs have also been associated with the risk of developing peripheral arterial disease and critical limb ischemia. Large prospective observational studies are needed to further demonstrate the role of MMPs in PAD. In perspective, pharmacologic targeting of the expression or activity of MMPs may represent a novel, attractive approach for the treatment of peripheral arterial disease.
Collapse
Affiliation(s)
- Chiara Busti
- Division of Internal and Cardiovascular Medicine, Department of Internal Medicine, University of Perugia, Via E. dal Pozzo, 06126, Perugia, Italy
| | | | | | | |
Collapse
|
31
|
Elevated platelet angiostatin and circulating endothelial microfragments in idiopathic pulmonary arterial hypertension: A preliminary study. Thromb Res 2010; 125:53-60. [DOI: 10.1016/j.thromres.2009.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 12/13/2022]
|
32
|
Mu W, Long DA, Ouyang X, Agarwal A, Cruz PE, Roncal CA, Nakagawa T, Yu X, Hauswirth WW, Johnson RJ. Angiostatin overexpression is associated with an improvement in chronic kidney injury by an anti-inflammatory mechanism. Am J Physiol Renal Physiol 2009; 296:F145-52. [PMID: 18971211 PMCID: PMC2636910 DOI: 10.1152/ajprenal.90430.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/22/2008] [Indexed: 01/01/2023] Open
Abstract
Angiostatin, a proteolytic fragment of plasminogen, is a potent anti-angiogenic factor recently shown also to have an inhibitory effect on leukocyte recruitment and macrophage migration. Because both angiogenesis and inflammation play key roles in the progression of chronic kidney disease, we evaluated the effect of angiostatin treatment in the rat remnant kidney model. Rats were pretreated for 4 wk with recombinant adeno-associated viruses expressing either angiostatin or green fluorescence protein. Chronic renal disease was then induced by a subtotal nephrectomy, and rats were killed 8 wk later for analysis. Angiostatin treatment was associated with significantly less proteinuria but no alterations in serum creatinine, creatinine clearance, and blood urea nitrogen levels. Treatment with angiostatin reduced renal peritubular capillary number and decreased urinary nitric oxide levels. Despite reducing capillary density, angiostatin diminished interstitial fibrosis in association with reduced macrophage and T-cell infiltration and renal monocyte chemoattractant protein-1 mRNA levels. In conclusion, angiostatin overexpression was associated with attenuated renal disease progression in a model of chronic kidney injury, likely because of its anti-inflammatory actions. However, its anti-angiogenic actions suggest countering effects that could partially offset its benefit in chronic kidney diseases.
Collapse
Affiliation(s)
- Wei Mu
- Division of Nephrology, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen YH, Huang YH, Wu HL, Wu MP, Chang WT, Kuo YZ, Lu KC, Wu LW. Angiostatin K1-3 induces E-selectin via AP1 and Ets1: a mediator for anti-angiogenic action of K1-3. J Thromb Haemost 2008; 6:1953-61. [PMID: 18761727 DOI: 10.1111/j.1538-7836.2008.03139.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Angiostatin, a circulating angiogenic inhibitor, is an internal fragment of plasminogen and consists of several isoforms, K1-3 included. We previously showed that K1-3 was the most potent angiostatin to induce E-selectin mRNA expression. The purpose of this study was to identify the mechanism responsible for K1-3-induced E-selectin expression and investigate the role of E-selectin in the anti-angiogenic action of K1-3. METHODS AND RESULTS Quantitative real time RT-PCR and Western blotting analyses confirmed a time-dependent increase of E-selectin mRNA and protein induced by K1-3. Subcellular fractionation and immunofluorescence microscopy showed the co-localization of K1-3-induced E-selectin with caveolin 1 (Cav1) in lipid rafts in which E-selectin may behave as a signaling receptor. Promoter-driven reporter assays and site-directed mutagenesis showed that K1-3 induced E-selectin expression via promoter activation and AP1 and Ets-1 binding sites in the proximal E-selectin promoter were required for E-selectin induction. The in vivo binding of both protein complexes to the proximal promoter was confirmed by chromatin immunoprecipitation (ChIP). Although K1-3 induced the activation of ERK1/2 and JNK, only repression of JNK activation attenuated the induction of E-selectin by K1-3. A modulatory role of E-selectin in the anti-angiogenic action of K1-3 was manifested by both overexpression and knockdown of E-selectin followed by cell proliferation assay. CONCLUSIONS We show that K1-3 induced E-selectin expression via AP1 and Ets-1 binding to the proximal E-selectin promoter (-356/+1), which was positively mediated by JNK activation. Our findings also demonstrate E-selectin as a novel target for the anti-angiogenic therapy.
Collapse
Affiliation(s)
- Y-H Chen
- Institute of Basic Medical Sciences, College of Mdicine, National Cheng Kung University, Tainan, Taiwa, ROC
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Prandini MH, Desroches-Castan A, Feraud O, Vittet D. No evidence for vasculogenesis regulation by angiostatin during mouse embryonic stem cell differentiation. J Cell Physiol 2007; 213:27-35. [PMID: 17450519 DOI: 10.1002/jcp.21084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During embryogenesis, the formation of blood vessels proceeds by both vasculogenesis and angiogenesis. Both processes appear to be finely regulated. To date, factors and genes involved in the negative regulation of embryonic vasculogenesis remain largely unknown. Angiostatin is a proteolytic fragment of plasminogen that acts as an inhibitor of angiogenesis. In this study, we analyzed the potential role of angiostatin during early stages of embryonic stem (ES) cell endothelial in vitro differentiation, as a model of vasculogenesis. We found an early expression of the known angiostatin binding sites (angiomotin, alphav integrin and c-met oncogene) during ES cell differentiation. Nevertheless, we did not detect any significant effect of angiostatin on mesoderm induction and on differentiation commitment into cells of the endothelial lineage. In both control and angiostatin-treated conditions, the temporal and extent of formation of the Flk1 positive and Flk-1/CD31 (PECAM-1) positive cell populations were not significantly different. Quantitative RT-PCR experiments of endothelial gene expression (Flk-1, PECAM-1 and tie-2) confirm a lack of interference with early steps of endothelial differentiation in embryoid bodies. No evidence for an angiostatin effect on endothelial cord-like formation could be detected at later differentiation stages. On the other hand, angiostatin inhibits vascular endothelial growth factor-induced endothelial sprouting from embryoid bodies cultured in three dimensional type I collagen gels. Taken together, these findings support a selective inhibitory effect on the sprouting angiogenesis response for angiostatin during embryonic vascular development.
Collapse
|
36
|
Emara M, Obaid L, Johnson S, Bigam DL, Cheung PY. Expression of angiostatin and its related factors in the plasma of newborn pigs with hypoxia and reoxygenation. Arch Biochem Biophys 2007; 466:136-44. [PMID: 17718998 DOI: 10.1016/j.abb.2007.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 12/12/2022]
Abstract
Little is known about angiostatin and its related factors in the hypoxia-reoxygenation of neonates. In this study we compared the effect of 21% and 100% reoxygenation on temporal changes in the plasma level of these factors in newborn piglets subjected to hypoxia. Newborn piglets were subjected to 2 h hypoxia followed by 1 h of reoxygenation with either 21% or 100% oxygen and observed for 4 days. On day 4 of recovery in 100% hypoxic-reoxygenated group, there were increases in total angiostatin, plasminogen/plasmin and MMP-2 levels, and decreases in VEGF levels (vs. respective baseline levels, all P <0.001), whereas no significant temporal changes were found in the 21% hypoxic-reoxygenated and sham-operated groups. Angiostatin levels correlated positively with the levels of MMP-2 and HIF-1alpha and negatively with VEGF levels in 100% hypoxic-reoxygenated group (all P <0.05). In comparison to 21% oxygen, neonatal resuscitation with 100% oxygen was found to increase the levels anti-angiogenic factors.
Collapse
Affiliation(s)
- Marwan Emara
- Department of Pediatrics, University of Alberta, Edmonton, Alta., Canada T6G 2S2
| | | | | | | | | |
Collapse
|
37
|
Nguyen TMB, Subramanian IV, Kelekar A, Ramakrishnan S. Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells. Blood 2007; 109:4793-802. [PMID: 17272502 DOI: 10.1182/blood-2006-11-059352] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractInhibition of endothelial cell proliferation and angiogenesis is emerging as an important strategy in cancer therapeutics. Kringle 5 (K5) of human plasminogen is a potent angiogenesis inhibitor. Previous studies have shown K5 exposure promotes caspase activity and apoptosis in endothelial cells. Here we report that K5 treatment evokes an autophagic response in endothelial cells that is specific and initiated even in the absence of nutritional stress. Endothelial cells exposed to K5 up-regulated Beclin 1 levels within a few hours. Furthermore, progressively increasing amounts of antiapoptotic Bcl-2 were found to be complexed with Beclin 1, although total levels of Bcl-2 remained unchanged. Prolonged exposure to K5 ultimately led to apoptosis via mitochondrial membrane depolarization and caspase activation in endothelial cells. Knocking down Beclin 1 levels by RNA interference decreased K5 induced autophagy but accelerated K5-induced apoptosis. These studies suggest that interfering with the autophagic survival response can potentiate the antiangiogenic effects of Kringle 5 in endothelial cells.
Collapse
Affiliation(s)
- Tri Minh Bui Nguyen
- Department of Pharmacology, University of Minnesota Medical School, 321 Church Street SE, Minnesota, MN 55455, USA
| | | | | | | |
Collapse
|
38
|
Re RN, Cook JL. Potential therapeutic implications of intracrine angiogenesis. Med Hypotheses 2007; 69:414-21. [PMID: 17320306 PMCID: PMC2234225 DOI: 10.1016/j.mehy.2006.10.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 01/19/2023]
Abstract
Angiogenesis, in most cases, is a requirement for tumor growth beyond a diameter of a few millimeters and is, therefore, a major target for cancer therapy. The intracellular actions of certain extracellular signaling proteins (intracrines) have been reported, and it is clear that intracrines such as vascular endothelial growth factor, basic fibroblast growth factor, angiogenin, angiotensin, and endothelin, among others, are involved in angiogenesis. We have proposed that intracrine networks play an important role in angiogenesis, and have suggested that very similar intracrine networks exist in some tumor cells. These notions have implications for the development of anti-angiogenesis therapies because they suggest that the inhibition of intracellular intracrine trafficking pathways may be an effective therapeutic target. Here the participation and regulation of intracrines in angiogenesis is explored, as are the actions of various anti-angiogenic factors.
Collapse
Affiliation(s)
- Richard N. Re
- Research Division, Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, Louisiana 70121, Tel: 504-842-3139, Fax: 504-842-3899
| | - Julia L. Cook
- Research Division, Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, Louisiana 70121, Tel: 504-842-3139, Fax: 504-842-3899
| |
Collapse
|
39
|
Sandor Z, Deng XM, Khomenko T, Tarnawski AS, Szabo S. Altered angiogenic balance in ulcerative colitis: a key to impaired healing? Biochem Biophys Res Commun 2006; 350:147-150. [PMID: 17011522 DOI: 10.1016/j.bbrc.2006.09.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 09/02/2006] [Indexed: 02/06/2023]
Abstract
Angiogenesis is an essential component of ulcer healing since it assures delivery of oxygen and nutrients to the healing site. Previous studies demonstrated increased serum and tissue levels of vascular endothelial growth factor (VEGF, the most potent angiogenic growth factor) in patients with active ulcerative colitis (UC) and animal models of UC. However, there is no explanation why the healing of UC-related mucosal injury is impaired despite increased expression of VEGF. Expression of angiogenesis inhibitors, angiostatin and/or endostatin, in UC has not been determined before. We examined expression of VEGF, angiostatin, and endostatin in two models of experimental UC. The results revealed that in addition to increased VEGF, both endostatin and angiostatin levels were markedly (2-3-folds) increased in colonic mucosa at early stage of experimental UC. This is the first demonstration that colitis triggers increase in angiostatin and endostatin levels. The results may explain why mucosal lesions heal slowly despite increased VEGF levels, and may provide a novel and mechanistic insight into UC.
Collapse
Affiliation(s)
- Zs Sandor
- Medical Health Care Groups, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | | | | | | | | |
Collapse
|
40
|
Sobke ACS, Selimovic D, Orlova V, Hassan M, Chavakis T, Athanasopoulos AN, Schubert U, Hussain M, Thiel G, Preissner KT, Herrmann M. The extracellular adherence protein fromStaphylococcus aureusabrogates angiogenic responses of endothelial cells by blocking Ras activation. FASEB J 2006; 20:2621-3. [PMID: 17077291 DOI: 10.1096/fj.06-5764fje] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular adherence protein (Eap), a broad-spectrum adhesin secreted by Staphylococcus aureus, was previously shown to curb acute inflammatory responses, presumably through its binding to endothelial cell (EC) ICAM-1. Examining the effect of Eap on endothelial function in more detail, we here show that, in addition, Eap functions as a potent angiostatic agent. Concomitant treatment of EC with purified Eap resulted in the complete blockage of the mitogenic and sprouting responses elicited by vascular endothelial growth factor (VEGF)165 or basic fibroblast growth factor (bFGF). Moreover, the induction of tissue factor and decay-accelerating factor were repressed by Eap, as determined by qRT-polymerase chain reaction (qRT-PCR), with a corresponding reduction in Egr-1 protein up-regulation seen. This angiostatic activity was accompanied by a corresponding inhibition in ERK1/2 phosphorylation, while activation of p38 was not affected. Inhibition occurred downstream of tyrosine kinase receptor activation, as comparable effects were seen on TPA-induced ERK1/2 phosphorylation. Similar to previously described angiostatic agents like angiopoietin-1 or the 16-kDa prolactin fragment, Eap blockage of the Ras/Raf/MEK/ERK cascade was localized by pull-down assay at the level of Ras activation. Eap's combined anti-inflammatory and antiangiogenic properties render this bacterial protein not only an important virulence factor during S. aureus infection but open new perspectives for therapeutic applications in pathological neovascularization.
Collapse
Affiliation(s)
- Astrid C S Sobke
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, D-66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chung AWY, Hsiang YN, Matzke LA, McManus BM, van Breemen C, Okon EB. Reduced expression of vascular endothelial growth factor paralleled with the increased angiostatin expression resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in human type 2 diabetic arterial vasculature. Circ Res 2006; 99:140-8. [PMID: 16778129 DOI: 10.1161/01.res.0000232352.90786.fa] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Impaired angiogenesis could contribute to the increased incidence of coronary and peripheral artery disease in diabetic patients. Angiogenesis is initiated by vascular endothelial growth factor (VEGF), a potent angiogenic cytokine, and suppressed by angiostatin, which is generated by matrix metalloproteinase (MMP)-2 and -9 through proteolytic cleavage of plasminogen. We hypothesized that MMP-2 and -9 were upregulated in the diabetic vasculature, resulting in increased angiostatin production and reduced blood vessel formation. In diabetic internal mammary artery samples (n=32) collected from patients undergoing coronary artery bypass grafting surgery, capillary density was only 30% of that in the nondiabetic vessels (n=32), whereas VEGF expression was reduced by 48%. Diabetes upregulated the expression and the gelatinolytic activity of MMP-2 and -9. Active MMP-2 and -9 were released from diabetic arteries, but not from nondiabetic vessels, during phenylephrine-induced vasoconstriction. Diabetes enhanced transcription and protein expression of tissue inhibitor of MMP (TIMP)-1 but had an opposite effect on TIMP-2. In diabetic vessels angiostatin was increased by 62% and was positively correlated with the activities of MMP-2 and -9 (r2=0.806 and 0.742, respectively). This report indicated a strong correlation between the upregulation of MMP-2 and MMP-9 and the increased angiostatin expression in the human diabetic arterial vasculature. The enhanced angiostatin production with a reduced VEGF formation may explain the pathogenesis of impaired angiogenesis in diabetes mellitus.
Collapse
Affiliation(s)
- Ada W Y Chung
- The James Hogg iCAPTURE Center for the Cardiovascular and Pulmonary Research, St. Paul's Hospital, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Yap R, Veliceasa D, Emmenegger U, Kerbel RS, McKay LM, Henkin J, Volpert OV. Metronomic Low-Dose Chemotherapy Boosts CD95-Dependent Antiangiogenic Effect of the Thrombospondin Peptide ABT-510: A Complementation Antiangiogenic Strategy. Clin Cancer Res 2005; 11:6678-85. [PMID: 16166447 DOI: 10.1158/1078-0432.ccr-05-0621] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blocking angiogenesis is a promising approach in cancer therapy. Natural inhibitors of angiogenesis and derivatives induce receptor-mediated signals, which often result in the endothelial cell death. Low-dose chemotherapy, given at short regular intervals with no prolonged breaks (metronomic chemotherapy), also targets angiogenesis by obliterating proliferating endothelial cells and circulating endothelial cell precursors. ABT-510, a peptide derivative of thrombospondin, kills endothelial cell by increasing CD95L, a ligand for the CD95 death receptor. However, CD95 expression itself is unaffected by ABT-510 and limits its efficacy. We found that multiple chemotherapy agents, cyclophosphamide (cytoxan), cisplatin, and docetaxel, induced endothelial CD95 in vitro and in vivo at low doses that failed to kill endothelial cells (cytoxan > cisplatin > docetaxel). Thus, we concluded that some of these agents might complement each other and together block angiogenesis with maximal efficacy. As a proof of principle, we designed an antiangiogenic cocktail combining ABT-510 with cytoxan or cisplatin. Cyclophosphamide and cisplatin synergistically increased in vivo endothelial cell apoptosis and angiosuppression by ABT-510. This synergy required CD95, as it was reversible with the CD95 decoy receptor. In a mouse model, ABT-510 and cytoxan, applied together at low doses, acted in synergy to delay tumor take, to stabilize the growth of established tumors, and to cause a long-term progression delay of PC-3 prostate carcinoma. These antitumor effects were accompanied by major decreases in microvascular density and concomitant increases of the vascular CD95, CD95L, and apoptosis. Thus, our study shows a "complementation" design of an optimal cancer treatment with the antiangiogenic peptide and a metronomic chemotherapy.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/pathology
- Cell Line
- Cell Line, Tumor
- Cisplatin/administration & dosage
- Cyclophosphamide/administration & dosage
- Docetaxel
- Dose-Response Relationship, Drug
- Drug Synergism
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Fas Ligand Protein
- Flow Cytometry
- Humans
- Male
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Oligopeptides/administration & dosage
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Taxoids/administration & dosage
- Thrombospondins/administration & dosage
- Xenograft Model Antitumor Assays
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Ronald Yap
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Lee CN, Cheng WF, Chang MC, Su YN, Chen CA, Hsieh FJ. Hypoxia-induced apoptosis in endothelial cells and embryonic stem cells. Apoptosis 2005; 10:887-94. [PMID: 16133878 DOI: 10.1007/s10495-005-2946-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To evaluate the influence of hypoxia and molecular events in endothelial and embryonic stem cells. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) and mouse embryoid body (EB) cells were subjected to hypoxic conditions for different time courses. DNA fragmentation assay, quantification of apoptotic cells by TUNEL assay measured by flowcytometry, and Western blot analysis for the molecular events of apoptosis were performed. RESULTS DNA fragmentation could be identified under hypoxic conditions in HUVECs and mouse EBs. The DNA fragmentation increased when the hypoxic interval was extended. In situ internucleosomal DNA fragmentation-TUNEL assay also found that the percentages of apoptotic cells increased gradually in HUVECs and mouse EBs when the hypoxic interval was extended. Furthermore, the levels of expression of p53 and Bax both increased in hypoxic conditions. CONCLUSIONS Hypoxia increases both HUVEC and mouse EB apoptosis, which is associated with increase in p53/Bax expression.
Collapse
Affiliation(s)
- C -N Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
Singh N, Macnamara E, Rashid S, Ambati J, Kontos CD, Higgins E, Ambati BK. Systemic soluble Tie2 expression inhibits and regresses corneal neovascularization. Biochem Biophys Res Commun 2005; 332:194-9. [PMID: 15896317 DOI: 10.1016/j.bbrc.2005.04.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 04/20/2005] [Indexed: 11/25/2022]
Abstract
This study was designed to determine if soluble Tie2 (sTie2) expression inhibits and regresses corneal neovascularization, and if VEGF contributes to its effect. The corneas of BALB/c mice were scraped and the mice were injected with either an adenovirus expressing soluble Tie2 (Ad.sTie2) or an empty adenoviral vector. When injected at the inhibition timepoint (one day prior to corneal injury), the mean percentage of neovascularized corneal area two weeks later in Ad.sTie2-treated mice vs. controls was 56.37+/-9.15% vs. 85.79+/-3.55% (p=0.04). At the regression timepoint (4 weeks after corneal scrape), the mean area of corneal neovascularization in Ad.sTie2-treated mice was 42.89+/-4.74% vs. 75.01+/-3.22% in the control group (p=0.007). VEGF expression was significantly higher in Ad.sTie2-treated mice at the inhibition timepoint and there was no significant difference at the regression timepoint. These findings suggest that sTie2 inhibits and regresses corneal neovascularization in a VEGF-independent manner.
Collapse
Affiliation(s)
- Nirbhai Singh
- Department of Ophthalmology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Jennifer A Doll
- Division of Hematology/Oncology, Robert H Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | | |
Collapse
|
47
|
Zaichuk TA, Shroff EH, Emmanuel R, Filleur S, Nelius T, Volpert OV. Nuclear factor of activated T cells balances angiogenesis activation and inhibition. ACTA ACUST UNITED AC 2004; 199:1513-22. [PMID: 15184502 PMCID: PMC2211785 DOI: 10.1084/jem.20040474] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has been demonstrated that vascular endothelial cell growth factor (VEGF) induction of angiogenesis requires activation of the nuclear factor of activated T cells (NFAT). We show that NFATc2 is also activated by basic fibroblast growth factor and blocked by the inhibitor of angiogenesis pigment epithelial–derived factor (PEDF). This suggests a pivotal role for this transcription factor as a convergence point between stimulatory and inhibitory signals in the regulation of angiogenesis. We identified c-Jun NH2-terminal kinases (JNKs) as essential upstream regulators of NFAT activity in angiogenesis. We distinguished JNK-2 as responsible for NFATc2 cytoplasmic retention by PEDF and JNK-1 and JNK-2 as mediators of PEDF-driven NFAT nuclear export. We identified a novel NFAT target, caspase-8 inhibitor cellular Fas-associated death domain–like interleukin 1β–converting enzyme inhibitory protein (c-FLIP), whose expression was coregulated by VEGF and PEDF. Chromatin immunoprecipitation showed VEGF-dependent increase of NFATc2 binding to the c-FLIP promoter in vivo, which was attenuated by PEDF. We propose that one possible mechanism of concerted angiogenesis regulation by activators and inhibitors may be modulation of the endothelial cell apoptosis via c-FLIP controlled by NFAT and its upstream regulator JNK.
Collapse
Affiliation(s)
- Tetiana A Zaichuk
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future.
Collapse
Affiliation(s)
- Shinya Onizuka
- Department of Surgery, National Nagasaki Medical Center, Japan.
| | | | | | | | | |
Collapse
|