1
|
Deluque AL, Dimke H, Alexander RT. Biology of calcium homeostasis regulation in intestine and kidney. Nephrol Dial Transplant 2025; 40:435-445. [PMID: 39257024 PMCID: PMC11879016 DOI: 10.1093/ndt/gfae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 09/12/2024] Open
Abstract
Calcium (Ca2+) is an essential divalent cation involved in many bodily functions including bone composition, cell growth and division, blood clotting, and muscle contraction. The bone, intestine and kidneys are important for the maintenance of Ca2+ homeostasis. Ninety-nine percent of body Ca2+ is stored in the skeleton as hydroxyapatite. The small, and to a lesser extent the large intestine absorbs Ca2+ from the diet. Once in the circulation, Ca2+ is filtered by the glomerulus and the majority, >95%, is reabsorbed along the nephron. The remainder is excreted in the urine. Two general (re)absorptive pathways contribute to the vectorial transport of Ca2+ across renal and intestinal epithelia: (i) a paracellular pathway, which is reliant on claudins in the tight junction of epithelium and the electrochemical gradient, and (ii) a transcellular pathway, which requires different influx, intracellular buffering/shuttling and basolateral efflux mechanisms, to actively transport Ca2+ across the epithelial cell. Blood Ca2+ levels are maintained by hormones including parathyroid hormone, 1,25-dihydroxyvitamin D3 and fibroblast growth factor 23, and through effects of Ca2+-sensing receptor (CaSR) signaling. Disruption of Ca2+ homeostasis can result in altered blood Ca2+ levels and/or hypercalciuria, the latter is a phenomenon closely linked to the formation of kidney stones. Genetic alterations affecting renal Ca2+ handling can cause hypercalciuria, an area of expanding investigation. This review explores the molecular mechanisms governing Ca2+ homeostasis by the intestine and kidneys and discusses clinical aspects of genetic disorders associated with Ca2+-based kidney stone disease.
Collapse
Affiliation(s)
- Amanda Lima Deluque
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - R Todd Alexander
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
2
|
Beggs MR, Bhullar H, Dimke H, Alexander RT. The contribution of regulated colonic calcium absorption to the maintenance of calcium homeostasis. J Steroid Biochem Mol Biol 2022; 220:106098. [PMID: 35339651 DOI: 10.1016/j.jsbmb.2022.106098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022]
Abstract
Calcium absorption and secretion can occur along the length of the small and large intestine. To date, the focus of research into intestinal calcium absorption has been the small intestine, the site contributing the majority of intestinal calcium absorption. However, evidence that the colon contributes as much as 10% of enteral calcium transport has been available for decades. Transcellular calcium absorption and bidirectional paracellular calcium flux contributing to either net absorption or secretion have been observed in the colon, depending on the physiological state. Moreover, the calcium transport pathways contributing to colonic absorption or secretion are regulated by a variety of hormones, including calcitriol, plasma calcium and dietary factors, including prebiotics. Herein we review historical and recent research highlighting the role of colonic calcium transport in overall maintenance of calcium balance, and suggest these data are consistent with the colon being a site of significant regulated transepithelial calcium transport.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Canada; Women's and Children's Health Institute, Alberta, Canada
| | | | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark; Department of Nephrology, Odense University Hospital, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Canada; Women's and Children's Health Institute, Alberta, Canada; Department of Paediatrics, University of Alberta, Canada.
| |
Collapse
|
3
|
Wongdee K, Chanpaisaeng K, Teerapornpuntakit J, Charoenphandhu N. Intestinal Calcium Absorption. Compr Physiol 2021; 11:2047-2073. [PMID: 34058017 DOI: 10.1002/cphy.c200014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article, we focus on mammalian calcium absorption across the intestinal epithelium in normal physiology. Intestinal calcium transport is essential for supplying calcium for metabolism and bone mineralization. Dietary calcium is transported across the mucosal epithelia via saturable transcellular and nonsaturable paracellular pathways, both of which are under the regulation of 1,25-dihydroxyvitamin D3 and several other endocrine and paracrine factors, such as parathyroid hormone, prolactin, 17β-estradiol, calcitonin, and fibroblast growth factor-23. Calcium absorption occurs in several segments of the small and large intestine with varying rates and capacities. Segmental heterogeneity also includes differential expression of calcium transporters/carriers (e.g., transient receptor potential cation channel and calbindin-D9k ) and the presence of favorable factors (e.g., pH, luminal contents, and gut motility). Other proteins and transporters (e.g., plasma membrane vitamin D receptor and voltage-dependent calcium channels), as well as vesicular calcium transport that probably contributes to intestinal calcium absorption, are also discussed. © 2021 American Physiological Society. Compr Physiol 11:1-27, 2021.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krittikan Chanpaisaeng
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
4
|
Wilkens MR, Nelson CD, Hernandez LL, McArt JA. Symposium review: Transition cow calcium homeostasis—Health effects of hypocalcemia and strategies for prevention. J Dairy Sci 2020; 103:2909-2927. [DOI: 10.3168/jds.2019-17268] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
|
5
|
Beggs MR, Lee JJ, Busch K, Raza A, Dimke H, Weissgerber P, Engel J, Flockerzi V, Alexander RT. TRPV6 and Ca v1.3 Mediate Distal Small Intestine Calcium Absorption Before Weaning. Cell Mol Gastroenterol Hepatol 2019; 8:625-642. [PMID: 31398491 PMCID: PMC6889763 DOI: 10.1016/j.jcmgh.2019.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Intestinal Ca2+ absorption early in life is vital to achieving optimal bone mineralization. The molecular details of intestinal Ca2+ absorption have been defined in adults after peak bone mass is obtained, but they are largely unexplored during development. We sought to delineate the molecular details of transcellular Ca2+ absorption during this critical period. METHODS Expression of small intestinal and renal calcium transport genes was assessed by using quantitative polymerase chain reaction. Net calcium flux across small intestinal segments was measured in Ussing chambers, including after pharmacologic inhibition or genetic manipulation of TRPV6 or Cav1.3 calcium channels. Femurs were analyzed by using micro-computed tomography and histology. RESULTS Net TRPV6-mediated Ca2+ flux across the duodenum was absent in pre-weaned (P14) mice but present after weaning. In contrast, we found significant transcellular Ca2+ absorption in the jejunum at 2 weeks but not 2 months of age. Net jejunal Ca2+ absorption observed at P14 was not present in either Trpv6 mutant (D541A) mice or Cav1.3 knockout mice. We observed significant nifedipine-sensitive transcellular absorption across the ileum at P14 but not 2 months. Cav1.3 knockout pups exhibited delayed bone mineral accrual, compensatory nifedipine-insensitive Ca2+ absorption in the ileum, and increased expression of renal Ca2+ reabsorption mediators at P14. Moreover, weaning pups at 2 weeks reduced jejunal and ileal Cav1.3 expression. CONCLUSIONS We have detailed novel pathways contributing to transcellular Ca2+ transport across the distal small intestine of mice during development, highlighting the complexity of the multiple mechanisms involved in achieving a positive Ca2+ balance early in life.
Collapse
Affiliation(s)
- Megan R. Beggs
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada,The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada
| | - Justin J. Lee
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada,The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada
| | - Kai Busch
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Ahsan Raza
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Petra Weissgerber
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, School of Medicine, Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - R. Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada,The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada,Correspondence Address correspondence to: R. Todd Alexander, MD, PhD, Department of Pediatrics, 4-585 Edmonton Clinic Health Academy, 11405 – 87 Avenue, University of Alberta, Edmonton, Alberta T6G 2R7, Canada. fax: (780) 248-5556.
| |
Collapse
|
6
|
Beggs MR, Alexander RT. Intestinal absorption and renal reabsorption of calcium throughout postnatal development. Exp Biol Med (Maywood) 2017; 242:840-849. [PMID: 28346014 DOI: 10.1177/1535370217699536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving optimal bone mineral density in early adulthood, thereby lowering the lifetime risk of osteoporosis.
Collapse
Affiliation(s)
- Megan R Beggs
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - R Todd Alexander
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,2 Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
7
|
Radhakrishnan VM, Gilpatrick MM, Parsa NA, Kiela PR, Ghishan FK. Expression of Cav1.3 calcium channel in the human and mouse colon: posttranscriptional inhibition by IFNγ. Am J Physiol Gastrointest Liver Physiol 2017; 312:G77-G84. [PMID: 27932504 PMCID: PMC5283901 DOI: 10.1152/ajpgi.00394.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/31/2023]
Abstract
It has been hypothesized that apically expressed L-type Ca2+ channel Cav1.3 (encoded by CACNA1D gene) contributes toward an alternative TRPV6-independent route of intestinal epithelial Ca2+ absorption, especially during digestion when high luminal concentration of Ca2+ and other nutrients limit TRPV6 contribution. We and others have implicated altered expression and activity of key mediators of intestinal and renal Ca2+ (re)absorption as contributors to negative systemic Ca2+ balance and bone loss in intestinal inflammation. Here, we investigated the effects of experimental colitis and related inflammatory mediators on colonic Cav1.3 expression. We confirmed Cav1.3 expression within the segments of the mouse and human gastrointestinal tract. Consistent with available microarray data (GEO database) from inflammatory bowel disease (IBD) patients, mouse colonic expression of Cav1.3 was significantly reduced in trinitrobenzene sulfonic acid (TNBS) colitis. In vitro, IFNγ most potently reduced Cav1.3 expression. We reproduced these findings in vivo with wild-type and Stat1-/- mice injected with IFNγ. The observed effect in Stat1-/- suggested a noncanonical transcriptional repression or a posttranscriptional mechanism. In support of the latter, we observed no effect on the cloned Cav1.3 gene promoter activity and accelerated Cav1.3 mRNA decay rate in IFNγ-treated HCT116 cells. While the relative contribution of Cav1.3 to intestinal Ca2+ absorption and its value as a therapeutic target remain to be established, we postulate that Cav1.3 downregulation in IBD may contribute to the negative systemic Ca2+ balance, to increased bone resorption, and to reduced bone mineral density in IBD patients.
Collapse
Affiliation(s)
| | | | - Nour Alhoda Parsa
- 1Department of Pediatrics, The University of Arizona, Tucson, Arizona; and
| | - Pawel R. Kiela
- 1Department of Pediatrics, The University of Arizona, Tucson, Arizona; and ,2Department of Immunobiology, The University of Arizona, Tucson, Arizona
| | - Fayez K. Ghishan
- 1Department of Pediatrics, The University of Arizona, Tucson, Arizona; and
| |
Collapse
|
8
|
Starke S, Reimers J, Muscher-Banse AS, Schröder B, Breves G, Wilkens MR. Gastrointestinal transport of calcium and phosphate in lactating goats. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Kraidith K, Svasti S, Teerapornpuntakit J, Vadolas J, Chaimana R, Lapmanee S, Suntornsaratoon P, Krishnamra N, Fucharoen S, Charoenphandhu N. Hepcidin and 1,25(OH)2D3 effectively restore Ca2+ transport in β-thalassemic mice: reciprocal phenomenon of Fe2+ and Ca2+ absorption. Am J Physiol Endocrinol Metab 2016; 311:E214-E223. [PMID: 27245334 DOI: 10.1152/ajpendo.00067.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
Previously, β-thalassemia, an inherited anemic disorder with iron overload caused by loss-of-function mutation of β-globin gene, has been reported to induce osteopenia and impaired whole body calcium metabolism, but the pathogenesis of aberrant calcium homeostasis remains elusive. Herein, we investigated how β-thalassemia impaired intestinal calcium absorption and whether it could be restored by administration of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or hepcidin, the latter of which was the liver-derived antagonist of intestinal iron absorption. The results showed that, in hemizygous β-globin knockout (BKO) mice, the duodenal calcium transport was lower than that in wild-type littermates, and severity was especially pronounced in female mice. Both active and passive duodenal calcium fluxes in BKO mice were found to be less than those in normal mice. This impaired calcium transport could be restored by 7-day 1,25(OH)2D3 treatment. The 1,25(OH)2D3-induced calcium transport was diminished by inhibitors of calcium transporters, e.g., L-type calcium channel, NCX1, and PMCA1b, as well as vesicular transport inhibitors. Interestingly, the duodenal calcium transport exhibited an inverse correlation with transepithelial iron transport, which was markedly enhanced in thalassemic mice. Thus, 3-day subcutaneous hepcidin injection and acute direct hepcidin exposure in the Ussing chamber were capable of restoring the thalassemia-associated impairment of calcium transport; however, the positive effect of hepcidin on calcium transport was completely blocked by proteasome inhibitors MG132 and bortezomib. In conclusion, both 1,25(OH)2D3 and hepcidin could be used to alleviate the β-thalassemia-associated impairment of calcium absorption. Therefore, our study has shed light on the development of a treatment strategy to rescue calcium dysregulation in β-thalassemia.
Collapse
Affiliation(s)
- Kamonshanok Kraidith
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; and
| | | | - Jim Vadolas
- Cell and Gene Therapy Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Rattana Chaimana
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sarawut Lapmanee
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nateetip Krishnamra
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; and
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand;
| |
Collapse
|
10
|
Chen L, Tuo B, Dong H. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters. Nutrients 2016; 8:nu8010043. [PMID: 26784222 PMCID: PMC4728656 DOI: 10.3390/nu8010043] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022] Open
Abstract
The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na+/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca2+]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca2+ in IEC are regulated by cation channels and transporters, such as Ca2+ channels, K+ channels, Na+/Ca2+ exchangers, and Na+/H+ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
| | - Hui Dong
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
11
|
Reyes-Fernandez PC, Fleet JC. Luminal glucose does not enhance active intestinal calcium absorption in mice: evidence against a role for Ca(v)1.3 as a mediator of calcium uptake during absorption. Nutr Res 2015; 35:1009-15. [PMID: 26403486 DOI: 10.1016/j.nutres.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022]
Abstract
Intestinal Ca absorption occurs through a 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-regulated transcellular pathway, especially when habitual dietary Ca intake is low. Recently the L-type voltage-gated Ca channel, Cav1.3, was proposed to mediate active, transcellular Ca absorption in response to membrane depolarization caused by elevated luminal glucose levels after a meal. We tested the hypothesis that high luminal glucose could reveal a role for Cav1.3 in active intestinal Ca absorption in mice. Nine-week-old male C57BL/6 J mice were fed AIN93G diets containing either low (0.125%) or high (1%) Ca for 1 week, and Ca absorption was examined by an oral gavage method using a 45Ca-transport buffer containing 25 mmol/L of glucose or fructose. Transient receptor potential vanilloid 6 (TRPV6), calbindin D9k (CaBPD9k), and Cav1.3 messenger RNA (mRNA) levels were measured in the duodenum, jejunum, and ileum. TRPV6 and CaBPD9k expressions were highest in the duodenum, where active, 1,25(OH)2D3-regulated Ca absorption occurs, whereas Cav1.3 mRNA levels were similar across the intestinal segments. As expected, the low-Ca diet increased renal cytochrome p450-27B1 (CYP27B1) mRNA (P = .003), serum 1,25(OH)2D3 (P < .001), and Ca absorption efficiency by 2-fold with the fructose buffer. However, the glucose buffer used to favor Cav1.3 activation did not increase Ca absorption efficiency (P = .6) regardless of the dietary Ca intake level. Collectively, our results show that glucose did not enhance Ca absorption and they do not support a critical role for Cav1.3 in either basal or vitamin D-regulated intestinal Ca absorption in vivo.
Collapse
Affiliation(s)
| | - James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907-2059, USA.
| |
Collapse
|
12
|
Mace OJ, Tehan B, Marshall F. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol Res Perspect 2015. [PMID: 26213627 PMCID: PMC4506687 DOI: 10.1002/prp2.155] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal (GI) polypeptides are secreted from enteroendocrine cells (EECs). Recent technical advances and the identification of endogenous and synthetic ligands have enabled exploration of the pharmacology and physiology of EECs. Enteroendocrine signaling pathways stimulating hormone secretion involve multiple nutrient transporters and G protein-coupled receptors (GPCRs), which are activated simultaneously under prevailing nutrient conditions in the intestine following a meal. The majority of studies investigate hormone secretion from EECs in response to single ligands and although the mechanisms behind how individual signaling pathways generate a hormonal output have been well characterized, our understanding of how these signaling pathways converge to generate a single hormone secretory response is still in its infancy. However, a picture is beginning to emerge of how nutrients and full, partial, or allosteric GPCR ligands differentially regulate the enteroendocrine system and its interaction with the enteric and central nervous system. So far, activation of multiple pathways underlies drug discovery efforts to harness the therapeutic potential of the enteroendocrine system to mimic the phenotypic changes observed in patients who have undergone Roux-en-Y gastric surgery. Typically obese patients exhibit ∼30% weight loss and greater than 80% of obese diabetics show remission of diabetes. Targeting combinations of enteroendocrine signaling pathways that work synergistically may manifest with significant, differentiated EEC secretory efficacy. Furthermore, allosteric modulators with their increased selectivity, self-limiting activity, and structural novelty may translate into more promising enteroendocrine drugs. Together with the potential to bias enteroendocrine GPCR signaling and/or to activate multiple divergent signaling pathways highlights the considerable range of therapeutic possibilities available. Here, we review the pharmacology and physiology of the EEC system.
Collapse
Affiliation(s)
- O J Mace
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - B Tehan
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - F Marshall
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| |
Collapse
|
13
|
Abstract
For humans and rodents, duodenum is a very important site of calcium absorption since it is exposed to ionized calcium released from dietary complexes by gastric acid. Calcium traverses the duodenal epithelium via both transcellular and paracellular pathways in a vitamin D-dependent manner. After binding to the nuclear vitamin D receptor, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] upregulates the expression of several calcium transporter genes, e.g., TRPV5/6, calbindin-D9k, plasma membrane Ca(2+)-ATPase1b, and NCX1, thereby enhancing the transcellular calcium transport. This action has been reported to be under the regulation of parathyroid-kidney-intestinal and bone-kidney-intestinal axes, in which the plasma calcium and fibroblast growth factor-23 act as negative feedback regulators, respectively. 1,25(OH)2D3 also modulates the expression of tight junction-related genes and convective water flow, presumably to increase the paracellular calcium permeability and solvent drag-induced calcium transport. However, vitamin D-independent calcium absorption does exist and plays an important role in calcium homeostasis under certain conditions, particularly in neonatal period, pregnancy, and lactation as well as in naturally vitamin D-impoverished subterranean mammals.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Office of Academic Management, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
14
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
15
|
Colombini A, Perego S, Ardoino I, Marasco E, Lombardi G, Fiorilli A, Biganzoli E, Tettamanti G, Ferraretto A. Evaluation of a possible direct effect by casein phosphopeptides on paracellular and vitamin D controlled transcellular calcium transport mechanisms in intestinal human HT-29 and Caco2 cell lines. Food Funct 2013; 4:1195-203. [DOI: 10.1039/c3fo60099h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Woudenberg-Vrenken TE, Lameris AL, Weißgerber P, Olausson J, Flockerzi V, Bindels RJM, Freichel M, Hoenderop JGJ. Functional TRPV6 channels are crucial for transepithelial Ca2+ absorption. Am J Physiol Gastrointest Liver Physiol 2012; 303:G879-85. [PMID: 22878123 DOI: 10.1152/ajpgi.00089.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
TRPV6 is considered the primary protein responsible for transcellular Ca2+ absorption. In vitro studies demonstrate that a negatively charged amino acid (D) within the putative pore region of mouse TRPV6 (position 541) is critical for Ca2+ permeation of the channel. To elucidate the role of TRPV6 in transepithelial Ca2+ transport in vivo, we functionally analyzed a TRPV6D541A/D541A knockin mouse model. After weaning, mice were fed a regular (1% wt/wt) or Ca2+-deficient (0.02% wt/wt) diet and housed in metabolic cages. Blood was sampled for Ca2+ measurements, and the expression of Ca2+ transport proteins was analyzed in kidney and duodenum. Intestinal 45Ca2+ uptake was measured in vivo by an absorption assay. Challenging the mice with the Ca2+-deficient diet resulted in hypocalcemia in wild-type and TRPV6D541A/D541A mice. On a low-Ca2+ diet both mouse strains displayed increased expression of intestinal TRPV6, calbindin-D(9K), and renal TRPV5. TRPV6D541A/D541A mice showed significantly impaired intestinal Ca2+ uptake compared with wild-type mice, and duodenal TRPV5 expression was increased in TRPV6D541A/D541A mice. On a normal diet, serum Ca2+ concentrations normalized in both mouse strains. Under these conditions, intestinal Ca2+ uptake was similar, and the expression levels of renal and intestinal Ca2+ transport proteins were not affected. We demonstrate that TRPV6D541A/D541A mice exhibit impaired transcellular Ca2+ absorption. Duodenal TRPV5 expression was increased in TRPV6D541A/D541A mice, albeit insufficient to correct for the diminished Ca2+ absorption. Under normal conditions, when passive Ca2+ transport is predominant, no differences between wild-type and TRPV6D541A/D541A mice were observed. Our results demonstrate a specific role for TRPV6 in transepithelial Ca2+ absorption.
Collapse
Affiliation(s)
- Titia E Woudenberg-Vrenken
- Department of Physiology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Calcium is the most abundant cation in the human body, of which approximately 99% occurs in bone, contributing to its rigidity and strength. Bone also functions as a reservoir of Ca for its role in multiple physiologic and biochemical processes. This article aims to provide a thorough understanding of the absorptive mechanisms and factors affecting these processes to enable one to better appreciate an individual's Ca needs, and to provide a rationale for correcting Ca deficiencies. An overview of Ca requirements and suggested dosing regimens is presented, with discussion of various Ca preparations and potential toxicities of Ca treatment.
Collapse
Affiliation(s)
- Ronald D Emkey
- Pennsylvania Regional Center for Arthritis & Osteoporosis Research, 1200 Broadcasting Road, Suite 200, Wyomissing, PA 19610, USA.
| | | |
Collapse
|
18
|
Duodenal calcium transporter mRNA expression in stressed male rats treated with diazepam, fluoxetine, reboxetine, or venlafaxine. Mol Cell Biochem 2012; 369:87-94. [DOI: 10.1007/s11010-012-1371-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/20/2012] [Indexed: 01/22/2023]
|
19
|
Zheng Y, Sarr MG. Translocation of transfected GLUT2 to the apical membrane in rat intestinal IEC-6 cells. Dig Dis Sci 2012; 57:1203-12. [PMID: 22116644 PMCID: PMC3331913 DOI: 10.1007/s10620-011-1984-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/10/2011] [Indexed: 02/01/2023]
Abstract
AIM In this study, we transfected the full length cDNA of glucose transporter 2 (GLUT2) into IEC-6 cells (which lack GLUT2 expression) to investigate GLUT2 translocation in enterocytes. The purpose of this study was to investigate cellular mechanisms of GLUT2 translocation and its signaling pathway. METHODS Rat GLUT2 cDNA was transfected into IEC-6 cells. Glucose uptake was measured by incubating cell monolayers with glucose (0.5-50 mM), containing (14)C-D-glucose and (3)H-L-glucose, to measure stereospecific, carrier-mediated and passive uptake. We imaged GLUT2 immunoreactivity by confocal fluorescence microscopy. We evaluated the GLUT2 inhibitor (1 mM phloretin), SGLT1 inhibitor (0.5 mM phlorizin), disrupting microtubular integrity (2 μM nocodazole and 0.5 μM cytochalasin B), protein kinase C (PKC) inhibitors (50 nM calphostin C and 10 μM chelerythrine), and PKC activator (50 nM phorbol 12-myristate 13-acetate: PMA). RESULTS In GLUT2-IEC cells, the K(m) (54.5 mM) increased compared with non-transfected IEC-6 cells (7.8 mM); phloretin (GLUT2 inhibitor) inhibited glucose uptake to that of non-transfected IEC-6 cells (P < 0.05). Nocodazole and cytochalasin B (microtubule disrupters) inhibited uptake by 43-58% only at glucose concentrations ≥25 and 50 mM and the 10-min incubations. Calphostin C (PKC inhibitor) reproduced the inhibition of nocodazole; PMA (a PKC activator) enhanced glucose uptake by 69%. Exposure to glucose increased the GFP signal at the apical membrane of GLUT-1EC cells. CONCLUSION IEC-6 cells lacking GLUT2 translocate GLUT2 apically when transfected to express GLUT2. Translocation of GLUT2 occurs through glucose stimulation via a PKC-dependent signaling pathway and requires integrity of the microtubular skeletal structure.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Surgery and The Gastroenterology Research Unit, Mayo Clinic (GU 10-01), 200 1st Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
20
|
Cehak A, Wilkens MR, Guschlbauer M, Mrochen N, Schröder B, Feige K, Breves G. In vitro studies on intestinal calcium and phosphate transport in horses. Comp Biochem Physiol A Mol Integr Physiol 2012; 161:259-64. [DOI: 10.1016/j.cbpa.2011.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/05/2011] [Accepted: 11/06/2011] [Indexed: 12/14/2022]
|
21
|
Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans. Semin Cell Dev Biol 2012; 23:614-20. [PMID: 22248674 PMCID: PMC3712190 DOI: 10.1016/j.semcdb.2012.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/27/2011] [Accepted: 01/04/2012] [Indexed: 12/22/2022]
Abstract
The increasingly recognized role of gastrointestinal signals in the regulation of food intake, insulin production and peripheral nutrient storage has prompted a surge of interest in studying how the gastrointestinal tract senses and responds to nutritional information. Identification of metabolically important intestinal nutrient sensors could provide potential new drug targets for the treatment of diabetes, obesity and gastrointestinal disorders. From a more fundamental perspective, the study of intestinal chemosensation is revealing novel, non-neuronal modes of communication involving differentiated epithelial cells. It is also identifying signalling mechanisms downstream of not only canonical receptors but also nutrient transporters, thereby supporting a chemosensory role for “transceptors” in the intestine. This review describes known and proposed mechanisms of intestinal carbohydrate, protein and lipid sensing, best characterized in mammalian systems. It also highlights the potential of invertebrate model systems such as C. elegans and Drosophila melanogaster by summarizing known examples of molecular evolutionary conservation. Recently developed genetic tools in Drosophila, an emerging model system for the study of physiology and metabolism, allow the temporal, spatial and high-throughput manipulation of putative intestinal sensors. Hence, fruit flies may prove particularly suited to the study of the link between intestinal nutrient sensing and metabolic homeostasis.
Collapse
|
22
|
Ex vivo intestinal studies on calcium and phosphate transport in growing goats fed a reduced nitrogen diet. Br J Nutr 2011; 108:628-37. [DOI: 10.1017/s0007114511005976] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In ruminant feeding, the reduction of dietary protein is an effective approach for decreasing the excretion of N. In non-ruminant species, the intestinal absorption of Ca was affected when dietary protein was reduced. Therefore, it was the aim of the present study to characterise the intestinal absorption of Ca and inorganic phosphate (Pi) in goats fed different N and Ca diets. Intestinal flux rates of Ca and Pi were determined in goats fed a reduced N and Ca diet by Ussing chamber experiments. For a more mechanistic approach, the uptake of Ca and Pi in intestinal brush-border membrane vesicles (BBMV), the expression levels of the epithelial Ca channel transient receptor potential vanilloid channel type 6 (TRPV6), the sodium-dependent Pi transporter (NaPi) IIb and the vitamin D receptor (VDR) were measured. In goats fed a reduced N and Ca diet, the intestinal flux rates of Ca and Pi were elevated. However, the reduced N and Ca diet had no effect on the uptake of Ca and Pi in intestinal BBMV, while the expression of TRPV6 and NaPi IIb protein in the corresponding intestinal segments was even decreased. The mRNA expression of NaPi IIb and VDR was not affected. Therefore, a post-transcriptional regulation of TRPV6 and NaPi IIb protein was suggested in goats fed a reduced N and Ca diet. From these data, it can be concluded that the intestinal absorption of Ca and Pi in growing goats was affected by changes in dietary N and Ca intake like those in single-stomached animals but differently modulated.
Collapse
|
23
|
Perego S, Cosentino S, Fiorilli A, Tettamanti G, Ferraretto A. Casein phosphopeptides modulate proliferation and apoptosis in HT-29 cell line through their interaction with voltage-operated L-type calcium channels. J Nutr Biochem 2011; 23:808-16. [PMID: 21840696 DOI: 10.1016/j.jnutbio.2011.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/23/2011] [Accepted: 04/04/2011] [Indexed: 02/03/2023]
Abstract
At the intestinal level, proliferation and apoptosis are modulated by the extracellular calcium concentration; thus, dietary calcium may exert a chemoprotective role on normal differentiated intestinal cells, while it may behave as a carcinogenesis promoter in transformed cells. Calcium in milk is associated with casein and casein phosphopeptides (CPPs), hence is preserved from precipitation. CPPs were demonstrated to induce uptake of extracellular calcium ions by in vitro intestinal tumor HT-29 cells but only upon differentiation. Here, the hypothesis that CPPs could differently affect proliferation and apoptosis in undifferentiated and differentiated HT-29 cells through their binding with calcium ions was investigated. Results showed that CPPs protect differentiated intestinal cells from calcium overload toxicity and prevent their apoptosis favoring proliferation while inducing apoptosis in undifferentiated tumor cells. The CPP effect on undifferentiated HT-29 cells, similar to that exerted by ethyleneglycol-O, O'-bis(2-aminoethyl)-N, N, N', N'-tetraacetic acid (EGTA), is presumably due to the ability in binding the extracellular calcium. The effect on differentiated HT-29 cells is coupled to the interaction of CPPs with the voltage-operated L-type calcium channels, known to activate calcium entry into the cells under depolarization and to exert a mitogenic effect: the use of an agonist potentiates the cell response to CPPs, while the antagonists abolish the response to CPPs (36% of examined cells) or reduce both the percentage of responsive cells and the increase of intracellular calcium concentration. Taken together, these results confirm the potentialities of CPPs as nutraceuticals/functional food and also as modulators of cellular processes connected to the expression of a cancer phenotype.
Collapse
Affiliation(s)
- Silvia Perego
- Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | |
Collapse
|
24
|
Kellett GL. Alternative perspective on intestinal calcium absorption: proposed complementary actions of Ca(v)1.3 and TRPV6. Nutr Rev 2011; 69:347-70. [PMID: 21729089 DOI: 10.1111/j.1753-4887.2011.00395.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcellular models of dietary Ca(2+) absorption by the intestine assign essential roles to TRPV6 and calbindin-D(9K) . However, studies with gene-knockout mice challenge this view. Something fundamental is missing. The L-type channel Ca(v) 1.3 is located in the apical membrane from the duodenum to the ileum. In perfused rat jejunum in vivo and in Caco-2 cells, Ca(v) 1.3 mediates sodium glucose transporter 1 (SGLT1)-dependent and prolactin-induced active, transcellular Ca(2+) absorption, respectively. TRPV6 is activated by hyperpolarization and is vitamin D dependent; in contrast, Ca(v) 1.3 is activated by depolarization and is independent of calbindin-D(9K) and vitamin D. This review considers evidence supporting the idea that Ca(v) 1.3 and TRPV6 have complementary roles in the regulation of intestinal Ca(2+) absorption as depolarization and repolarization of the apical membrane occur during and between digestive periods, respectively, and as chyme moves from one intestinal segment to another and food transit times increase. Reassessment of current arguments for paracellular flow reveals that key phenomena have alternative explanations within the integrated Ca(v) 1.3/TRPV6 view of transcellular Ca(2+) absorption.
Collapse
Affiliation(s)
- George L Kellett
- Department of Biology, University of York, Heslington, United Kingdom.
| |
Collapse
|
25
|
|
26
|
Christakos S, Dhawan P, Ajibade D, Benn BS, Feng J, Joshi SS. Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D. J Steroid Biochem Mol Biol 2010; 121:183-7. [PMID: 20214989 PMCID: PMC2906645 DOI: 10.1016/j.jsbmb.2010.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/12/2010] [Accepted: 03/01/2010] [Indexed: 01/01/2023]
Abstract
Recent studies in our laboratory using calbindin-D9k null mutant mice as well as mice lacking the 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) inducible epithelial calcium channel TRPV6 provide evidence for calbindin-D9k and TRPV6 independent regulation of active intestinal calcium absorption. These findings suggest that in the knock out (KO) mice there is compensation by another calcium channel or protein and that other novel factors are involved in 1,25(OH)2D3 mediated active intestinal calcium absorption. In addition, 1,25(OH)2D3 mediated paracellular transport of calcium may have contributed to the normalization of serum calcium in the null mutant mice. 1,25(OH)2D3 downregulates cadherin-17 and upregulates claudin-2 and claudin-12 in the intestine, suggesting that 1,25(OH)2D3, by regulating these epithelial cell junction proteins, can route calcium through the paracellular path. With regard to non-classical actions, 1,25(OH)2D3 has been reported to inhibit the proliferation of a number of malignant cells and to regulate adaptive as well as innate immunity. This article will review new developments related to the function and regulation of vitamin D target proteins in classical and non-classical vitamin D target tissues that have provided novel insight into mechanisms of vitamin D action.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Ave., Newark, NJ 07103, United States.
| | | | | | | | | | | |
Collapse
|
27
|
Transport of cations and anions across forestomach epithelia: conclusions from in vitro studies. Animal 2010; 4:1037-56. [DOI: 10.1017/s1751731110000261] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
28
|
Nakkrasae LI, Thongon N, Thongbunchoo J, Krishnamra N, Charoenphandhu N. Transepithelial calcium transport in prolactin-exposed intestine-like Caco-2 monolayer after combinatorial knockdown of TRPV5, TRPV6 and Ca(v)1.3. J Physiol Sci 2010; 60:9-17. [PMID: 19885716 PMCID: PMC10717236 DOI: 10.1007/s12576-009-0068-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/07/2009] [Indexed: 12/14/2022]
Abstract
The milk-producing hormone prolactin (PRL) increases the transcellular intestinal calcium absorption by enhancing apical calcium uptake through voltage-dependent L-type calcium channel (Ca(v)) 1.3. However, the redundancy of apical calcium channels raised the possibility that Ca(v)1.3 may operate with other channels, especially transient receptor potential vanilloid family calcium channels (TRPV) 5 or 6, in an interdependent manner. Herein, TRPV5 knockdown (KD), TRPV5/TRPV6, TRPV5/Ca(v)1.3, and TRPV6/Ca(v)1.3 double KD, and TRPV5/TRPV6/Ca(v)1.3 triple KD Caco-2 monolayers were generated by transfecting cells with small interfering RNAs (siRNA). siRNAs downregulated only the target mRNAs, and did not induce compensatory upregulation of the remaining channels. After exposure to 600 ng/mL PRL, the transcellular calcium transport was increased by ~2-fold in scrambled siRNA-treated, TRPV5 KD and TRPV5/TRPV6 KD monolayers, but not in TRPV5/Ca(v)1.3, TRPV6/Ca(v)1.3 and TRPV5/TRPV6/Ca(v)1.3 KD monolayers. The results suggested that Ca(v)1.3 was the sole apical channel responsible for the PRL-stimulated transcellular calcium transport in intestine-like Caco-2 monolayer.
Collapse
Affiliation(s)
- La-iad Nakkrasae
- Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Narongrit Thongon
- Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Medical Science, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Jirawan Thongbunchoo
- Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nateetip Krishnamra
- Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
| | - Narattaphol Charoenphandhu
- Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
| |
Collapse
|
29
|
Thongon N, Nakkrasae LI, Thongbunchoo J, Krishnamra N, Charoenphandhu N. Enhancement of calcium transport in Caco-2 monolayer through PKCzeta-dependent Cav1.3-mediated transcellular and rectifying paracellular pathways by prolactin. Am J Physiol Cell Physiol 2009; 296:C1373-82. [PMID: 19339512 DOI: 10.1152/ajpcell.00053.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous investigations suggested that prolactin (PRL) stimulated the intestinal calcium absorption through phosphoinositide 3-kinase (PI3K), protein kinase C (PKC), and RhoA-associated coiled-coil forming kinase (ROCK) signaling pathways. However, little was known regarding its detailed mechanisms for the stimulation of transcellular and voltage-dependent paracellular calcium transport. By using Ussing chamber technique, we found that the PRL-induced increase in the transcellular calcium flux and decrease in transepithelial resistance of intestinal-like Caco-2 monolayer were not abolished by inhibitors of gene transcription and protein biosynthesis. The PRL-stimulated transcellular calcium transport was completely inhibited by the L-type calcium channel blockers (nifedipine and verapamil) and plasma membrane Ca(2+)-ATPase (PMCA) inhibitor (trifluoperazine) as well as small interfering RNA targeting voltage-dependent L-type calcium channel Ca(v)1.3, but not TRPV6 or calbindin-D(9k). As demonstrated by (45)Ca uptake study, PI3K and PKC, but not ROCK, were essential for the PRL-enhanced apical calcium entry. In addition, PRL was unable to enhance the transcellular calcium transport after PKC(zeta) knockdown or exposure to inhibitors of PKC(zeta), but not of PKC(alpha), PKC(beta), PKC(epsilon), PKC(mu), or protein kinase A. Voltage-clamping experiments further showed that PRL markedly stimulated the voltage-dependent calcium transport and removed the paracellular rectification. Such PRL effects on paracellular transport were completely abolished by inhibitors of PI3K (LY-294002) and ROCK (Y-27632). It could be concluded that the PRL-stimulated transcellular calcium transport in Caco-2 monolayer was mediated by Ca(v)1.3 and PMCA, presumably through PI3K and PKC(zeta) pathways, while the enhanced voltage-dependent calcium transport occurred through PI3K and ROCK pathways.
Collapse
Affiliation(s)
- Narongrit Thongon
- Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|
30
|
Mace OJ, Lister N, Morgan E, Shepherd E, Affleck J, Helliwell P, Bronk JR, Kellett GL, Meredith D, Boyd R, Pieri M, Bailey PD, Pettcrew R, Foley D. An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol 2008; 587:195-210. [PMID: 19001049 DOI: 10.1113/jphysiol.2008.159616] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
T1R taste receptors are present throughout the gastrointestinal tract. Glucose absorption comprises active absorption via SGLT1 and facilitated absorption via GLUT2 in the apical membrane. Trafficking of apical GLUT2 is rapidly up-regulated by glucose and artificial sweeteners, which act through T1R2 + T1R3/alpha-gustducin to activate PLC beta2 and PKC betaII. We therefore investigated whether non-sugar nutrients are regulated by taste receptors using perfused rat jejunum in vivo. Under different conditions, we observed a Ca(2+)-dependent reciprocal relationship between the H(+)/oligopeptide transporter PepT1 and apical GLUT2, reflecting the fact that trafficking of PepT1 and GLUT2 to the apical membrane is inhibited and activated by PKC betaII, respectively. Addition of L-glutamate or sucralose to a perfusate containing low glucose (20 mM) each activated PKC betaII and decreased apical PepT1 levels and absorption of the hydrolysis-resistant dipeptide L-Phe(PsiS)-L-Ala (1 mM), while increasing apical GLUT2 and glucose absorption within minutes. Switching perfusion from mannitol to glucose (75 mM) exerted similar effects. c-glutamate induced rapid GPCR internalization of T1R1, T1R3 and transducin, whereas sucralose internalized T1R2, T1R3 and alpha-gustducin. We conclude that L-glutamate acts via amino acid and glucose via sweet taste receptors to coordinate regulation of PepT1 and apical GLUT2 reciprocally through a common enterocytic pool of PKC betaII. These data suggest the existence of a wider Ca(2+) and taste receptor-coordinated transport network incorporating other nutrients and/or other stimuli capable of activating PKC betaII and additional transporters, such as the aspartate/glutamate transporter, EAAC1, whose level was doubled by L-glutamate. The network may control energy supply.
Collapse
Affiliation(s)
- Oliver J Mace
- Department of Biology (Area 3), The University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kellett GL, Brot-Laroche E, Mace OJ, Leturque A. Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr 2008; 28:35-54. [PMID: 18393659 DOI: 10.1146/annurev.nutr.28.061807.155518] [Citation(s) in RCA: 330] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intestinal glucose absorption comprises two components. One is classical active absorption mediated by the Na+/glucose cotransporter. The other is a diffusive component, formerly attributed to paracellular flow. Recent evidence, however, indicates that the diffusive component is mediated by the transient insertion of glucose transporter type 2 (GLUT2) into the apical membrane. This apical GLUT2 pathway of intestinal sugar absorption is present in species from insect to human, providing a major route at high sugar concentrations. The pathway is regulated by rapid trafficking of GLUT2 to the apical membrane induced by glucose during assimilation of a meal. Apical GLUT2 is therefore a target for multiple short-term and long-term nutrient-sensing mechanisms. These include regulation by a newly recognized pathway of calcium absorption through the nonclassical neuroendocrine l-type channel Cav1.3 operating during digestion, activation of intestinal sweet taste receptors by natural sugars and artificial sweeteners, paracrine and endocrine hormones, especially insulin and GLP-2, and stress. Permanent apical GLUT2, resulting in increased sugar absorption, is a characteristic of experimental diabetes and of insulin-resistant states induced by fructose and fat. The nutritional consequences of apical and basolateral GLUT2 regulation are discussed in the context of Western diet, processed foods containing artificial sweeteners, obesity, and diabetes.
Collapse
Affiliation(s)
- George L Kellett
- Department of Biology (Area 3), The University of York, York YO10 5YW, United Kingdom.
| | | | | | | |
Collapse
|
32
|
Davies SL, Gibbons CE, Steward MC, Ward DT. Extracellular calcium- and magnesium-mediated regulation of passive calcium transport across Caco-2 monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2318-24. [DOI: 10.1016/j.bbamem.2008.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 01/09/2023]
|
33
|
Leonhard-Marek S, Becker G, Breves G, Schröder B. Chloride, gluconate, sulfate, and short-chain fatty acids affect calcium flux rates across the sheep forestomach epithelium. J Dairy Sci 2008; 90:1516-26. [PMID: 17297125 DOI: 10.3168/jds.s0022-0302(07)71637-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In ruminants, more than 50% of overall gastrointestinal Ca absorption can occur preintestinally, and the anions of orally applied Ca salts are thought to play an important role in stimulating ruminal Ca absorption. This assumption is based mainly on ion-exchange studies that have used gluconate as the control anion, which may bind Ca2+ ions and interfere with treatment effects. In the present study, we investigated the distinct effects of different anions on Ca absorption across the sheep rumen and on the concentration of free Ca2+ ions ([Ca2+]ion). We showed that gluconate, sulfate, and short-chain fatty acids (SCFA) remarkably reduced [Ca2+]ion in buffer solutions. Nevertheless, increasing the Cl or SCFA concentration by 60 mM stimulated net ruminal Ca absorption 5- to 7-fold, but these effects could be antagonized by gluconate. Therefore, ion-exchange experiments must be (re)evaluated very carefully, because changes in [Ca2+]ion in the presence of gluconate, sulfate, or SCFA not only might entail an underestimation of Ca flux rates, but also might have effects on other cellular pathways that are Ca2+ dependent. Concerning the optimal Ca supply for dairy cows, the present study suggests that CaCl2 formulations and Ca salts of the SCFA stimulate Ca absorption across the rumen wall and are beneficial in preventing or correcting a Ca deficiency.
Collapse
Affiliation(s)
- S Leonhard-Marek
- Department of Physiology, School of Veterinary Medicine, Hannover, Germany.
| | | | | | | |
Collapse
|
34
|
Benn BS, Ajibade D, Porta A, Dhawan P, Hediger M, Peng JB, Jiang Y, Oh GT, Jeung EB, Lieben L, Bouillon R, Carmeliet G, Christakos S. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. Endocrinology 2008; 149:3196-205. [PMID: 18325990 PMCID: PMC2408805 DOI: 10.1210/en.2007-1655] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To study the role of the epithelial calcium channel transient receptor potential vanilloid type 6 (TRPV6) and the calcium-binding protein calbindin-D9k in intestinal calcium absorption, TRPV6 knockout (KO), calbindin-D9k KO, and TRPV6/calbindin-D(9k) double-KO (DKO) mice were generated. TRPV6 KO, calbindin-D9k KO, and TRPV6/calbindin-D9k DKO mice have serum calcium levels similar to those of wild-type (WT) mice ( approximately 10 mg Ca2+/dl). In the TRPV6 KO and the DKO mice, however, there is a 1.8-fold increase in serum PTH levels (P < 0.05 compared with WT). Active intestinal calcium transport was measured using the everted gut sac method. Under low dietary calcium conditions there was a 4.1-, 2.9-, and 3.9-fold increase in calcium transport in the duodenum of WT, TRPV6 KO, and calbindin-D9k KO mice, respectively (n = 8-22 per group; P > 0.1, WT vs. calbindin-D9k KO, and P < 0.05, WT vs. TRPV6 KO on the low-calcium diet). Duodenal calcium transport was increased 2.1-fold in the TRPV6/calbindin-D9k DKO mice fed the low-calcium diet (P < 0.05, WT vs. DKO). Active calcium transport was not stimulated by low dietary calcium in the ileum of the WT or KO mice. 1,25-Dihydroxyvitamin D3 administration to vitamin D-deficient null mutant and WT mice also resulted in a significant increase in duodenal calcium transport (1.4- to 2.0-fold, P < 0.05 compared with vitamin D-deficient mice). This study provides evidence for the first time using null mutant mice that significant active intestinal calcium transport occurs in the absence of TRPV6 and calbindin-D9k, thus challenging the dogma that TRPV6 and calbindin-D9k are essential for vitamin D-induced active intestinal calcium transport.
Collapse
Affiliation(s)
- Bryan S Benn
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Goestemeyer AK, Marks J, Srai SK, Debnam ES, Unwin RJ. GLUT2 protein at the rat proximal tubule brush border membrane correlates with protein kinase C (PKC)-betal and plasma glucose concentration. Diabetologia 2007; 50:2209-17. [PMID: 17694297 DOI: 10.1007/s00125-007-0778-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Accepted: 06/21/2007] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS GLUT2 is the main renal glucose transporter upregulated by hyperglycaemia, when it becomes detectable at the brush border membrane (BBM). Since glucose-induced protein kinase C (PKC) activation in the kidney is linked to diabetic nephropathy, we investigated the effect of glycaemic status on the protein levels of PKC isoforms alpha, betaI, betaII, delta and epsilon in the proximal tubule, as well as the relationship between them and changes in GLUT2 production at the BBM. METHODS Plasma glucose concentrations were modulated in rats by treatment with nicotinamide 15 min prior to induction of diabetes with streptozotocin. Levels of GLUT2 protein and PKC isoforms in BBM were measured by western blotting. Additionally, the role of calcium signalling and PKC activation on facilitative glucose transport was examined by measuring glucose uptake in BBM vesicles prepared from proximal tubules that had been incubated either with thapsigargin, which increases cytosolic calcium, or with the PKC activator phorbol 12-myristate,13-acetate (PMA). RESULTS Thapsigargin and PMA enhanced GLUT-mediated glucose uptake, but had no effect on sodium-dependent glucose transport. Diabetes significantly increased the protein levels of GLUT2 and PKC-betaI at the BBM. Levels of GLUT2 and PKC-betaI correlated positively with plasma glucose concentration. Diabetes had no effect on BBM levels of alpha, betaII, delta or epsilon isoforms of PKC. CONCLUSIONS/INTERPRETATION Enhanced GLUT2-mediated glucose transport across the proximal tubule BBM during diabetic hyperglycaemia is closely associated with increased PKC-betaI. Thus, altered levels of GLUT2 and PKC-betaI proteins in the BBM may be important factors in the pathogenic processes underlying diabetic renal injury.
Collapse
Affiliation(s)
- A K Goestemeyer
- Department of Physiology, Royal Free and University College Medical School, Hampstead Campus, Rowland Hill Street, London, NW3 2PF, UK
| | | | | | | | | |
Collapse
|
36
|
Mace OJ, Affleck J, Patel N, Kellett GL. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 2007; 582:379-92. [PMID: 17495045 PMCID: PMC2075289 DOI: 10.1113/jphysiol.2007.130906] [Citation(s) in RCA: 326] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Natural sugars and artificial sweeteners are sensed by receptors in taste buds. T2R bitter and T1R sweet taste receptors are coupled through G-proteins, alpha-gustducin and transducin, to activate phospholipase C beta2 and increase intracellular calcium concentration. Intestinal brush cells or solitary chemosensory cells (SCCs) have a structure similar to lingual taste cells and strongly express alpha-gustducin. It has therefore been suggested over the last decade that brush cells may participate in sugar sensing by a mechanism analogous to that in taste buds. We provide here functional evidence for an intestinal sensing system based on lingual taste receptors. Western blotting and immunocytochemistry revealed that all T1R members are expressed in rat jejunum at strategic locations including Paneth cells, SCCs or the apical membrane of enterocytes; T1Rs are colocalized with each other and with alpha-gustducin, transducin or phospholipase C beta2 to different extents. Intestinal glucose absorption consists of two components: one is classical active Na+-glucose cotransport, the other is the diffusive apical GLUT2 pathway. Artificial sweeteners increase glucose absorption in the order acesulfame potassium approximately sucralose > saccharin, in parallel with their ability to increase intracellular calcium concentration. Stimulation occurs within minutes by an increase in apical GLUT2, which correlates with reciprocal regulation of T1R2, T1R3 and alpha-gustducin versus T1R1, transducin and phospholipase C beta2. Our observation that artificial sweeteners are nutritionally active, because they can signal to a functional taste reception system to increase sugar absorption during a meal, has wide implications for nutrient sensing and nutrition in the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Oliver J Mace
- Department of Biology (Area 3), University of York, York YO10 5YW, UK
| | | | | | | |
Collapse
|
37
|
Morgan EL, Mace OJ, Affleck J, Kellett GL. Apical GLUT2 and Cav1.3: regulation of rat intestinal glucose and calcium absorption. J Physiol 2007; 580:593-604. [PMID: 17272350 PMCID: PMC2075547 DOI: 10.1113/jphysiol.2006.124768] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We have proposed a model of intestinal glucose absorption in which transport by SGLT1 induces rapid insertion and activation of GLUT2 in the apical membrane by a PKC betaII-dependent mechanism. Since PKC betaII requires Ca(2+) and glucose is depolarizing, we have investigated whether glucose absorption is regulated by the entry of dietary Ca(2+) through Ca(v)1.3 in the apical membrane. When rat jejunum was perfused with 75 mM glucose, Ca(2+)-deplete conditions, or perfusion with the L-type antagonists nifedipine and verapamil strongly diminished the phloretin-sensitive apical GLUT2, but not the phloretin-insensitive SGLT1 component of glucose absorption. Western blotting showed that in each case there was a significant decrease in apical GLUT2 level, but no change in SGLT1 level. Inhibition of apical GLUT2 absorption coincided with inhibition of unidirectional (45)Ca(2+) entry by nifedipine and verapamil. At 10 mM luminal Ca(2+), (45)Ca(2+) absorption in the presence of 75 mM glucose was 2- to 3-fold that in the presence of 75 mM mannitol. The glucose-induced component was SGLT1-dependent and nifedipine-sensitive. RT-PCR revealed the presence of Ca(v)beta(3) in jejunal mucosa; Western blotting and immunocytochemistry localized Ca(v)beta(3) to the apical membrane, together with Ca(v)1.3. We conclude that in times of dietary sufficiency Ca(v)1.3 may mediate a significant pathway of glucose-stimulated Ca(2+) entry into the body and that luminal supply of Ca(2+) is necessary for GLUT2-mediated glucose absorption. The integration of glucose and Ca(2+) absorption represents a complex nutrient-sensing system, which allows both absorptive pathways to be regulated rapidly and precisely to match dietary intake.
Collapse
Affiliation(s)
- Emma L Morgan
- Department of Biology, The University of York, York YO10 5YW, UK
| | | | | | | |
Collapse
|
38
|
Mace OJ, Morgan EL, Affleck JA, Lister N, Kellett GL. Calcium absorption by Cav1.3 induces terminal web myosin II phosphorylation and apical GLUT2 insertion in rat intestine. J Physiol 2007; 580:605-16. [PMID: 17272349 PMCID: PMC2075544 DOI: 10.1113/jphysiol.2006.124784] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucose absorption in rat jejunum involves Ca(2+)- and PKC betaII-dependent insertion of GLUT2 into the apical membrane. Ca(2+)-induced rearrangement of the enterocyte cytoskeleton is thought to enhance paracellular flow. We have therefore investigated the relationships between myosin II regulatory light chain phosphorylation (RLC(20)), absorption of glucose, water and calcium, and mannitol clearance. ML-7, an inhibitor of myosin light chain kinase, diminished the phloretin-sensitive apical GLUT2 but not the phloretin-insensitive SGLT1 component of glucose absorption in rat jejunum perfused with 75 mM glucose. Western blotting and immunocytochemistry revealed marked decreases in RLC(20) phosphorylation in the terminal web and in the levels of apical GLUT2 and PKC betaII, but not SGLT1. Perfusion with phloridzin or 75 mM mannitol, removal of luminal Ca(2+), or inhibition of unidirectional (45)Ca(2+) absorption by nifedipine exerted similar effects. ML-7 had no effect on the absorption of 10 mM Ca(2+), nor clearance of [(14)C]-mannitol, which was less than 0.7% of the rate of glucose absorption. Water absorption did not correlate with (45)Ca(2+) absorption or mannitol clearance. We conclude that the Ca(2+) necessary for contraction of myosin II in the terminal web enters via an L-type channel, most likely Ca(v)1.3, and is dependent on SGLT1. Moreover, terminal web RLC(20) phosphorylation is necessary for apical GLUT2 insertion. The data confirm that glucose absorption by paracellular flow is negligible, and show further that paracellular flow makes no more than a minimal contribution to jejunal Ca(2+) absorption at luminal concentrations prevailing after a meal.
Collapse
Affiliation(s)
- Oliver J Mace
- Department of Biology, The University of York, York YO10 5YW, UK
| | | | | | | | | |
Collapse
|
39
|
Fujinaka H, Nakamura J, Kobayashi H, Takizawa M, Murase D, Tokimitsu I, Suda T. Glucose 1-phosphate increases active transport of calcium in intestine. Arch Biochem Biophys 2006; 460:152-60. [PMID: 17320035 DOI: 10.1016/j.abb.2006.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 09/08/2006] [Accepted: 09/08/2006] [Indexed: 11/16/2022]
Abstract
Active calcium transport in intestine is essential for serum calcium homeostasis as well as for bone formation. It is well recognized that vitamin D is a major, if not sole, stimulator of intestinal calcium transport activity in mammals. Besides vitamin D, endogenous glucose 1-phosphate (G1P) affects calcium transport activity in some microorganisms. In this study, we investigated whether G1P affects intestinal calcium transport activity in mammals as well. Of several glycolytic intermediates, G1P was the sole sugar compound in stimulating intestinal calcium uptake in Caco-2 cells. G1P stimulated net calcium influx and expression of calbindin D9K protein in rat intestine, through an active transport mechanism. Calcium uptake in G1P-supplemented rats was greater than that in the control rats fed a diet containing adequate vitamin D3. Bone mineral density (BMD) of aged rat femoral metaphysis and diaphysis was also increased by feeding the G1P diet. G1P did not affect serum levels of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] at all. These results suggest that exogenously applied G1P stimulates active transport of calcium in intestine, independent of vitamin D, leading to an increase of BMD.
Collapse
Affiliation(s)
- Hidetake Fujinaka
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikaimachi, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Understanding the mechanisms that determine postprandial fluctuations in blood glucose concentration is central for effective glycemic control in the management of diabetes. Intestinal sugar absorption is one such mechanism, and studies on its increase in experimental diabetes led us to propose a new model of sugar absorption. In the apical GLUT2 model, the glucose transported by the Na(+)/glucose cotransporter SGLT1 promotes insertion of GLUT2 into the apical membrane within minutes, so that the mechanism operates during assimilation of a meal containing high-glycemic index carbohydrate to provide a facilitated component of absorption up to three times greater than by SGLT1. Here we review the evidence for the apical GLUT2 model and describe how apical GLUT2 is a target for multiple short-term nutrient-sensing mechanisms by dietary sugars, local and endocrine hormones, cellular energy status, stress, and diabetes. These mechanisms suggest that apical GLUT2 is a potential therapeutic target for novel dietary or pharmacological approaches to control intestinal sugar delivery and thereby improve glycemic control.
Collapse
Affiliation(s)
- George L Kellett
- The University of York, Department of Biology, York YO10 5YW, UK.
| | | |
Collapse
|