1
|
Bernabei I, So A, Busso N, Nasi S. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol 2023; 19:10-27. [PMID: 36509917 DOI: 10.1038/s41584-022-00875-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Pathological calcification of cartilage is a hallmark of osteoarthritis (OA). Calcification can be observed both at the cartilage surface and in its deeper layers. The formation of calcium-containing crystals, typically basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is an active, highly regulated and complex biological process that is initiated by chondrocytes and modified by genetic factors, dysregulated mitophagy or apoptosis, inflammation and the activation of specific cellular-signalling pathways. The links between OA and BCP deposition are stronger than those observed between OA and CPP deposition. Here, we review the molecular processes involved in cartilage calcification in OA and summarize the effects of calcium crystals on chondrocytes, synovial fibroblasts, macrophages and bone cells. Finally, we highlight therapeutic pathways leading to decreased joint calcification and potential new drugs that could treat not only OA but also other diseases associated with pathological calcification.
Collapse
Affiliation(s)
- Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Yang K, Shang Y, Yang N, Pan S, Jin J, He Q. Application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Front Med (Lausanne) 2023; 10:1132355. [PMID: 37138743 PMCID: PMC10149997 DOI: 10.3389/fmed.2023.1132355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
With the development of nanotechnology, nanoparticles have been used in various industries. In medicine, nanoparticles have been used in the diagnosis and treatment of diseases. The kidney is an important organ for waste excretion and maintaining the balance of the internal environment; it filters various metabolic wastes. Kidney dysfunction may result in the accumulation of excess water and various toxins in the body without being discharged, leading to complications and life-threatening conditions. Based on their physical and chemical properties, nanoparticles can enter cells and cross biological barriers to reach the kidneys and therefore, can be used in the diagnosis and treatment of chronic kidney disease (CKD). In the first search, we used the English terms "Renal Insufficiency, Chronic" [Mesh] as the subject word and terms such as "Chronic Renal Insufficiencies," "Chronic Renal Insufficiency," "Chronic Kidney Diseases," "Kidney Disease, Chronic," "Renal Disease, Chronic" as free words. In the second search, we used "Nanoparticles" [Mesh] as the subject word and "Nanocrystalline Materials," "Materials, Nanocrystalline," "Nanocrystals," and others as free words. The relevant literature was searched and read. Moreover, we analyzed and summarized the application and mechanism of nanoparticles in the diagnosis of CKD, application of nanoparticles in the diagnosis and treatment of renal fibrosis and vascular calcification (VC), and their clinical application in patients undergoing dialysis. Specifically, we found that nanoparticles can detect CKD in the early stages in a variety of ways, such as via breath sensors that detect gases and biosensors that detect urine and can be used as a contrast agent to avoid kidney damage. In addition, nanoparticles can be used to treat and reverse renal fibrosis, as well as detect and treat VC in patients with early CKD. Simultaneously, nanoparticles can improve safety and convenience for patients undergoing dialysis. Finally, we summarize the current advantages and limitations of nanoparticles applied to CKD as well as their future prospects.
Collapse
Affiliation(s)
- Kaibi Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwei Shang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shujun Pan
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Juan Jin,
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Qiang He,
| |
Collapse
|
3
|
Liu Q, Xiang P, Chen M, Luo Y, Zhao Y, Zhu J, Jing W, Yu H. Nano-Sized Hydroxyapatite Induces Apoptosis and Osteogenic Differentiation of Vascular Smooth Muscle Cells via JNK/c-JUN Pathway. Int J Nanomedicine 2021; 16:3633-3648. [PMID: 34079254 PMCID: PMC8166281 DOI: 10.2147/ijn.s303714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose The deposition of hydroxyapatite (HAp) crystals plays an important role in the development of vascular calcification (VC). This study aimed to demonstrate the effects of nanosized HAp (nHAp) on vascular smooth muscle cells (VSMCs) and VC progression. Methods Transmission electron microscopy (TEM) was used to examine cellular uptake of nHAp. Cell viability was determined using CCK-8 assay kit. Mitochondrial impairment and reactive oxygen species were detected by TEM and fluorescence dye staining, respectively. Cell apoptosis was detected by Western blot analysis and Annexin V staining. Mouse model of VC was built via applying nHAp on the surface of abdominal aorta. Calcification was visualized by Alizarin red and von Kossa staining. Results We found that nHAp could promote osteogenic transformation of VSMCs by elevating expression of runt-related factor 2 (Runx2), osteopontin (OPN) and alkaline phosphatase (ALP), impairing function and morphology of mitochondria and inducing apoptosis of VSMCs. More phosphorylation of c-Jun N-terminal protein kinase/c-JUN (JNK/c-JUN) in VSMCs was detected after mixing nHAp with VSMCs. HAp-induced osteogenic transformation of VSMCs was blocked by JNK inhibitor SP600125, resulted in decreased ALP activity, less Runx2 and OPN expressions. SP600125 also inhibited apoptosis of VSMCs. Application of nHAp to outside of aorta induced osteogenic transformation and apoptosis of VSMCs, and significant deposition of calcium on the vessel walls of mice, which can be effectively attenuated by SP600125. Conclusion JNK/c-JUN signaling pathway is critical for nHAp-induced calcification, which could be a potential therapeutic target for controlling the progression of VC.
Collapse
Affiliation(s)
- Qi Liu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Pingping Xiang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Mingyao Chen
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Yi Luo
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Yun Zhao
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China.,The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, Shandong Province, 266071, People's Republic of China
| | - Jinyun Zhu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Wangwei Jing
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Hong Yu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| |
Collapse
|
4
|
Huang LH, Han J, Ouyang JM, Gui BS. Shape-dependent adhesion and endocytosis of hydroxyapatite nanoparticles on A7R5 aortic smooth muscle cells. J Cell Physiol 2019; 235:465-479. [PMID: 31222743 DOI: 10.1002/jcp.28987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
The interaction between nanohydroxyapatite (HAP) and smooth muscle cells is an important step in vascular calcification. However, the effect of the shape of HAP on adhesion and endocytosis to aortic smooth muscle cells has been rarely reported. Four different morphological HAP crystals (H-Rod, H-Needle, H-Sphere, and H-Plate) were selected to interact with rat aortic smooth muscle cells (A7R5). Fluorescence-labeled HAP was used to detect crystal adhesion and endocytosis and then pretreated with different endocytic inhibitors to explore the pathway of endocytotic crystals. The distribution of crystals inside and outside the cells and the crystal localization in lysosomes was observed through laser confocal microscopy. The effect of crystal on the cell cycle and the changes in the expression of phosphatidylserine, osteopontin, α-actin, core binding factor alpha 1, and osterix on the surface of A7R5 cells were detected. The adhesion and endocytosis of HAP on A7R5 cells were closely related to crystal shapes and ranked as follows: H-Plate > H-Sphere > H-Needle > H-Rod. H-Sphere and H-Needle were internalized into the cells mainly via the clathrin-mediated pathway, whereas H-Plate and H-Rod were internalized into the cells mainly via macropinocytosis. The endocytosed nano-HAP was mainly distributed in the cell lysosome. The adhesion and endocytosis of HAP to A7R5 cells were positively correlated with the specific surface area, and contact area of HAP and negatively correlated with the absolute value of Zeta and contact angle of HAP. This study provided insights into the effect of crystal morphology on vascular calcification and its mechanism.
Collapse
Affiliation(s)
- Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Jin Han
- Department of Nephrology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Bao-Song Gui
- Department of Nephrology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Magnesium: A Magic Bullet for Cardiovascular Disease in Chronic Kidney Disease? Nutrients 2019; 11:nu11020455. [PMID: 30813254 PMCID: PMC6412491 DOI: 10.3390/nu11020455] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Magnesium is essential for many physiological functions in the human body. Its homeostasis involves dietary intake, absorption, uptake and release from bone, swifts between the intra- and extracellular compartment, and renal excretion. Renal excretion is mainly responsible for regulation of magnesium balance. In chronic kidney disease (CKD), for a long time the general policy has been limiting magnesium intake. However, this may not be appropriate for many patients. The reference ranges for magnesium are not necessarily optimal concentrations, and risks for insufficient magnesium intake exist in patients with CKD. In recent years, many observational studies have shown that higher (in the high range of “normal” or slightly above) magnesium concentrations are associated with better survival in CKD cohorts. This review gives an overview of epidemiological associations between magnesium and overall and cardiovascular survival in patients with CKD. In addition, potential mechanisms explaining the protective role of magnesium in clinical cardiovascular outcomes are described by reviewing evidence from in vitro studies, animal studies, and human intervention studies with non-clinical endpoints. This includes the role of magnesium in cardiac arrhythmia, heart failure, arterial calcification, and endothelial dysfunction. Possible future implications will be addressed, which will need prospective clinical trials with relevant clinical endpoints before these can be adopted in clinical practice.
Collapse
|
6
|
Calcium-phosphate complex increased during subchondral bone remodeling affects earlystage osteoarthritis. Sci Rep 2018; 8:487. [PMID: 29323204 PMCID: PMC5765022 DOI: 10.1038/s41598-017-18946-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022] Open
Abstract
An activation of osteoclasts and subchondral bone remodeling is a major histologic feature of early-stage osteoarthritis (OA), which can be accompanied by an increase of calcium (Ca) and phosphate (Pi) level in the subchondral milieu. Considering articular cartilage gets most of nutrition from subchondral bone by diffusion, these micro-environmental changes in subchondral bone can affect the physiology of articular chondrocytes. Here, we have shown that Ca is increased and co-localized with Pi in articular cartilage of early-stage OA. The Ca-Pi complex increased the production of MMP-3 and MMP-13 in the hypertrophic chondrocytes, which was dependent on nuclear factor-kappa B (NF-kB), p38 and extracellular signal-regulated kinase (Erk) 1/2 mitogen-activated protein (MAP) kinase and Signal transducer and activator of transcription 3 (STAT3) signaling. The Ca-Pi complexes increased the expression of endocytosis markers, and the inhibition of the formation of the Ca-Pi complex ameliorated the Ca-Pi complex-mediated increases of MMPs expression in hypertrophic chondrocytes. Our data provide insight regarding the Ca-Pi complex as a potential catabolic mediator in the subchondral milieu and support the pathogenic role of subchondral bone in the early stages of cartilage degeneration.
Collapse
|
7
|
Sun Y, Roberts A, Mauerhan DR, Cox M, Hanley EN. Biological effects and osteoarthritic disease-modifying activity of small molecule CM-01. J Orthop Res 2018; 36:309-317. [PMID: 28544002 DOI: 10.1002/jor.23616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/19/2017] [Indexed: 02/04/2023]
Abstract
Phosphocitrate inhibits cartilage degeneration, however, the prospect of phosphocitrate as an oral disease modifying drug might be limited. The purpose of this study was to investigate the biological effects and disease-modifying activity of a phosphocitrate "analog," CM-01 (Carolinas Molecule-01), and test the hypothesis that CM-01 is a disease modifying drug for osteoarthritis therapy. The effects of CM-01 on calcium crystal-induced expression of matrix metalloproteinase-1 and interleukin-1 beta, cell-mediated calcification and production of proteoglycan by chondrocytes were examined in cell cultures. Disease-modifying activity was examined using Hartley guinea pig model of posttraumatic osteoarthritis. Cartilage degeneration in untreated and CM-01 treated guinea pigs was examined with Indian ink and Safranin-O-fast green. Levels of matrix metalloproteinase-13, ADAM metallopeptidase with thrombospondin type 1 motif 5, chemokine (C-C motif) ligand 5, and cyclooxygenase 2 were examined with immunostaining. CM-01 inhibited crystal-induced expression of matrix metalloproteinase-1 and interleukin-1β, reduced cell-mediated calcification, and stimulated the production of proteoglycan by chondrocytes. In Hartley guinea pigs, CM-01 not only reduced damages in articular surface but also reduced resorption of calcified zone cartilage. The reduction in cartilage degeneration was accompanied by decreased levels of matrix metalloproteinase-13, ADAM metallopeptidase with thrombospondin type 1 motif 5, chemokine (C-C motif) ligand 5 and cyclooxygenase 2. These findings confirmed that CM-01 is a promising candidate to be tested as an oral drug for human OA therapy. CM-01 exerted its disease-modifying activity on osteoarthritis, in part, by inhibiting the production of matrix-degrading enzymes and a molecular program resembling the endochondral pathway of ossification. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:309-317, 2018.
Collapse
Affiliation(s)
- Yubo Sun
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - Andrea Roberts
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - David R Mauerhan
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - Michael Cox
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - Edward N Hanley
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| |
Collapse
|
8
|
Abstract
To analyze the element composition and microstructure of calcification in craniopharyngiomas and to explore the differences among differing degrees of calcification, 50 consecutive patients with craniopharyngioma were selected. X-ray diffraction analysis and energy-dispersive X-ray spectroscopy analysis were performed on the calcified plaques isolated from the tumor specimens. All calcified plaques were constituted of hydroxyapatite crystals and some amorphous materials. The main elements for the analysis were calcium, phosphate, carbon, and oxygen. There were significant differences among groups of differing degrees of calcification in the percentage composition of calcium, phosphorus, and carbon (P < 0.05), in which the element content of calcium and phosphorus had a positive correlation with the extent of calcification (rp = 0.745 and 0.778, respectively, P < 0.01), while the element content of carbon had a negative correlation with the extent of calcification (rp =−0.526, P <0.01). The calcium, phosphorus, and carbon content are different in calcified plaques with different extents of calcification. The element content of calcium, phosphorus, and carbon influences the degree of calcification.
Collapse
|
9
|
Liu Y, Zhang L, Ni Z, Qian J, Fang W. Calcium Phosphate Crystals from Uremic Serum Promote Osteogenic Differentiation in Human Aortic Smooth Muscle Cells. Calcif Tissue Int 2016; 99:543-555. [PMID: 27473581 DOI: 10.1007/s00223-016-0182-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/21/2016] [Indexed: 11/25/2022]
Abstract
Recent study demonstrated that calcium phosphate (CaP) crystals isolated from high phosphate medium were a key contributor to arterial calcification. The present study further investigated the effects of CaP crystals induced by uremic serum on calcification of human aortic smooth muscle cells. This may provide a new insight for the development of uremic cardiovascular calcification. We tested the effects of uremic serum or normal serum on cell calcification. Calcification was visualized by staining and calcium deposition quantified. Expression of various bone-calcifying genes was detected by real-time PCR, and protein levels were quantified by western blotting or enzyme-linked immunosorbent assays. Pyrophosphate was used to investigate the effects of CaP crystals' inhibition. Finally, CaP crystals were separated from uremic serum to determine its specific pro-calcification effects. Uremic serum incubation resulted in progressively increased calcification staining and increased calcium deposition in HASMCs after 4, 8 and 12 days (P vs 0 day <0.001 for all). Compared to cells incubated in control serum, uremic serum significantly induced the mRNA expression of bone morphogenetic factor-2, osteopontin and RUNX2, and increased their protein levels as well (P < 0.05 for all). Inhibition of CaP crystals with pyrophosphate incubation prevented calcium deposition and bone-calcifying gene over-expression increased by uremic serum. CaP crystals, rather than the rest of uremic serum, were responsible for these effects. Uremic serum accelerates arterial calcification by mediating osteogenic differentiation. This effect might be mainly attributed to the CaP crystal content.
Collapse
Affiliation(s)
- Yaorong Liu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
| | - Lin Zhang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
| | - Jiaqi Qian
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
| | - Wei Fang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
10
|
Pujari-Palmer M, Pujari-Palmer S, Lu X, Lind T, Melhus H, Engstrand T, Karlsson-Ott M, Engqvist H. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts. PLoS One 2016; 11:e0163530. [PMID: 27701417 PMCID: PMC5049792 DOI: 10.1371/journal.pone.0163530] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/09/2016] [Indexed: 12/29/2022] Open
Abstract
Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression.
Collapse
Affiliation(s)
- Michael Pujari-Palmer
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Shiuli Pujari-Palmer
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Xi Lu
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Thomas Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Håkan Melhus
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Thomas Engstrand
- Stockholm Craniofacial Centre, Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Materials Chemistry, Polymer section, Uppsala University, Uppsala, Sweden
| | - Marjam Karlsson-Ott
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Hakan Engqvist
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Sun Y, Haines N, Roberts A, Ruffolo M, Mauerhan DR, Mihalko KL, Ingram J, Cox M, Hanley EN. Disease-modifying effects of phosphocitrate and phosphocitrate-β-ethyl ester on partial meniscectomy-induced osteoarthritis. BMC Musculoskelet Disord 2015; 16:270. [PMID: 26424660 PMCID: PMC4588234 DOI: 10.1186/s12891-015-0724-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022] Open
Abstract
Background It is believed that phosphocitrate (PC) exerts its disease-modifying effects on osteoarthritis (OA) by inhibiting the formation of crystals. However, recent findings suggest that PC exerts its disease-modifying effect, at least in part, through a crystal-independent action. This study sought to examine the disease-modifying effects of PC and its analogue PC-β-ethyl ester (PC-E) on partial meniscectomy-induced OA and the structure-activity relationship. Methods Calcification- and proliferation-inhibitory activities were examined in OA fibroblast-like synoviocytes (FLSs) culture. Disease-modifying effects were examined using Hartley guinea pigs undergoing partial meniscectomy. Cartilage degeneration was examined with Indian ink, safranin-O, and picrosirius red. Levels of matrix metalloproteinase-13 (MMP-13), ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5), chemokine (C-C motif) ligand 5 (CCL5), and cyclooxygenase-2 (Cox-2) were examined with immunostaining. The effects of PC-E and PC on gene expressions in OA FLSs were examined with microarray. Results are expressed as mean ± standard deviation and analyzed using Student’s t test or Wilcoxon rank sum test. Results PC-E was slightly less powerful than PC as a calcification inhibitor but as powerful as PC in the inhibition of OA FLSs proliferation. PC significantly inhibited cartilage degeneration in the partial meniscectomied right knee. PC-E was less powerful than PC as a disease-modifying drug, especially in the inhibition of cartilage degeneration in the non-operated left knee. PC significantly reduced the levels of ADAMTS5, MMP-13 and CCL5, whereas PC-E reduced the levels of ADAMTS5 and CCL5. Microarray analyses revealed that PC-E failed to downregulate the expression of many PC-downregulated genes classified in angiogenesis and inflammatory response. Conclusions PC is a disease-modifying drug for posttraumatic OA therapy. PC exerts its disease-modifying effect through two independent actions: inhibiting pathological calcification and modulating the expression of many genes implicated in OA. The β-carboxyl group of PC plays an important role in the inhibition of cartilage degeneration, little role in the inhibition of FLSs proliferation, and a moderate role in the inhibition of FLSs-mediated calcification.
Collapse
Affiliation(s)
- Yubo Sun
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, 28232, USA.
| | - Nikkole Haines
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, 28232, USA.
| | - Andrea Roberts
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, 28232, USA.
| | - Michael Ruffolo
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, 28232, USA.
| | - David R Mauerhan
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, 28232, USA.
| | - Kim L Mihalko
- Department of Comparative Medicine, Carolinas Medical Center, PO Box 32861, Charlotte, NC, 28232, USA.
| | - Jane Ingram
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, 28232, USA.
| | - Michael Cox
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, 28232, USA.
| | - Edward N Hanley
- Department of Orthopedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, 28232, USA.
| |
Collapse
|
12
|
Massy ZA, Drüeke TB. Magnesium and outcomes in patients with chronic kidney disease: focus on vascular calcification, atherosclerosis and survival. Clin Kidney J 2015; 5:i52-i61. [PMID: 26069821 PMCID: PMC4455827 DOI: 10.1093/ndtplus/sfr167] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have a high prevalence of vascular calcification, and cardiovascular disease is the leading cause of death in this population. However, the molecular mechanisms of vascular calcification, which are multifactorial, cell-mediated and dynamic, are not yet fully understood. We need to address ways to improve outcomes in CKD patients, both in terms of vascular calcification and cardiovascular morbidity and mortality—and to these ends, we investigate the role of magnesium. Magnesium’s role in the pathogenesis of vascular calcification has not been extensively studied. Nonetheless, several in vitro and animal studies point towards a protective role of magnesium through multiple molecular mechanisms. Magnesium is a natural calcium antagonist and both human and animal studies have shown that low circulating magnesium levels are associated with vascular calcification. Clinical evidence from observational studies of dialysis patients has shown that low-magnesium levels occur concurrently with mitral annular calcification, peripheral arterial calcification and increased carotid intima–media thickness. Few interventional studies have been performed. Two interventional studies suggest that there may be benefits such as retardation of arterial calcification and/or reductions in carotid intima–media thickness in response to magnesium supplementation in CKD patients, though both studies have limitations. Finally, observational studies have shown that low serum magnesium may be an independent risk factor for premature death in CKD patients, and patients with mildly elevated serum magnesium levels could have a survival advantage over those with lower magnesium levels.
Collapse
Affiliation(s)
- Ziad A Massy
- Departments of Clinical Pharmacology and Nephrology, Amiens University Hospital, CHU-Amiens South ; INSERM Unit 1088, UFR de Médicine et de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| | - Tilman B Drüeke
- INSERM Unit 1088, UFR de Médicine et de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
13
|
Rai MF, Patra D, Sandell LJ, Brophy RH. Relationship of gene expression in the injured human meniscus to body mass index: a biologic connection between obesity and osteoarthritis. Arthritis Rheumatol 2014; 66:2152-64. [PMID: 24692131 DOI: 10.1002/art.38643] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/20/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Higher body mass index (BMI) increases the risk of meniscus injury and knee osteoarthritis (OA). However, it is unknown if and how obesity affects meniscus biology. We analyzed transcriptome-wide gene expression profiles of injured human menisci to test the hypothesis that meniscal gene expression signatures relate to patient BMI. METHODS Meniscus samples were obtained from patients undergoing arthroscopic partial meniscectomy. Transcriptome-wide analysis of gene expression followed by validation of selected transcripts by QuantiGene Plex assay was performed. Correlations of gene expression with BMI and relative fold changes (≥1.5-fold) in 3 BMI categories (lean [BMI 18.5-24.9 kg/m(2) ], overweight [BMI 25.0-29.9 kg/m(2) ], and obese [BMI >30.0 kg/m(2) ]) were analyzed, and integrated functional classifications were probed computationally. RESULTS The obese versus overweight comparison resulted in the largest set of differences (565 transcripts) followed by obese versus lean (280 transcripts) and overweight versus lean (125 transcripts). Biologic reproducibility was confirmed by cluster analysis of expressed transcripts. Differentially regulated transcripts represented important functional classifications. Transcripts associated with oxygen transport, calcium ion binding, and cell homeostasis were elevated with BMI, while those related to extracellular matrix deposition, cell migration, and glucosamine metabolic processes were repressed. While these functional classifications may play key roles in cartilage/meniscus homeostasis, failure of extracellular matrix deposition and increase in calcium ion binding likely contribute to OA development following meniscal injury. CONCLUSION Our results indicate greater differences in gene expression between obese and overweight groups than between overweight and lean groups. This may indicate that there is a weight threshold at which injured meniscus responds severely to increased BMI. BMI-related changes in gene expression present a plausible explanation for the role of meniscal injury in OA development among obese patients.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri
| | | | | | | |
Collapse
|
14
|
Biological activities of phosphocitrate: a potential meniscal protective agent. BIOMED RESEARCH INTERNATIONAL 2013; 2013:726581. [PMID: 23936839 PMCID: PMC3726015 DOI: 10.1155/2013/726581] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/12/2013] [Accepted: 06/19/2013] [Indexed: 12/26/2022]
Abstract
Phosphocitrate (PC) inhibited meniscal calcification and the development of calcium crystal-associated osteoarthritis (OA) in Hartley guinea pigs. However, the mechanisms remain elusive. This study sought to examine the biological activities of PC in the absence of calcium crystals and test the hypothesis that PC is potentially a meniscal protective agent. We found that PC downregulated the expression of many genes classified in cell proliferation, ossification, prostaglandin metabolic process, and wound healing, including bloom syndrome RecQ helicase-like, cell division cycle 7 homolog, cell division cycle 25 homolog C, ankylosis progressive homolog, prostaglandin-endoperoxide synthases-1/cyclooxygenase-1, and plasminogen activator urokinase receptor. In contrast, PC stimulated the expression of many genes classified in fibroblast growth factor receptor signaling pathway, collagen fibril organization, and extracellular structure organization, including fibroblast growth factor 7, collagen type I, alpha 1, and collagen type XI, alpha 1. Consistent with its effect on the expression of genes classified in cell proliferation, collagen fibril organization, and ossification, PC inhibited the proliferation of OA meniscal cells and meniscal cell-mediated calcification while stimulating the production of collagens. These findings indicate that PC is potentially a meniscal-protective agent and a disease-modifying drug for arthritis associated with severe meniscal degeneration.
Collapse
|
15
|
Grases F, Costa-Bauzá A, Prieto RM, Conte A, Servera A. Renal papillary calcification and the development of calcium oxalate monohydrate papillary renal calculi: a case series study. BMC Urol 2013; 13:14. [PMID: 23497010 PMCID: PMC3599710 DOI: 10.1186/1471-2490-13-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The objective of this study is to determine in a case series (four patients) how calcified deposits in renal papillae are associated with the development of calcium oxalate monohydrate (COM) papillary calculi. METHODS From the recently collected papillary calculi, we evaluated retrospectively patients, subjected to retrograde ureteroscopy, with COM papillary lithiasis. RESULTS The COM papillary calculi were found to result from subepithelial injury. Many of these lesions underwent calcification by hydroxyapatite (HAP), with calculus morphology and the amount of HAP in the concave zone dependent on the location of the calcified injury. Most of these HAP deposits grew, eroding the epithelium covering the renal papillae, coming into contact with urine and starting the development of COM calculi. Subepithelial HAP plaques may alter the epithelium covering the papillae, resulting in the deposit of COM crystals directly onto the epithelium. Tissue calcification depends on a pre-existing injury, the continuation of this process is due to modulators and/or crystallization inhibitors deficiency. CONCLUSIONS Since calculus morphology and the amount of detected HAP are dependent on the location and widespread of calcified injury, all types of papillary COM calculi can be found in the same patient. All patients had subepithelial calcifications, with fewer papillary calculi, demonstrating that some subepithelial calcifications did not further evolve and were reabsorbed. A high number of subepithelial calcifications increases the likelihood that some will be transformed into COM papillary calculi.
Collapse
Affiliation(s)
- Fèlix Grases
- Laboratory of Renal Lithiasis Research, Faculty of Sciences, Universitary Institute of Health Sciences Research (IUNICS), University of Balearic Islands, Palma de Mallorca, 07122, Spain.
| | | | | | | | | |
Collapse
|
16
|
Phosphocitrate is potentially a disease-modifying drug for noncrystal-associated osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:326267. [PMID: 23555081 PMCID: PMC3595112 DOI: 10.1155/2013/326267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/10/2013] [Indexed: 01/13/2023]
Abstract
Phosphocitrate (PC), a calcification inhibitor, inhibits the development of crystal-associated osteoarthritis (OA) in Hartley guinea pigs. However, the molecular mechanisms underlying its disease-modifying effect remain elusive. This study sought to test the hypothesis that PC has calcium crystal-independent biological activities which are, at least in part, responsible for its disease-modifying activity. We found that PC inhibited the proliferation of OA fibroblast-like synoviocytes in the absence of calcium crystals. Consistent with its effect on cell proliferation, PC downregulated the expression of numerous genes classified in cell proliferation. PC also downregulated the expression of many genes classified in angiogenesis and inflammatory response including prostaglandin-endoperoxide synthase 2, interleukin-1 receptor, type I, and chemokine (C-C motif) ligand 2. In contrast, PC upregulated the expression of many genes classified in musculoskeletal tissue development, including aggrecan, type I collagen, and insulin-like growth factor binding protein 5. These findings suggest that PC is not only a promising disease-modifying drug for crystal-associated OA but also for noncrystal-associated OA.
Collapse
|
17
|
Grandinetti G, Smith AE, Reineke TM. Membrane and nuclear permeabilization by polymeric pDNA vehicles: efficient method for gene delivery or mechanism of cytotoxicity? Mol Pharm 2012; 9:523-38. [PMID: 22175236 PMCID: PMC3524998 DOI: 10.1021/mp200368p] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study is to compare the cytotoxicity mechanisms of linear PEI to two analogous polymers synthesized by our group: a hydroxyl-containing poly(l-tartaramidoamine) (T4) and a version containing an alkyl chain spacer poly(adipamidopentaethylenetetramine) (A4) by studying the cellular responses to polymer transfection. We have also synthesized analogues of T4 with different molecular weights (degrees of polymerization of 6, 12, and 43) to examine the role of molecular weight on the cytotoxicity mechanisms. Several mechanisms of polymer-induced cytotoxicity are investigated, including plasma membrane permeabilization, the formation of potentially harmful polymer degradation products during transfection including reactive oxygen species, and nuclear membrane permeabilization. We hypothesized that since cationic polymers are capable of disrupting the plasma membrane, they may also be capable of disrupting the nuclear envelope, which could be a potential mechanism of how the pDNA is delivered into the nucleus (other than nuclear envelope breakdown during mitosis). Using flow cytometry and confocal microscopy, we show that the polycations with the highest amount of protein expression and toxicity, PEI and T4(43), are capable of inducing nuclear membrane permeability. This finding is important for the field of nucleic acid delivery in that direct nucleus permeabilization could be not only a mechanism for pDNA nuclear import but also a potential mechanism of cytotoxicity and cell death. We also show that the production of reactive oxygen species is not a main mechanism of cytotoxicity, and that the presence or absence of hydroxyl groups and polymer length play a role in polyplex size and charge in addition to protein expression efficiency and toxicity.
Collapse
Affiliation(s)
- Giovanna Grandinetti
- Department of Chemistry, Virginia Polytechnic Institute and State University. Blacksburg, VA 24061
| | - Adam E. Smith
- Department of Chemistry, Virginia Polytechnic Institute and State University. Blacksburg, VA 24061
| | - Theresa M. Reineke
- Department of Chemistry, Virginia Polytechnic Institute and State University. Blacksburg, VA 24061
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
18
|
Neven E, De Schutter TM, De Broe ME, D'Haese PC. Cell biological and physicochemical aspects of arterial calcification. Kidney Int 2011; 79:1166-77. [PMID: 21412217 DOI: 10.1038/ki.2011.59] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Processes similar to endochondral or intramembranous bone formation occur in the vascular wall. Bone and cartilage tissue as well as osteoblast- and chondrocyte-like cells are present in calcified arteries. As in bone formation, apoptosis and matrix vesicles play an important role in the initiation of vascular calcification. Recent evidence indicates that nanocrystals initially formed in the vessel wall may actively be involved in the progression of the calcification process. This review focuses on the cellular and structural similarities between bone formation and vascular calcification and discusses the initial events in this pathological mineralization process.
Collapse
Affiliation(s)
- Ellen Neven
- Department of Pathophysiology, University of Antwerp, Belgium
| | | | | | | |
Collapse
|
19
|
Sage AP, Lu J, Tintut Y, Demer LL. Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int 2011; 79:414-22. [PMID: 20944546 PMCID: PMC3198856 DOI: 10.1038/ki.2010.390] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vascular calcification, which contributes to cardiovascular disease in patients with uremic hyperphosphatemia, is associated with vascular cell expression of osteogenic genes, including bone morphogenetic protein (BMP)-2 and osteopontin (OPN). High inorganic phosphate levels in vitro stimulate the osteogenic conversion of smooth muscle cells; however, the mechanism governing this is not clear. We found that high-phosphate medium increased the expression of BMP-2 and OPN in mouse smooth muscle cells in culture. However, this effect was lost in the presence of the mineralization inhibitor, pyrophosphate, suggesting a contribution of calcium phosphate crystals. Addition of 1-2 mmol/l phosphate alone to growth medium was sufficient to induce nanosized crystals after 1 day at 37 °C. Isolated crystals were about 160 nm in diameter and had a calcium to phosphate ratio of 1.35, consistent with the hydroxyapatite precursor octacalcium phosphate. Nanocrystal formation increased fourfold in the absence of serum, was blocked by fetuin-A, and was dependent on time and on the concentrations of phosphate and calcium. Purified synthetic hydroxyapatite nanocrystals and isolated high-phosphate-induced nanocrystals, but not nanocrystal-free high-phosphate medium, also induced BMP-2 and OPN. Thus, our results suggest that BMP-2 and OPN are induced by calcium phosphate nanocrystals, rather than soluble phosphate. This mechanism may contribute, in part, to hyperphosphatemia-related vascular cell differentiation and calcification.
Collapse
Affiliation(s)
- Andrew P. Sage
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jinxiu Lu
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Yin Tintut
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Linda L. Demer
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Bioengineering, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
20
|
Abstract
Although much progress has been made in the past five years in understanding the mechanisms leading to accelerated vascular calcification in patients with chronic kidney disease, it remains unclear how an environment high in phosphate can impinge so significantly on the calcification process. The study by Sage et al. highlights an important and novel role for calcium phosphate nanocrystals, produced in a high-phosphate environment, in rapidly driving calcification of vascular smooth muscle cells via enhanced production of bone morphogenetic protein-2.
Collapse
Affiliation(s)
- Diane Proudfoot
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | | |
Collapse
|
21
|
Pazár B, Ea HK, Narayan S, Kolly L, Bagnoud N, Chobaz V, Roger T, Lioté F, So A, Busso N. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. THE JOURNAL OF IMMUNOLOGY 2011; 186:2495-502. [PMID: 21239716 DOI: 10.4049/jimmunol.1001284] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Basic calcium phosphate (BCP) crystals are associated with severe osteoarthritis and acute periarticular inflammation. Three main forms of BCP crystals have been identified from pathological tissues: octacalcium phosphate, carbonate-substituted apatite, and hydroxyapatite. We investigated the proinflammatory effects of these BCP crystals in vitro with special regard to the involvement of the NLRP3-inflammasome in THP-1 cells, primary human monocytes and macrophages, and mouse bone marrow-derived macrophages (BMDM). THP-1 cells stimulated with BCP crystals produced IL-1β in a dose-dependent manner. Similarly, primary human cells and BMDM from wild-type mice also produced high concentrations of IL-1β after crystal stimulation. THP-1 cells transfected with short hairpin RNA against the components of the NLRP3 inflammasome and mouse BMDM from mice deficient for NLRP3, apoptosis-associated speck-like protein, or caspase-1 did not produce IL-1β after BCP crystal stimulation. BCP crystals induced macrophage apoptosis/necrosis as demonstrated by MTT and flow cytometric analysis. Collectively, these results demonstrate that BCP crystals induce IL-1β secretion through activating the NLRP3 inflammasome. Furthermore, we speculate that IL-1 blockade could be a novel strategy to inhibit BCP-induced inflammation in human disease.
Collapse
Affiliation(s)
- Borbála Pazár
- Department of Rheumatology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Baker R, Rogers KD, Shepherd N, Stone N. New relationships between breast microcalcifications and cancer. Br J Cancer 2010; 103:1034-9. [PMID: 20842116 PMCID: PMC2965876 DOI: 10.1038/sj.bjc.6605873] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/26/2010] [Accepted: 08/03/2010] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Breast microcalcifications are key diagnostically significant radiological features for localisation of malignancy. This study explores the hypothesis that breast calcification composition is directly related to the local tissue pathological state. METHODS A total of 236 human breast calcifications from 110 patients were analysed by mid-Fouries transform infrared (FTIR) spectroscopy from three different pathology types (112 invasive carcinoma (IC), 64 in-situ carcinomas and 60 benign). The biochemical composition and the incorporation of carbonate into the hydroxyapatite lattice of the microcalcifications were studied by infrared microspectroscopy. This allowed the spectrally identified composition to be directly correlated with the histopathology grading of the surrounding tissue. RESULTS The carbonate content of breast microcalcifications was shown to significantly decrease when progressing from benign to malignant disease. In this study, we report significant correlations (P<0.001) between microcalcification chemical composition (carbonate content and protein matrix : mineral ratios) and distinct pathology grades (benign, in-situ carcinoma and ICs). Furthermore, a significant correlation (P<0.001) was observed between carbonate concentrations and carcinoma in-situ sub-grades. Using the two measures of pathology-specific calcification composition (carbonate content and protein matrix : mineral ratios) as the inputs to a two-metric discriminant model sensitivities of 79, 84 and 90% and specificities of 98, 82 and 96% were achieved for benign, ductal carcinoma in situ and invasive malignancies, respectively. CONCLUSIONS We present the first demonstration of a direct link between the chemical nature of microcalcifications and the grade of the pathological breast disease. This suggests that microcalcifications have a significant association with cancer progression, and could be used for future objective analytical classification of breast pathology. A simple two-metric model has been demonstrated, more complex spectral analysis may yeild greater discrimination performance. Furthermore there appears to be a sequential progression of calcification composition.
Collapse
Affiliation(s)
- R Baker
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Great Western Road, Gloucester, GL1 3NN,UK
- Cranfield Health, Cranfield University (Shrivenham Campus), Shrivenham, Swindon, Wiltshire, SN6 8LA,UK
| | - K D Rogers
- Cranfield Health, Cranfield University (Shrivenham Campus), Shrivenham, Swindon, Wiltshire, SN6 8LA,UK
| | - N Shepherd
- Cranfield Health, Cranfield University (Shrivenham Campus), Shrivenham, Swindon, Wiltshire, SN6 8LA,UK
- Department of Histopathology, Gloucestershire department already included Hospital NHS Foundation Trust, Great Western Road, Gloucester, GL1 3NN, UK
| | - N Stone
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Great Western Road, Gloucester, GL1 3NN,UK
- Cranfield Health, Cranfield University (Shrivenham Campus), Shrivenham, Swindon, Wiltshire, SN6 8LA,UK
| |
Collapse
|
23
|
Sun Y, Mauerhan DR, Honeycutt PR, Kneisl JS, Norton JH, Hanley EN, Gruber HE. Analysis of meniscal degeneration and meniscal gene expression. BMC Musculoskelet Disord 2010; 11:19. [PMID: 20109188 PMCID: PMC2828422 DOI: 10.1186/1471-2474-11-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/28/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Menisci play a vital role in load transmission, shock absorption and joint stability. There is increasing evidence suggesting that OA menisci may not merely be bystanders in the disease process of OA. This study sought: 1) to determine the prevalence of meniscal degeneration in OA patients, and 2) to examine gene expression in OA meniscal cells compared to normal meniscal cells. METHODS Studies were approved by our human subjects Institutional Review Board. Menisci and articular cartilage were collected during joint replacement surgery for OA patients and lower limb amputation surgery for osteosarcoma patients (normal control specimens), and graded. Meniscal cells were prepared from these meniscal tissues and expanded in monolayer culture. Differential gene expression in OA meniscal cells and normal meniscal cells was examined using Affymetrix microarray and real time RT-PCR. RESULTS The grades of meniscal degeneration correlated with the grades of articular cartilage degeneration (r = 0.672; P < 0.0001). Many of the genes classified in the biological processes of immune response, inflammatory response, biomineral formation and cell proliferation, including major histocompatibility complex, class II, DP alpha 1 (HLA-DPA1), integrin, beta 2 (ITGB2), ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), ankylosis, progressive homolog (ANKH) and fibroblast growth factor 7 (FGF7), were expressed at significantly higher levels in OA meniscal cells compared to normal meniscal cells. Importantly, many of the genes that have been shown to be differentially expressed in other OA cell types/tissues, including ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5) and prostaglandin E synthase (PTGES), were found to be expressed at significantly higher levels in OA meniscal cells. This consistency suggests that many of the genes detected in our study are disease-specific. CONCLUSION Our findings suggest that OA is a whole joint disease. Meniscal cells may play an active role in the development of OA. Investigation of the gene expression profiles of OA meniscal cells may reveal new therapeutic targets for OA therapy and also may uncover novel disease markers for early diagnosis of OA.
Collapse
Affiliation(s)
- Yubo Sun
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - David R Mauerhan
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Patrick R Honeycutt
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Jeffrey S Kneisl
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - James H Norton
- Department of Biostatistics, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Edward N Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| |
Collapse
|
24
|
Raman Spectroscopy for Early Cancer Detection, Diagnosis and Elucidation of Disease-Specific Biochemical Changes. EMERGING RAMAN APPLICATIONS AND TECHNIQUES IN BIOMEDICAL AND PHARMACEUTICAL FIELDS 2010. [DOI: 10.1007/978-3-642-02649-2_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Abstract
PURPOSE OF REVIEW Calcium pyrophosphate dihydrate and basic calcium phosphate crystals are the two most common calcium-containing crystals involved in rheumatic diseases. Recent literature concerning their role in the pathogenesis of osteoarthritis is reviewed. RECENT FINDINGS In some instances, these calcium crystals might worsen osteoarthritis cartilage destruction. Laboratory investigations have identified determinants of cartilage calcification, especially a better characterization of matrix vesicle content and a better understanding of the regulation of inorganic pyrophosphate and phosphate concentration. In-vitro studies have highlighted new pathogenic mechanisms of calcium crystal-induced cell activation. Several intracellular signalling pathways are activated by calcium crystals. Recent studies suggested the implication of the inflammasome complex and a pivotal role for IL-1 in pseudogout attacks and chondrocyte apoptosis in basic calcium phosphate crystal-related arthropathies. SUMMARY Animal models of osteoarthritis and in-vitro studies using calcium pyrophosphate dihydrate and basic calcium phosphate crystals will improve our knowledge of these common crystals and could suggest new targets for drugs, as these common diseases are 'orphan' with respect to therapy.
Collapse
|
26
|
Ea HK, Monceau V, Camors E, Cohen-Solal M, Charlemagne D, Lioté F. Annexin 5 overexpression increased articular chondrocyte apoptosis induced by basic calcium phosphate crystals. Ann Rheum Dis 2008; 67:1617-25. [PMID: 18218665 DOI: 10.1136/ard.2008.087718] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Basic calcium phosphate (BCP) crystals (octacalcium phosphate (OCP), carbapatite (CA) and hydroxyapatite (HA)) are associated with severe forms of osteoarthritis. In advanced osteoarthritis, cartilage shows chondrocyte apoptosis, overexpression of annexin 5 (A5) and BCP crystal deposition within matrix vesicles. We assessed in vitro whether BCP crystals and overexpression of A5 increased chondrocyte apoptosis. METHODS Apoptosis was induced by BCP crystals, tumour necrosis factor (TNF)-alpha (20 ng/ml) and Fas ligand (20 ng/ml) in normal articular chondrocytes (control) and in A5 overexpressed chondrocytes, performed by adenovirus infection. Apoptosis was assessed by caspase 3 (Cas3) activity, and DNA fragmentation. RESULTS All BCP crystals, TNF-alpha and Fas ligand induced chondrocyte apoptosis as demonstrated by decreased cell viability and increased Cas3 activity and DNA fragmentation. TUNEL (terminal deoxyribonucleotide transferase-mediated dUTP nick end-labelling)-positive staining chondrocytes were increased by OCP (12.4 (5.2)%), CA (9.6 (2.6)%) and HA (9.2 (3.0)%) crystals and TNF-alpha (9.6 (2.4)%) stimulation compared with control (3.1 (1.9)%). BCP crystals increased Cas3 activity in a dose-dependent fashion. BCP-crystal-induced chondrocyte apoptosis was independent from TNF-alpha and interleukin-1beta pathways but required cell-crystal contact and intralysosomal crystal dissolution. Indeed, preincubation with ammonium chloride, a lysosomal inhibitor of BCP crystal dissolution, significantly decreased BCP-crystal-induced Cas3 activity. Finally, overexpression of A5 enhanced BCP crystal- and TNF-alpha-induced chondrocyte apoptosis. CONCLUSIONS Overexpression of A5 and the presence of BCP crystals observed in advanced osteoarthritis contributed to chondrocyte apoptosis. Our results suggest a new pathophysiological mechanism for calcium-containing crystal arthropathies.
Collapse
Affiliation(s)
- H K Ea
- INSERM U606, IFR 139, Hôpital Lariboisière, Paris, France
| | | | | | | | | | | |
Collapse
|
27
|
Susceptibility of Chlamydia trachomatis to the excipient hydroxyethyl cellulose: pH and concentration dependence of antimicrobial activity. Antimicrob Agents Chemother 2008; 52:2660-2. [PMID: 18411317 DOI: 10.1128/aac.00785-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxyethyl cellulose (HEC) is used as a neutral excipient in microbicides used against sexually transmitted pathogens. However, HEC inhibits the infection of cervical epithelial cells by Chlamydia trachomatis at pH 5 in a concentration-dependent manner. At pH 7, infection is inversely dependent on the concentration of HEC, possibly due to pH-dependent calcium sequestration.
Collapse
|
28
|
Agababov RM, Abashina TN, Suzina NE, Vainshtein MB, Schwartsburd PM. Link between the early calcium deposition in placenta and nanobacterial-like infection. J Biosci 2007; 32:1163-8. [PMID: 17954977 DOI: 10.1007/s12038-007-0118-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The placenta is a vitally important organ in the regulation of embryonic development. That is why extensive calcium deposition [also named as pathological placental calcification (PPC)] could have serious negative consequences for the adequate growth of embryos. The nature and mechanism of PPC development has not been defined as yet. In the present investigation, we have tested the hypothesis that the molecular basis of PPC development consists of nanobacteria-induced calcification in infected female placenta. Electron microscopy findings support this hypothesis. The initial stage of micro-calcification may originate from the external surface of individual nanobacteria-like particles found mainly in placental extracellular matrix, where initial calcium deposition occurs as a needle surface deposition or as an amorphous-like surface precipitate. Further calcific propagation in placenta takes place in the newly formed macro-cavities, which are characterized by low electron density, possibly reflecting its liquid content around calcium deposition. The micro-cavities contain free nanobacterial-like particles, which may relate to atypical Gram-negative bacteria but not to apoptotic bodies by morphological characters and DNA/RNA distribution. We hypothesize that the increased placental calcification might be caused, at least in part, by nanobacterial infection.
Collapse
|
29
|
|
30
|
Matousek P, Stone N. Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:024008. [PMID: 17477723 DOI: 10.1117/1.2718934] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Breast calcifications can be found in both benign and malignant lesions, and the composition of these calcifications can indicate the possible disease state. As current practices such as mammography and histopathology examine the morphology of the specimen, they cannot reliably distinguish between the two types of calcification, which frequently are the only mammographic features that indicate the presence of a cancerous lesion. Raman spectroscopy is an optical technique capable of obtaining biochemical information of a sample in situ. We demonstrate for the first time the noninvasive recovery of Raman spectra of calcified materials buried within a chicken breast tissue slab 16 mm thick, achieved using transmission Raman spectroscopy. The spectra of both calcium hydroxyapatite (HAP) and calcium oxalate monohydrate (COM) are obtained and chemically identified. The experimental geometry and gross insensitivity of the Raman signal to the depth of the calcified lesion makes the concept potentially well suited for probing human female breasts, in conjunction with existing mammography or ultrasound, to provide complementary data in the early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Pavel Matousek
- Council for the Central Laboratory of the Research Councils, Rutherford Appleton Laboratory, Central Laser Facility, Oxfordshire OX11 0QX, United Kingdom.
| | | |
Collapse
|
31
|
|
32
|
Grases F, Sanchis P, Perelló J, Isern B, Prieto RM, Fernández-Palomeque C, Torres JJ. Effect of Crystallization Inhibitors on Vascular Calcifications Induced by Vitamin D A Pilot Study in Sprague-Dawley Rats. Circ J 2007; 71:1152-6. [PMID: 17587727 DOI: 10.1253/circj.71.1152] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Pathological calcification in soft tissues (ie, ectopic calcification) can have severe consequences. Hydroxyapatite is the common mineral phase present in all tissue calcifications. In general, the development of tissue calcifications requires a pre-existing injury as an inducer (heterogeneous nucleant), whereas further progression requires the presence of other promoter factors (such as hypercalcemia and/or hyperphosphatemia) and/or a deficiency in calcification repressor factors (crystallization inhibitors and cellular defense mechanisms). The present study investigated the capacity of etidronate (a bisphosphonate used in osteoporosis treatment) and phytate (a natural product) to inhibit vascular calcification in rats. METHODS AND RESULTS Six male Sprague-Dawley rats in each of the 3 treatment groups were subcutaneously injected with either a placebo (physiological serum solution), etidronate (0.825 micromol x kg(-1) x day (-1)) or phytate (0.825 micromol x kg (-1) x day(-1)) for 8 days. Four days into this regimen, calcinosis was induced by subcutaneous injections of 500,000 IU/kg vitamin D at 0 h, 24 h and 48 h. Ninety-six hours after the final vitamin D injection, the rats were killed and aortas and their hearts were removed for histological and calcium analyses. The data showed that phytate-treated rats had lower levels of aortic calcium than placebo-treated rats. All groups had similar heart calcium levels. CONCLUSIONS The present study found that phytate acted as a vascular calcification inhibitor. Thus, the action of polyphosphates could be important in protecting against vascular calcification.
Collapse
Affiliation(s)
- Félix Grases
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS), University of Balearic Islands, Palma of Mallorca, Spain.
| | | | | | | | | | | | | |
Collapse
|
33
|
Baker R, Matousek P, Ronayne KL, Parker AW, Rogers K, Stone N. Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy. Analyst 2007; 132:48-53. [PMID: 17180179 DOI: 10.1039/b614388a] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Breast calcifications are found in both benign and malignant lesions and their composition can indicate the disease state. Calcium oxalate (dihydrate) (COD) is associated with benign lesions, however calcium hydroxyapatite (HAP) is found mainly in proliferative lesions including carcinoma. The diagnostic practices of mammography and histopathology examine the morphology of the specimen. They can not reliably distinguish between the two types of calcification, which may indicate the presence of a cancerous lesion during mammography. We demonstrate for the first time that Kerr-gated Raman spectroscopy is capable of non-destructive probing of sufficient biochemical information from calcifications buried within tissue, and this information can potentially be used as a first step in identifying the type of lesion. The method uses a picosecond pulsed laser combined with fast temporal gating of Raman scattered light to enable spectra to be collected from a specific depth within scattering media by collecting signals emerging from the sample at a given time delay following the laser pulse. Spectra characteristic of both HAP and COD were obtained at depths of up to 0.96 mm, in both chicken breast and fatty tissue; and normal and cancerous human breast by utilising different time delays. This presents great potential for the use of Raman spectroscopy as an adjunct to mammography in the early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Rebecca Baker
- Biophotonics Research Group, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK
| | | | | | | | | | | |
Collapse
|
34
|
Molloy ES, McCarthy GM. Calcium crystal deposition diseases: update on pathogenesis and manifestations. Rheum Dis Clin North Am 2006; 32:383-400, vii. [PMID: 16716885 DOI: 10.1016/j.rdc.2006.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate crystals are the most common types of pathologic calcium-containing crystals. Although these crystals long have been associated with a variety of rheumatic syndromes, recent evidence implicates BCP crystals in the pathogenesis of breast cancer and atherosclerosis. Although understanding of molecular mechanisms involved in generating these pathologic effects has been advanced significantly in recent years, they still are understood incompletely. Such advances are essential to the ongoing search for effective therapies for crystal-associated diseases.
Collapse
Affiliation(s)
- E S Molloy
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, 9500 Euclid Avenue, A50 Cleveland, OH 44195, USA.
| | | |
Collapse
|
35
|
Bibliography. Current world literature. Mineral metabolism. Curr Opin Nephrol Hypertens 2006; 15:464-7. [PMID: 16775463 DOI: 10.1097/01.mnh.0000232889.65895.ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Abstract
PURPOSE OF REVIEW Basic calcium phosphate crystals have long been associated with rheumatic syndromes. Although an understanding of the molecular mechanisms involved in generating these pathological effects has been significantly advanced in recent years, it is still incomplete. RECENT FINDINGS Basic calcium phosphate crystals have been shown to increase prostaglandin E(2) production in human fibroblasts, mediated by the induction of both cyclooxygenases 1 and 2. Basic calcium phosphate crystals have also been found to upregulate IL-1beta in fibroblasts and chondrocytes. The upregulation of inducible nitric oxide synthase and stimulation of nitric oxide production in chondrocytes by octacalcium phosphate crystals has been demonstrated. The involvement of protein kinase C isoforms in basic calcium phosphate crystal-mediated matrix metalloproteinase 1 and 3 expression in human fibroblasts has been clarified. Two pathways are involved: protein kinase Calpha mediates the calcium-dependent pathway, whereas protein kinase Cmu activates the extracellular-regulated kinase pathway in a calcium-independent cascade. In addition, basic calcium phosphate crystals activate the transcription factor Egr-1, an effect that may contribute to the mitogenic effect of these crystals on fibroblasts. SUMMARY Recent findings have emphasized the potential for basic calcium phosphate crystals to stimulate the production of a variety of inflammatory mediators such as prostaglandin E(2), nitric oxide, IL-1beta and matrix metalloproteinases, and have helped to elucidate the mechanisms of these effects. Such advances are essential for the ongoing search for effective therapies for basic calcium phosphate crystal-associated diseases.
Collapse
Affiliation(s)
- Eamonn S Molloy
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
37
|
Punzi L, Oliviero F, Plebani M. New biochemical insights into the pathogenesis of osteoarthritis and the role of laboratory investigations in clinical assessment. Crit Rev Clin Lab Sci 2005; 42:279-309. [PMID: 16281737 DOI: 10.1080/10408360591001886] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Osteoarthritis (OA) is among the most frequent diseases in the population and a common cause of pain and disability in adults. The principal disease hallmarks for assessment of OA are still clinical observation and radiographic aspects. However, the efficacy of therapeutic interventions is complicated by the time required to observe radiographic signs, useful for both diagnosis and assessment. Thus, laboratory markers have received growing attention in recent years, in an attempt to improve diagnosis, assessment of disease activity and severity, and evaluation of therapeutic effects. Many biomarkers have been proposed, in particular those reflecting cartilage and bone turnover and synovitis. Among these, COMP, antigenic keratan sulphate, hyaluronan, YKL-40, type III collagen N-propeptide, and urinary glucosyl-galactosyl pyridinoline appear to be the most promising. However, serum or urinary determinations of these molecules are difficult to interpret adequately due to their complex metabolism. New ultrasensitive methods for C-reactive protein have improved the usefulness of this marker, especially in the assessment of disease activity. Routine examination of synovial fluid is still essential for diagnosis and includes leukocyte count and crystal detection; specialized testing includes the evaluation of the levels of markers of local inflammation such as metalloproteinases and cytokines, which appear to be crucial to the pathogenesis of OA.
Collapse
|
38
|
Current World Literature. Curr Opin Nephrol Hypertens 2005. [DOI: 10.1097/01.mnh.0000172731.05865.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Abstract
PURPOSE OF REVIEW Calcium-containing crystals can cause the degeneration of articular tissues in two separate pathways. In the direct pathway, crystals directly induce synoviocytes to proliferate and produce metalloproteinases and prostaglandins. The other pathway, the paracrine pathway, involves the interaction between crystals and macrophages/monocytes, which leads to the synthesis and release of cytokines, which can reinforce the action of crystals on synoviocytes and/or induce chondrocytes to secrete enzymes and which eventually causes the degeneration of articular tissues. The purpose of this review is to highlight the recent findings of the biologic effect of these crystals. RECENT FINDINGS In the past few years, major advances in the understanding of the biologic effect of crystals and the signal transduction pathway of crystal-induced cell activation offer a unique opportunity to examine the role of crystal in osteoarthritis and cartilage degeneration. SUMMARY Evidence for a causal role of crystals in cartilage degeneration in osteoarthritis is primarily inferential and is based on correlative data. Clinical observations indicate that exaggerated and uniquely distributed cartilage degeneration is associated with these deposits. Measurements of putative markers of cartilage breakdown suggest that these crystals magnify the degenerative process. Studies have shown two potential mechanisms by which crystals cause degeneration. These involve the stimulation of mitogenesis in synovial fibroblasts and the secretion of metalloproteinases by cells that subject these crystals to phagocytosis. New information on how crystals form and how they exert their biologic effects will help in the design of an effective therapeutic approach.
Collapse
Affiliation(s)
- Herman S Cheung
- Miami Veterans Administration Medical Center and Department of Biomedical Engineering, University of Miami, Miami, Florida, USA.
| |
Collapse
|
40
|
Ea HK, Lioté F. Calcium pyrophosphate dihydrate and basic calcium phosphate crystal-induced arthropathies: update on pathogenesis, clinical features, and therapy. Curr Rheumatol Rep 2004; 6:221-7. [PMID: 15134602 DOI: 10.1007/s11926-004-0072-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Calcium-containing crystals are the most common class for the osteoarthritic joint. They are responsible for acute periarthritis and destructive arthropathies, and for tissue deposits mimicking tumor-like masses. These crystals encompassed mainly calcium pyrophosphate dihydrate and basic calcium phosphate crystals, with the latter being related to hydroxyapatite, carbonate-substituted apatite, and octacalcium phosphate. Calcification deposit mechanisms will be reviewed with respect to extracellular inorganic pyrophosphate dysregulation mainly caused by modulation of specific membrane channel disorders. Genetic defects have been extensively studied and identified mutation of specific genes such as ANKH and COL. Pathogenesis of crystal-induced inflammation is related to synovial tissue and direct cartilage activation. Besides classical knee or wrist pseudogout attacks or Milwaukee shoulder arthropathies, clinicians should be aware of other specific common presentations, such as erosive calcifications, spinal cord compression by intraspinal masses, ligamentum flavum calcification, or atypical calcified tophus. Promising clinical results for preventing calcium crystal deposits and cartilage degradation are lacking. Practical imaging tools are needed to monitor reduction of calcification of fibrocartilage and articular cartilage as markers of drug efficacy.
Collapse
Affiliation(s)
- Hang-Korng Ea
- Inserm U606 Fédération de Rhumatologie, Hôpital Lariboisière, 2 rue Ambroise Paré, F75475 Paris Cedex 10, France
| | | |
Collapse
|
41
|
Abstract
Basic calcium phosphate, calcium pyrophosphate dihydrate, and monosodium urate crystals are the most common types of crystals associated with human disease. Although there is a well-established association between these crystals and various forms of joint disease, recent evidence points to an association of basic calcium phosphate crystals with breast cancer and atherosclerosis. Crystal-induced tissue damage is affected by degradative proteases, cytokines, chemokines, and prostanoids produced by cells stimulated by crystals. In the case of basic calcium phosphate and calcium pyrophosphate dihydrate crystals, these responses are augmented by the cellular proliferation that results from their induction of mitogenesis. The understanding of the molecular mechanisms involved in generating these pathologic effects has been significantly advanced in recent years. Such advances are essential to the ongoing search for more effective therapies for crystal-associated diseases.
Collapse
Affiliation(s)
- Eamonn S Molloy
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
42
|
|
43
|
O'Shea FD, McCarthy GM. Basic calcium phosphate deposition in the joint: a potential therapeutic target in osteoarthritis. Curr Opin Rheumatol 2004; 16:273-8. [PMID: 15103257 DOI: 10.1097/00002281-200405000-00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Basic calcium phosphate crystals are responsible for a number of clinical syndromes. The study of basic calcium phosphate crystal deposition diseases has been hindered by a lack of readily available, accurate, diagnostic tests. Recent data have provided further understanding of the mechanisms by which basic calcium phosphate crystals induce inflammation and degeneration within the joint, as well as their potential role in other conditions such as cancer and atherosclerosis. RECENT FINDINGS New information on the effects of basic calcium phosphate crystals on matrix metalloproteinases and mitogenesis further supports a role for basic calcium phosphate crystals in the pathogenesis of osteoarthritis. Phosphocitrate remains the most promising of the potential therapeutic agents, which could antagonize the effects of basic calcium phosphate crystals, although other therapies have also been examined. SUMMARY Further work is needed to clarify the exact role basic calcium phosphate crystals play in the development of osteoarthritis.
Collapse
Affiliation(s)
- Finbar D O'Shea
- Department of Rheumatology, Mater Misericordiae Hospital, Dublin, Ireland
| | | |
Collapse
|