1
|
Morel E, Ghezzal S, Lucchi G, Truntzer C, Pais de Barros JP, Simon-Plas F, Demignot S, Mineo C, Shaul PW, Leturque A, Rousset M, Carrière V. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:199-211. [PMID: 29196159 DOI: 10.1016/j.bbalip.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023]
Abstract
Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics.
Collapse
Affiliation(s)
- Etienne Morel
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Sara Ghezzal
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Géraldine Lucchi
- Clinical Innovation Proteomic Platform CLIPP, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Caroline Truntzer
- Clinical Innovation Proteomic Platform CLIPP, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jean-Paul Pais de Barros
- Plateforme de Lipidomique, INSERM UMR1231, Université de Bourgogne Franche Comté, F-21000 Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sylvie Demignot
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France; EPHE, PSL Research University, F-75006 Paris, France
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Armelle Leturque
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Monique Rousset
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Véronique Carrière
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France.
| |
Collapse
|
2
|
Saleem RA, Smith JJ, Aitchison JD. Proteomics of the peroxisome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1541-51. [PMID: 17050007 PMCID: PMC1858641 DOI: 10.1016/j.bbamcr.2006.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 09/01/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Genomes provide us with a blue print for the potential of a cell. However, the activity of a cell is expressed in its proteome. Full understanding of the complexity of cells demands a comprehensive view of the proteome; its interactions, activity states and organization. Comprehensive proteomic approaches applied to peroxisomes have yielded new insights into the organelle and its dynamic interplay with other cellular structures. As technologies and methodologies improve, proteomics hold the promise for new discoveries of peroxisome function and a full description of this dynamic organelle.
Collapse
Affiliation(s)
| | | | - JD Aitchison
- * Corresponding author: JD Aitchison, Institute for Systems Biology, 1441 N 34 Street, Seattle, Washington, USA, 98103,
| |
Collapse
|
3
|
Kurochkin IV, Nagashima T, Konagaya A, Schönbach C. Sequence-based discovery of the human and rodent peroxisomal proteome. ACTA ACUST UNITED AC 2005; 4:93-104. [PMID: 16128611 DOI: 10.2165/00822942-200504020-00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Peroxisomes are metabolic organelles present in virtually all eukaryotic cells. They contain enzymes involved in hydrogen peroxide-based respiration and lipid metabolism. At present, only a small number of peroxisomal enzymes that are associated with oxidative stress response and metabolic disorders have been characterised biochemically. Therefore, we devised a sequence-based, multistep knowledge discovery strategy to identify potential novel peroxisomal protein candidates in small rodent model organisms and human. METHODS Screening of 130,629 putative translations of GenBank rodent and primate mRNA sequences was limited to the classical type-1 peroxisomal targeting signal [SA]-K-L. This motif is over-represented among peroxisomal proteins and has a high targeting efficiency. Subsequent steps of identifying co-occurring motifs, secondary structure properties, orthologues and variants, in combination with literature searching and visual inspection by domain experts, aimed at reduction of both false positive and negative validation targets. RESULTS Our method yielded 117 known peroxisome-targeted proteins and 29 novel candidate proteins. Of special interest were the mouse C530046K17Rik and 1300019N10Rik protein sequences that contain domains associated with enzymatic functions. C530046K17Rik showed no similarity to any known sequence of the animal kingdom, but weak similarity to the possible Leishmania quinone oxidoreductase and a putative cyanobacterium nicotinamide adenine dinucleotide phosphate (NADP)-dependent oxidoreductase. 1300019N10Rik contains two protease-related domains, glutamyl endopeptidase I and trypsin-like serine and cysteine proteases, which may have unique specificities to achieve efficient breakdown of proteins in the peroxisomes. CONCLUSION One mouse C57BL/6J strain-specific isocitrate dehydrogenase 1 isoform might be suitable to investigate potential phenotypes associated with the deficit of the intraperoxisomal reduced form of NADP (NADPH) and 2-oxoglutarate. Our biological knowledge discovery strategy enabled not only the identification of peroxisomal enzymes already described in the literature, but also the prediction of several novel proteins with possible roles in peroxisomal biochemistry and metabolism that are currently under experimental validation.
Collapse
Affiliation(s)
- Igor V Kurochkin
- Immunoinformatics Team, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | | | | | | |
Collapse
|
4
|
Svensson PA, Englund MCO, Snäckestrand MSC, Hägg DA, Ohlsson BG, Stemme V, Mattsson-Hulten L, Thelle DS, Fagerberg B, Wiklund O, Carlsson LMS, Carlsson B. Regulation and splicing of scavenger receptor class B type I in human macrophages and atherosclerotic plaques. BMC Cardiovasc Disord 2005; 5:25. [PMID: 16122381 PMCID: PMC1215476 DOI: 10.1186/1471-2261-5-25] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 08/25/2005] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The protective role of high-density lipoprotein (HDL) in the cardiovascular system is related to its role in the reverse transport of cholesterol from the arterial wall to the liver for subsequent excretion via the bile. Scavenger receptor class B type I (SR-BI) binds HDL and mediates selective uptake of cholesterol ester and cellular efflux of cholesterol to HDL. The role of SR-BI in atherosclerosis has been well established in murine models but it remains unclear whether SR-BI plays an equally important role in atherosclerosis in humans. The aim of this study was to investigate the expression of SR-BI and its isoforms in human macrophages and atherosclerotic plaques. METHODS The effect of hypoxia and minimally modified low-density lipoprotein (mmLDL), two proatherogenic stimuli, on SR-BI expression was studied in human monocyte-derived macrophages from healthy subjects using real-time PCR. In addition, SR-BI expression was determined in macrophages obtained from subjects with atherosclerosis (n = 15) and healthy controls (n = 15). Expression of SR-BI isoforms was characterized in human atherosclerotic plaques and macrophages using RT-PCR and DNA sequencing. RESULTS SR-BI expression was decreased in macrophages after hypoxia (p < 0.005). In contrast, SR-BI expression was increased by exposure to mmLDL (p < 0.05). There was no difference in SR-BI expression in macrophages from patients with atherosclerosis compared to controls. In both groups, SR-BI expression was increased by exposure to mmLDL (p < 0.05). Transcripts corresponding to SR-BI and SR-BII were detected in macrophages. In addition, a third isoform, referred to as SR-BIII, was discovered. All three isoforms were also expressed in human atherosclerotic plaque. Compared to the other isoforms, the novel SR-BIII isoform was predicted to have a unique intracellular C-terminal domain containing 53 amino acids. CONCLUSION We conclude that SR-BI is regulated by proatherogenic stimuli in humans. However, we found no differences between subjects with atherosclerosis and healthy controls. This indicates that altered SR-BI expression is not a common cause of atherosclerosis. In addition, we identified SR-BIII as a novel isoform expressed in human macrophages and in human atherosclerotic plaques.
Collapse
Affiliation(s)
- Per-Arne Svensson
- Research Centre for Endocrinology & Metabolism, Department of Internal Medicine, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
- The Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Mikael CO Englund
- The Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Magnus SC Snäckestrand
- Research Centre for Endocrinology & Metabolism, Department of Internal Medicine, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Daniel A Hägg
- Research Centre for Endocrinology & Metabolism, Department of Internal Medicine, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Bertil G Ohlsson
- The Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Veronika Stemme
- Cardiovascular Research Unit, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lillemor Mattsson-Hulten
- The Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Dag S Thelle
- Department of Medicine, Cardiovascular Institute, The Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | - Björn Fagerberg
- The Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Olov Wiklund
- The Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Lena MS Carlsson
- Research Centre for Endocrinology & Metabolism, Department of Internal Medicine, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Björn Carlsson
- Research Centre for Endocrinology & Metabolism, Department of Internal Medicine, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
- Department of Body Composition and Metabolism, The Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| |
Collapse
|
5
|
Hidden localization motifs: naturally occurring peroxisomal targeting signals in non-peroxisomal proteins. Genome Biol 2004; 5:R97. [PMID: 15575971 PMCID: PMC545800 DOI: 10.1186/gb-2004-5-12-r97] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 10/11/2004] [Accepted: 11/09/2004] [Indexed: 11/13/2022] Open
Abstract
Functional but silent peroxisomal targeting signals have been found in non- peroxisomal proteins. This discovery has important implications for sequence-based signal prediction and for evolution. Background Can sequence segments coding for subcellular targeting or for posttranslational modifications occur in proteins that are not substrates in either of these processes? Although considerable effort has been invested in achieving low false-positive prediction rates, even accurate sequence-analysis tools for the recognition of these motifs generate a small but noticeable number of protein hits that lack the appropriate biological context but cannot be rationalized as false positives. Results We show that the carboxyl termini of a set of definitely non-peroxisomal proteins with predicted peroxisomal targeting signals interact with the peroxisomal matrix protein receptor peroxin 5 (PEX5) in a yeast two-hybrid test. Moreover, we show that examples of these proteins - chicken lysozyme, human tyrosinase and the yeast mitochondrial ribosomal protein L2 (encoded by MRP7) - are imported into peroxisomes in vivo if their original sorting signals are disguised. We also show that even prokaryotic proteins can contain peroxisomal targeting sequences. Conclusions Thus, functional localization signals can evolve in unrelated protein sequences as a result of neutral mutations, and subcellular targeting is hierarchically organized, with signal accessibility playing a decisive role. The occurrence of silent functional motifs in unrelated proteins is important for the development of sequence-based function prediction tools and the interpretation of their results. Silent functional signals have the potential to acquire importance in future evolutionary scenarios and in pathological conditions.
Collapse
|