• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4593696)   Today's Articles (2454)   Subscriber (49325)
For: Okuda J, Sode K. PQQ glucose dehydrogenase with novel electron transfer ability. Biochem Biophys Res Commun 2004;314:793-7. [PMID: 14741705 DOI: 10.1016/j.bbrc.2003.12.167] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Number Cited by Other Article(s)
1
Liang J, Tang M, Chen L, Wang W, Liang X. Oxidative stress resistance prompts pyrroloquinoline quinone biosynthesis in Hyphomicrobium denitrificans H4-45. Appl Microbiol Biotechnol 2024;108:204. [PMID: 38349428 PMCID: PMC10864529 DOI: 10.1007/s00253-024-13053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/15/2024]
2
Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System. Int J Mol Sci 2023;24:ijms24031837. [PMID: 36768169 PMCID: PMC9915066 DOI: 10.3390/ijms24031837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]  Open
3
Okuda-Shimazaki J, Yoshida H, Lee I, Kojima K, Suzuki N, Tsugawa W, Yamada M, Inaka K, Tanaka H, Sode K. Microgravity environment grown crystal structure information based engineering of direct electron transfer type glucose dehydrogenase. Commun Biol 2022;5:1334. [PMID: 36473944 PMCID: PMC9727119 DOI: 10.1038/s42003-022-04286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]  Open
4
Schachinger F, Chang H, Scheiblbrandner S, Ludwig R. Amperometric Biosensors Based on Direct Electron Transfer Enzymes. Molecules 2021;26:molecules26154525. [PMID: 34361678 PMCID: PMC8348568 DOI: 10.3390/molecules26154525] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]  Open
5
Recent Progress in Applications of Enzymatic Bioelectrocatalysis. Catalysts 2020. [DOI: 10.3390/catal10121413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]  Open
6
Bioelectrocatalysis based on direct electron transfer of fungal pyrroloquinoline quinone-dependent dehydrogenase lacking the cytochrome domain. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
7
PQQ-GDH - Structure, function and application in bioelectrochemistry. Bioelectrochemistry 2020;134:107496. [PMID: 32247165 DOI: 10.1016/j.bioelechem.2020.107496] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
8
Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes at Nanostructured Electrodes. Catalysts 2020. [DOI: 10.3390/catal10020236] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]  Open
9
Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019;119:9509-9558. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
10
Ito Y, Okuda-Shimazaki J, Tsugawa W, Loew N, Shitanda I, Lin CE, La Belle J, Sode K. Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase. Biosens Bioelectron 2019;129:189-197. [PMID: 30721794 DOI: 10.1016/j.bios.2019.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 01/30/2023]
11
Carpenter AC, Paulsen IT, Williams TC. Blueprints for Biosensors: Design, Limitations, and Applications. Genes (Basel) 2018;9:E375. [PMID: 30050028 PMCID: PMC6115959 DOI: 10.3390/genes9080375] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]  Open
12
Bollella P, Gorton L, Antiochia R. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2018;18:E1319. [PMID: 29695133 PMCID: PMC5982196 DOI: 10.3390/s18051319] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 01/04/2023]
13
Algov I, Grushka J, Zarivach R, Alfonta L. Highly Efficient Flavin-Adenine Dinucleotide Glucose Dehydrogenase Fused to a Minimal Cytochrome C Domain. J Am Chem Soc 2017;139:17217-17220. [PMID: 28915057 DOI: 10.1021/jacs.7b07011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
14
Ortiz R, Rahman M, Zangrilli B, Sygmund C, Micheelsen PO, Silow M, Toscano MD, Ludwig R, Gorton L. Engineering of Cellobiose Dehydrogenases for Improved Glucose Sensitivity and Reduced Maltose Affinity. ChemElectroChem 2017. [DOI: 10.1002/celc.201600781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
15
Babanova S, Matanovic I, Chavez MS, Atanassov P. Role of Quinones in Electron Transfer of PQQ–Glucose Dehydrogenase Anodes—Mediation or Orientation Effect. J Am Chem Soc 2015;137:7754-62. [DOI: 10.1021/jacs.5b03053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
16
Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ, Falcaro P. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 2015;6:7240. [PMID: 26041070 PMCID: PMC4468859 DOI: 10.1038/ncomms8240] [Citation(s) in RCA: 799] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022]  Open
17
Babanova S, Matanovic I, Atanassov P. Quinone-Modified Surfaces for Enhanced Enzyme-Electrode Interactions in Pyrroloquinoline-Quinone-Dependent Glucose Dehydrogenase Anodes. ChemElectroChem 2014. [DOI: 10.1002/celc.201402104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
18
Sarauli D, Xu C, Dietzel B, Schulz B, Lisdat F. A multilayered sulfonated polyaniline network with entrapped pyrroloquinoline quinone-dependent glucose dehydrogenase: tunable direct bioelectrocatalysis. J Mater Chem B 2014;2:3196-3203. [DOI: 10.1039/c4tb00336e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
19
Sarauli D, Xu C, Dietzel B, Schulz B, Lisdat F. Differently substituted sulfonated polyanilines: the role of polymer compositions in electron transfer with pyrroloquinoline quinone-dependent glucose dehydrogenase. Acta Biomater 2013;9:8290-8. [PMID: 23777884 DOI: 10.1016/j.actbio.2013.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/28/2013] [Accepted: 06/05/2013] [Indexed: 01/04/2023]
20
Principles of direct (mediator free) bioelectrocatalysis. Bioelectrochemistry 2012;88:70-5. [DOI: 10.1016/j.bioelechem.2012.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/24/2012] [Accepted: 05/03/2012] [Indexed: 11/21/2022]
21
Ha S, Wee Y, Kim J. Nanobiocatalysis for Enzymatic Biofuel Cells. Top Catal 2012. [DOI: 10.1007/s11244-012-9903-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
22
Sarauli D, Riedel M, Wettstein C, Hahn R, Stiba K, Wollenberger U, Leimkühler S, Schmuki P, Lisdat F. Semimetallic TiO2 nanotubes: new interfaces for bioelectrochemical enzymatic catalysis. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16427b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
23
Flexer V, Durand F, Tsujimura S, Mano N. Efficient direct electron transfer of PQQ-glucose dehydrogenase on carbon cryogel electrodes at neutral pH. Anal Chem 2011;83:5721-7. [PMID: 21662989 DOI: 10.1021/ac200981r] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
24
Strategies to extend the lifetime of bioelectrochemical enzyme electrodes for biosensing and biofuel cell applications. Appl Microbiol Biotechnol 2010;89:1315-22. [DOI: 10.1007/s00253-010-3073-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/09/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
25
Taneoka A, Sakaguchi-Mikami A, Yamazaki T, Tsugawa W, Sode K. The construction of a glucose-sensing luciferase. Biosens Bioelectron 2009;25:76-81. [PMID: 19559587 DOI: 10.1016/j.bios.2009.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/29/2009] [Accepted: 06/02/2009] [Indexed: 11/18/2022]
26
Yamazaki T, Okuda-Shimazaki J, Sakata C, Tsuya T, Sode K. Construction and Characterization of Direct Electron Transfer-Type Continuous Glucose Monitoring System Employing Thermostable Glucose Dehydrogenase Complex. ANAL LETT 2008. [DOI: 10.1080/00032710802350567] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
27
Cracknell JA, Vincent KA, Armstrong FA. Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis. Chem Rev 2008;108:2439-61. [DOI: 10.1021/cr0680639] [Citation(s) in RCA: 846] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
28
Biofuel cell system employing thermostable glucose dehydrogenase. Biotechnol Lett 2008;30:1753-8. [DOI: 10.1007/s10529-008-9749-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/28/2008] [Accepted: 05/02/2008] [Indexed: 11/25/2022]
29
Sakaguchi-Mikami A, Taneoka A, Yamoto R, Ferri S, Sode K. Engineering of ligand specificity of periplasmic binding protein for glucose sensing. Biotechnol Lett 2008;30:1453-60. [DOI: 10.1007/s10529-008-9712-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/11/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
30
Ivnitski D, Atanassov P, Apblett C. Direct Bioelectrocatalysis of PQQ-Dependent Glucose Dehydrogenase. ELECTROANAL 2007. [DOI: 10.1002/elan.200703899] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
31
Minteer SD, Liaw BY, Cooney MJ. Enzyme-based biofuel cells. Curr Opin Biotechnol 2007;18:228-34. [PMID: 17399977 DOI: 10.1016/j.copbio.2007.03.007] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/20/2007] [Accepted: 03/21/2007] [Indexed: 11/15/2022]
32
Okuda J, Yamazaki T, Fukasawa M, Kakehi N, Sode K. The Application of Engineered Glucose Dehydrogenase to a Direct Electron–Transfer‐Type Continuous Glucose Monitoring System and a Compartmentless Biofuel Cell. ANAL LETT 2007. [DOI: 10.1080/00032710600964692] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
33
Yuhashi N, Tomiyama M, Okuda J, Igarashi S, Ikebukuro K, Sode K. Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase. Biosens Bioelectron 2005;20:2145-50. [PMID: 15741089 DOI: 10.1016/j.bios.2004.08.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 08/05/2004] [Accepted: 08/12/2004] [Indexed: 10/26/2022]
34
Šetkus A, Galdikas A, Laurinavičius V, Meškys R, Mironas A, Razumienė J. Electric charge transport in the symmetric metal–enzyme junctions affected by biochemical interaction. Colloids Surf A Physicochem Eng Asp 2004. [DOI: 10.1016/j.colsurfa.2004.08.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
35
Igarashi S, Okuda J, Ikebukuro K, Sode K. Molecular engineering of PQQGDH and its applications. Arch Biochem Biophys 2004;428:52-63. [PMID: 15234269 DOI: 10.1016/j.abb.2004.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 06/07/2004] [Indexed: 10/26/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA