1
|
Safi SZ, Qvist R, Chinna K, Ashraf MA, Paramasivam D, Ismail IS. Gene expression profiling of the peripheral blood mononuclear cells of offspring of one type 2 diabetic parent. Int J Diabetes Dev Ctries 2016; 36:407-419. [DOI: 10.1007/s13410-015-0369-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
2
|
Zraika S, Koh DS, Barrow BM, Lu B, Kahn SE, Andrikopoulos S. Neprilysin deficiency protects against fat-induced insulin secretory dysfunction by maintaining calcium influx. Diabetes 2013; 62:1593-601. [PMID: 23328128 PMCID: PMC3636612 DOI: 10.2337/db11-1593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neprilysin contributes to free fatty acid (FFA)-induced cellular dysfunction in nonislet tissues in type 2 diabetes. Here, we show for the first time that with prolonged FFA exposure, islet neprilysin is upregulated and this is associated with reduced insulin pre-mRNA and ATP levels, oxidative/nitrative stress, impaired potassium and calcium channel activities, and decreased glucose-stimulated insulin secretion (GSIS). Genetic ablation of neprilysin specifically protects against FFA-induced impairment of calcium influx and GSIS in vitro and in vivo but does not ameliorate other FFA-induced defects. Importantly, adenoviral overexpression of neprilysin in islets cultured without FFA reproduces the defects in both calcium influx and GSIS, suggesting that upregulation of neprilysin per se mediates insulin secretory dysfunction and that the mechanism for protection conferred by neprilysin deletion involves prevention of reduced calcium influx. Our findings highlight the critical nature of calcium signaling for normal insulin secretion and suggest that interventions to inhibit neprilysin may improve β-cell function in obese humans with type 2 diabetes.
Collapse
Affiliation(s)
- Sakeneh Zraika
- Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Gao P, Jiao Y, Xiong Q, Wang CY, Gerling I, Gu W. Genetic and Molecular Basis of QTL of Diabetes in Mouse: Genes and Polymorphisms. Curr Genomics 2011; 9:324-37. [PMID: 19471607 PMCID: PMC2685644 DOI: 10.2174/138920208785133253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 04/14/2008] [Accepted: 04/17/2008] [Indexed: 12/14/2022] Open
Abstract
A systematic study has been conducted of all available reports in PubMed and OMIM (Online Mendelian Inheritance in Man) to examine the genetic and molecular basis of quantitative genetic loci (QTL) of diabetes with the main focus on genes and polymorphisms. The major question is, What can the QTL tell us? Specifically, we want to know whether those genome regions differ from other regions in terms of genes relevant to diabetes. Which genes are within those QTL regions, and, among them, which genes have already been linked to diabetes? whether more polymorphisms have been associated with diabetes in the QTL regions than in the non-QTL regions. Our search revealed a total of 9038 genes from 26 type 1 diabetes QTL, which cover 667,096,006 bp of the mouse genomic sequence. On one hand, a large number of candidate genes are in each of these QTL; on the other hand, we found that some obvious candidate genes of QTL have not yet been investigated. Thus, the comprehensive search of candidate genes for known QTL may provide unexpected benefit for identifying QTL genes for diabetes.
Collapse
Affiliation(s)
- Peng Gao
- Departments of Orthopaedic Surgery, Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
4
|
Andrikopoulos S. Obesity and type 2 diabetes: slow down!--Can metabolic deceleration protect the islet beta cell from excess nutrient-induced damage? Mol Cell Endocrinol 2010; 316:140-6. [PMID: 19815054 DOI: 10.1016/j.mce.2009.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 09/08/2009] [Accepted: 09/28/2009] [Indexed: 01/09/2023]
Abstract
Islet beta-cell dysfunction is a characteristic and the main cause of hyperglycaemia of Type 2 diabetes. Understanding the mechanisms that cause beta-cell dysfunction will lead to better therapeutic outcomes for patients with Type 2 diabetes. Chronic fatty acid exposure of susceptible islet beta-cells causes dysfunction and death and this is associated with increased reactive oxygen species production leading to oxidative stress and increased endoplasmic reticulum stress. We present the hypothesis that metabolic deceleration can reduce both oxidative and endoplasmic reticulum stress and lead to improved beta-cell function and viability when exposed to a deleterious fat milieu. This is illustrated by the C57BL/6J mouse which is characterised by reduced insulin secretion and glucose intolerance associated with a mutation in nicotinamide nucleotide transhydrogenase (Nnt) but is resistant to obesity induced diabetes. On the other hand the DBA/2 mouse has comparatively higher insulin secretion and better glucose tolerance associated with increased Nnt activity but is susceptible to obesity-induced diabetes, possibly as a result of increased oxidative stress. We therefore suggest that in states of excess nutrient load, a reduced ability to metabolise this load may protect both the function and viability of beta-cells. Strategies that reduce metabolic flux when beta-cells are exposed to nutrient excess need to be considered when treating Type 2 diabetes.
Collapse
Affiliation(s)
- S Andrikopoulos
- Department of Medicine (AH/NH), University of Melbourne, Heidelberg Repatriation Hospital, Heidelberg Heights, Victoria, Australia.
| |
Collapse
|
5
|
Hoppa MB, Collins S, Ramracheya R, Hodson L, Amisten S, Zhang Q, Johnson P, Ashcroft FM, Rorsman P. Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2+) channels from secretory granules. Cell Metab 2009; 10:455-65. [PMID: 19945403 PMCID: PMC2814048 DOI: 10.1016/j.cmet.2009.09.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/06/2009] [Accepted: 09/30/2009] [Indexed: 02/08/2023]
Abstract
Long-term (72 hr) exposure of pancreatic islets to palmitate inhibited glucose-induced insulin secretion by >50% with first- and second-phase secretion being equally suppressed. This inhibition correlated with the selective impairment of exocytosis evoked by brief (action potential-like) depolarizations, whereas that evoked by long ( approximately 250 ms) stimuli was unaffected. Under normal conditions, Ca(2+) influx elicited by brief membrane depolarizations increases [Ca(2+)](i) to high levels within discrete microdomains and triggers the exocytosis of closely associated insulin granules. We found that these domains of localized Ca(2+) entry become dispersed by long-term (72 hr), but not by acute (2 hr), exposure to palmitate. Importantly, the release competence of the granules was not affected by palmitate. Thus, the location rather than the magnitude of the Ca(2+) increase determines its capacity to evoke exocytosis. In both mouse and human islets, the palmitate-induced secretion defect was reversed when the beta cell action potential was pharmacologically prolonged.
Collapse
Affiliation(s)
- Michael B Hoppa
- The Oxford Centre for Diabetes, Endocrinology, and Metabolism, Churchill Hospital, Oxford OX3 7LJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kebede M, Favaloro J, Gunton JE, Laybutt DR, Shaw M, Wong N, Fam BC, Aston-Mourney K, Rantzau C, Zulli A, Proietto J, Andrikopoulos S. Fructose-1,6-bisphosphatase overexpression in pancreatic beta-cells results in reduced insulin secretion: a new mechanism for fat-induced impairment of beta-cell function. Diabetes 2008; 57:1887-95. [PMID: 18375435 PMCID: PMC2453625 DOI: 10.2337/db07-1326] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 03/23/2008] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Fructose-1,6-bisphosphatase (FBPase) is a gluconeogenic enzyme that is upregulated in islets or pancreatic beta-cell lines exposed to high fat. However, whether specific beta-cell upregulation of FBPase can impair insulin secretory function is not known. The objective of this study therefore is to determine whether a specific increase in islet beta-cell FBPase can result in reduced glucose-mediated insulin secretion. RESEARCH DESIGN AND METHODS To test this hypothesis, we have generated three transgenic mouse lines overexpressing the human FBPase (huFBPase) gene specifically in pancreatic islet beta-cells. In addition, to investigate the biochemical mechanism by which elevated FBPase affects insulin secretion, we made two pancreatic beta-cell lines (MIN6) stably overexpressing huFBPase. RESULTS FBPase transgenic mice showed reduced insulin secretion in response to an intravenous glucose bolus. Compared with the untransfected parental MIN6, FBPase-overexpressing cells showed a decreased cell proliferation rate and significantly depressed glucose-induced insulin secretion. These defects were associated with a decrease in the rate of glucose utilization, resulting in reduced cellular ATP levels. CONCLUSIONS Taken together, these results suggest that upregulation of FBPase in pancreatic islet beta-cells, as occurs in states of lipid oversupply and type 2 diabetes, contributes to insulin secretory dysfunction.
Collapse
Affiliation(s)
- Melkam Kebede
- Department of Medicine, Heidelberg Repatriation Hospital, University of Melbourne, Heidelberg Heights, Victoria, Australia
| | - Jenny Favaloro
- Department of Medicine, Heidelberg Repatriation Hospital, University of Melbourne, Heidelberg Heights, Victoria, Australia
| | - Jenny E. Gunton
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Diabetes and Endocrinology, Westmead Hospital, Westmead, New South Wales, Australia
| | - D. Ross Laybutt
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Margaret Shaw
- Department of Medicine, Heidelberg Repatriation Hospital, University of Melbourne, Heidelberg Heights, Victoria, Australia
| | - Nicole Wong
- Department of Medicine, Heidelberg Repatriation Hospital, University of Melbourne, Heidelberg Heights, Victoria, Australia
| | - Barbara C. Fam
- Department of Medicine, Heidelberg Repatriation Hospital, University of Melbourne, Heidelberg Heights, Victoria, Australia
| | - Kathryn Aston-Mourney
- Department of Medicine, Heidelberg Repatriation Hospital, University of Melbourne, Heidelberg Heights, Victoria, Australia
| | - Christian Rantzau
- Department of Medicine, Heidelberg Repatriation Hospital, University of Melbourne, Heidelberg Heights, Victoria, Australia
| | - Anthony Zulli
- Department of Medicine, Heidelberg Repatriation Hospital, University of Melbourne, Heidelberg Heights, Victoria, Australia
| | - Joseph Proietto
- Department of Medicine, Heidelberg Repatriation Hospital, University of Melbourne, Heidelberg Heights, Victoria, Australia
| | - Sofianos Andrikopoulos
- Department of Medicine, Heidelberg Repatriation Hospital, University of Melbourne, Heidelberg Heights, Victoria, Australia
| |
Collapse
|
7
|
Aston-Mourney K, Wong N, Kebede M, Zraika S, Balmer L, McMahon JM, Fam BC, Favaloro J, Proietto J, Morahan G, Andrikopoulos S. Increased nicotinamide nucleotide transhydrogenase levels predispose to insulin hypersecretion in a mouse strain susceptible to diabetes. Diabetologia 2007; 50:2476-85. [PMID: 17922105 DOI: 10.1007/s00125-007-0814-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 07/17/2007] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS Insulin hypersecretion may be an independent predictor of progression to type 2 diabetes. Identifying genes affecting insulin hypersecretion are important in understanding disease progression. We have previously shown that diabetes-susceptible DBA/2 mice congenitally display high insulin secretion. We studied this model to map and identify the gene(s) responsible for this trait. METHODS Intravenous glucose tolerance tests followed by a genome-wide scan were performed on 171 (C57BL/6 x DBA/2) x C57BL/6 backcross mice. RESULTS A quantitative trait locus, designated hyperinsulin production-1 (Hip1), was mapped with a logarithm of odds score of 7.7 to a region on chromosome 13. Production of congenic mice confirmed that Hip1 influenced the insulin hypersecretion trait. By studying appropriate recombinant inbred mouse strains, the Hip1 locus was further localised to a 2 Mb interval, which contained only nine genes. Expression analysis showed that the only gene differentially expressed in islets isolated from the parental strains was Nnt, which encodes the mitochondrial proton pump, nicotinamide nucleotide transhydrogenase (NNT). We also found in five mouse strains a positive correlation (r2 = 0.90, p < 0.01) between NNT activity and first-phase insulin secretion, emphasising the importance of this enzyme in beta cell function. Furthermore, of these five strains, only those with high NNT activity are known to exhibit severe diabetes after becoming obese. CONCLUSIONS/INTERPRETATION Insulin hypersecretion is associated with increased Nnt expression. We suggest that NNT must play an important role in beta cell function and that its effect on the high insulin secretory capacity of the DBA/2 mouse may predispose beta cells of these mice to failure.
Collapse
Affiliation(s)
- K Aston-Mourney
- The University of Melbourne Department of Medicine (AH/NH), Heidelberg Repatriation Hospital, Heidelberg Heights, Melbourne, VIC, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Arantes VC, Reis MAB, Latorraca MQ, Ferreira F, Stoppiglia LF, Carneiro EM, Boschero AC. Palmitic acid increase levels of pancreatic duodenal homeobox-1 and p38/stress-activated protein kinase in islets from rats maintained on a low protein diet. Br J Nutr 2007; 96:1006-12. [PMID: 17181874 DOI: 10.1017/bjn20061950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A severe reduction in insulin release in response to glucose is consistently noticed in protein-deprived rats and is attributed partly to the chronic exposure to elevated levels of NEFA. Since the pancreatic and duodenal transcription factor homeobox 1 (PDX-1) is important for the maintenance of beta-cell physiology, and since PDX-1 expression is altered in the islets of rats fed a low protein (LP) diet and that rats show high NEFA levels, we assessed PDX-1 and insulin mRNA expression, as well as PDX-1 and p38/stress activated protein kinase 2 (SAPK2) protein expression, in islets from young rats fed low (6%) or normal (17%; control) protein diets and maintained for 48 h in culture medium containing 5.6 mmol/l glucose, with or without 0.6 mmol/l palmitic acid. We also measured glucose-induced insulin secretion and glucose metabolism. Insulin secretion by isolated islets in response to 16.7 mmol/l glucose was reduced in LP compared with control rats. In the presence of NEFA, there was an increase in insulin secretion in both groups. At 2.8 mmol/l glucose, the metabolism of this sugar was reduced in LP islets, regardless of the presence of this fatty acid. However, when challenged with 16.7 mmol/l glucose, LP and control islets showed a severe reduction in glucose oxidation in the presence of NEFA. The PDX-1 and insulin mRNA were significantly higher when NEFA was added to the culture medium in both groups of islets. The effect of palmitic acid on PDX-1 and p38/SAPK2 protein levels was similar in LP and control islets, but the increase was much more evident in LP islets. These results demonstrate the complex interrelationship between nutrients in the control of insulin release and support the view that fatty acids play an important role in glucose homeostasis by affecting molecular mechanisms and stimulus/secretion coupling pathways.
Collapse
Affiliation(s)
- Vanessa C Arantes
- Departamento de Alimentos e Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zraika S, Aston-Mourney K, Laybutt DR, Kebede M, Dunlop ME, Proietto J, Andrikopoulos S. The influence of genetic background on the induction of oxidative stress and impaired insulin secretion in mouse islets. Diabetologia 2006; 49:1254-63. [PMID: 16570159 DOI: 10.1007/s00125-006-0212-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 12/23/2005] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS We determined whether high-glucose-induced beta cell dysfunction is associated with oxidative stress in the DBA/2 mouse, a mouse strain susceptible to islet failure. MATERIALS AND METHODS Glucose- and non-glucose-mediated insulin secretion from the islets of DBA/2 and control C57BL/6 mice was determined following a 48-h exposure to high glucose. Flux via the hexosamine biosynthesis pathway was assessed by determining O-glycosylated protein levels. Oxidative stress was determined by measuring hydrogen peroxide levels and the expression of anti-oxidant enzymes. RESULTS Exposure to high glucose levels impaired glucose-stimulated insulin secretion in DBA/2 islets but not C57BL/6 islets, and this was associated with reduced islet insulin content and lower ATP levels than in C57BL/6 islets. Exposure of islets to glucosamine for 48 h mimicked the effects of high glucose on insulin secretion in the DBA/2 islets. High glucose exposure elevated O-glycosylated proteins; however, this occurred in islets from both strains, excluding a role for O-glycosylation in the impairment of DBA/2 insulin secretion. Additionally, both glucosamine and high glucose caused an increase in hydrogen peroxide in DBA/2 islets but not in C57BL/6 islets, an effect prevented by the antioxidant N-acetyl-L: -cysteine. Interestingly, while glutathione peroxidase and catalase expression was comparable between the two strains, the antioxidant enzyme manganese superoxide dismutase, which converts superoxide to hydrogen peroxide, was increased in DBA/2 islets, possibly explaining the increase in hydrogen peroxide levels. CONCLUSIONS/INTERPRETATION Chronic high glucose culture caused an impairment in glucose-stimulated insulin secretion in DBA/2 islets, which have a genetic predisposition to failure, and this may be the result of oxidative stress.
Collapse
Affiliation(s)
- S Zraika
- Department of Medicine (AH/NH), University of Melbourne, Heidelberg Repatriation Hospital, Heidelberg Heights, VIC 3081, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhao YF, Feng DD, Chen C. Contribution of adipocyte-derived factors to beta-cell dysfunction in diabetes. Int J Biochem Cell Biol 2006; 38:804-19. [PMID: 16378747 DOI: 10.1016/j.biocel.2005.11.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 11/11/2005] [Accepted: 11/16/2005] [Indexed: 11/30/2022]
Abstract
In addition to serving as an energy reservoir, the adipocyte has been characterized as an endocrine cell, secreting many bioactive factors which influence energy homeostasis. Being overweight, with excessive adipose tissue, is considered to be part of the pathogenesis of type 2 diabetes. Insulin resistance and beta-cell dysfunction are two major pathophysiological changes seen in type 2 diabetes. In addition to inducing insulin resistance in insulin-responsive tissues, adipocyte-derived factors play an important role in the pathogenesis of beta-cell dysfunction. Leptin, free fatty acids, adiponectin, tumor necrosis factor-alpha and interleukin-6 are all produced and secreted by adipocytes, and may directly influence aspects of beta-cell function, including insulin synthesis and secretion, insulin cell survival and apoptosis. During the progression from normal weight to obesity and on to overt diabetes, the adipocyte-derived factors contribute to the occurrence and development of beta-cell dysfunction and type 2 diabetes.
Collapse
Affiliation(s)
- Yu-Feng Zhao
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | | | | |
Collapse
|
11
|
Aston-Mourney K, Proietto J, Andrikopoulos S. Investigational agents that protect pancreatic islet β-cells from failure. Expert Opin Investig Drugs 2005; 14:1241-50. [PMID: 16185166 DOI: 10.1517/13543784.14.10.1241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes is associated with insulin resistance and reduced insulin secretion, which results in hyperglycaemia. This can then lead to diabetic complications such as retinopathy, neuropathy, nephropathy and cardiovascular disease. Although insulin resistance may be present earlier in the progression of the disease, it is now generally accepted that it is the deterioration in insulin-secretory function that leads to hyperglycaemia. This reduction in insulin secretion in Type 2 diabetes is due to both islet beta-cell dysfunction and death. Therefore, interventions that maintain the normal function and protect the pancreatic islet beta-cells from death are crucial in the treatment of Type 2 diabetes so that plasma glucose levels may be maintained within the normal range. Recently, a number of compounds have been shown to protect beta-cells from failure. This review examines the evidence that the existing therapies for Type 2 diabetes that were developed to lower plasma glucose (metformin) or improve insulin sensitivity (thiazolidinediones) may also have islet-protective function. Newer emerging therapeutic agents that are designed to increase the levels of glucagon-like peptide-1 not only stimulate insulin secretion but also appear to increase islet beta-cell mass. Evidence will also be presented that the future of drug therapy designed to prevent beta-cell failure should target the formation of advanced glycation end products and alleviate oxidative and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Kathryn Aston-Mourney
- Department of Medicine (AH/NH), Heidelberg Repatriation Hospital, University of Melbourne, Heidelberg Heights, Victoria 3081, Australia
| | | | | |
Collapse
|
12
|
Kjørholt C, Akerfeldt MC, Biden TJ, Laybutt DR. Chronic hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of beta-cell differentiation and secretory function in the db/db mouse model of diabetes. Diabetes 2005; 54:2755-63. [PMID: 16123366 DOI: 10.2337/diabetes.54.9.2755] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The beta-cell is a highly specialized cell with a unique differentiation that optimizes glucose-induced insulin secretion (GIIS). Here, we evaluated changes in gene expression that accompany beta-cell dysfunction in the db/db mouse model of type 2 diabetes. In db/db islets, mRNA levels of many genes implicated in beta-cell glucose sensing were progressively reduced with time, as were several transcription factors important for the maintenance of beta-cell differentiation. Conversely, genes normally suppressed in beta-cells, such as a variety of stress response mediators and inhibitor of differentiation/DNA binding 1, a gene capable of inhibiting differentiation, were markedly increased. We assessed whether this global alteration in the pattern of beta-cell gene expression was related more to chronic hyperglycemia or hyperlipidemia; db/db mice were treated with phlorizin, which selectively lowered plasma glucose, or bezafibrate, which selectively lowered plasma lipids. GIIS as well as the majority of the changes in gene expression were completely normalized by lowering glucose but were unaffected by lowering lipids. However, the restoration of GIIS was not accompanied by normalized uncoupling protein 2 or peroxisome proliferator-activated receptor gamma mRNA levels, which were upregulated in db/db islets. These studies demonstrate that hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of beta-cell differentiation and secretory function in db/db mice.
Collapse
Affiliation(s)
- Cecilie Kjørholt
- Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, Sydney 2010, Australia
| | | | | | | |
Collapse
|
13
|
Ma Z, Portwood N, Foss A, Grill V, Björklund A. Evidence that insulin secretion influences SNAP-25 through proteasomal activation. Biochem Biophys Res Commun 2005; 329:1118-26. [PMID: 15752769 DOI: 10.1016/j.bbrc.2005.02.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Indexed: 10/25/2022]
Abstract
Regulation of SNARE proteins by glucose in pancreatic islets is complex and insufficiently clarified. We aimed to study effects of glucose per se separate from enhancing effects on exocytosis. A 24h culture of rat islets at elevated glucose (27 mmol/L) increased t-SNARES (SNAP-25, syntaxin) (Western blotting). Co-culture with diazoxide, which inhibits glucose-induced insulin secretion, reversed these effects. Effects on SNAP-25 were similar in human and rat islets. Effects of diazoxide were mimicked by blocking secretion with somatostatin (rat islets). Blocking secretion by cooling abolished both glucose and diazoxide effects on SNAP-25. Total SNAP-25 mRNA as well as isoforms alpha and beta were increased by 24-h elevated glucose. Diazoxide failed to reverse the glucose effects on mRNA. However, effects of diazoxide on SNAP-25 protein were nullified by proteasome inhibitors (ALLN, MG-132, and epoxomicin) but not by lysosomal inhibition (NH(4)Cl). Exocytosis per se modifies SNAREs by a process linked to proteasomal activation.
Collapse
Affiliation(s)
- Zuheng Ma
- Department of Molecular Medicine, Endocrine and Diabetes Unit, Rolf Luft Center of Diabetes Research, Karolinska Institutet, Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | | | | |
Collapse
|