1
|
Ting KKY, Floro E, Dow R, Jongstra-Bilen J, Cybulsky MI, Rocheleau JV. Measuring the rate of NADPH consumption by glutathione reductase in the cytosol and mitochondria. PLoS One 2024; 19:e0309886. [PMID: 39637235 PMCID: PMC11620681 DOI: 10.1371/journal.pone.0309886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND NADPH is an essential co-factor supporting the function of enzymes that participate in both inflammatory and anti-inflammatory pathways in myeloid cells, particularly macrophages. Although individual NADPH-dependent pathways are well characterized, how these opposing pathways are co-regulated to orchestrate an optimized inflammatory response is not well understood. To investigate this, techniques to track the consumption of NADPH need to be applied. Deuterium tracing of NADPH remains the gold standard in the field, yet this setup of mass-spectrometry is technically challenging and not readily available to most research groups. Furthermore, NADPH pools are compartmentalized in various organelles with no known membrane transporters, suggesting that NADPH-dependent pathways are regulated in an organelle-specific manner. Conventional methods such as commercial kits are limited to quantifying NADPH in whole cells and not at the resolution of specific organelles. These limitations reflect the need for a novel assay that can readily measure the consumption rate of NADPH in different organelles. METHODS We devised an assay that measures the consumption rate of NADPH by glutathione-disulfide reductase (GSR) in the mitochondria and the cytosol of RAW264.7 macrophage cell lines. RAW264.7 cells were transfected with Apollo-NADP+ sensors targeted to the mitochondria or the cytosol, followed by the treatment of 2-deoxyglucose and diamide. Intravital imaging over time then determined GSR-dependent NADPH consumption in an organelle-specific manner. DISCUSSION In lipopolysaccharide (LPS)-stimulated RAW264.7 cells, cytosolic and mitochondrial NADPH was consumed by GSR in a time-dependent manner. This finding was cross validated with a commercially available NADPH kit that detects NADPH in whole cells. Loading of RAW264.7 cells with oxidized low-density lipoprotein followed by LPS stimulation elevated GSR expression, and this correlated with a more rapid drop in cytosolic and mitochondrial NADPH in our assay. The current limitation of our assay is applicability to transfectable cell lines, and higher expression of plasmid-encoded sensors relative to endogenous glucose-6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Eric Floro
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Riley Dow
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jenny Jongstra-Bilen
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Myron I. Cybulsky
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Jonathan V. Rocheleau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Li MY, Li YR, Han CF, Zhang J, Zhu RY, Zhang Y, Li J, Jia SR, Han PP. Nitric oxide mediates positive regulation of Nostoc flagelliforme polysaccharide yield via potential S-nitrosylation of G6PDH and UGDH. BMC Biotechnol 2024; 24:58. [PMID: 39174975 PMCID: PMC11342573 DOI: 10.1186/s12896-024-00884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Based on our previous findings that salicylic acid and jasmonic acid increased Nostoc flagelliforme polysaccharide yield by regulating intracellular nitric oxide (NO) levels, the mechanism through which NO affects polysaccharide biosynthesis in Nostoc flagelliforme was explored from the perspective of S-nitrosylation (SNO). The addition of NO donor and scavenger showed that intracellular NO had a significant positive effect on the polysaccharide yield of N. flagelliforme. To explore the mechanism, we investigated the relationship between NO levels and the activity of several key enzymes involved in polysaccharide biosynthesis, including fructose 1,6-bisphosphate aldolase (FBA), glucokinase (GK), glucose 6-phosphate dehydrogenase (G6PDH), mitochondrial isocitrate dehydrogenase (ICDH), and UDP-glucose dehydrogenase (UGDH). The enzymatic activities of G6PDH, ICDH, and UGDH were shown to be significantly correlated with the shifts in intracellular NO levels. For further validation, G6PDH, ICDH, and UGDH were heterologously expressed in Escherichia coli and purified via Ni+-NAT affinity chromatography, and subjected to a biotin switch assay and western blot analysis, which revealed that UGDH and G6PDH were susceptible to SNO. Furthermore, mass spectrometry analysis of proteins treated with S-nitrosoglutathione (GSNO) identified the SNO modification sites for UGDH and G6PDH as cysteine 423 and cysteine 249, respectively. These findings suggest that NO modulates polysaccharide biosynthesis in N. flagelliforme through SNO of UGDH and G6PDH. This reveals a potential mechanism through which NO promotes polysaccharide synthesis in N. flagelliforme, while also providing a new strategy for improving the industrial production of polysaccharides.
Collapse
Affiliation(s)
- Meng-Yuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Yan-Ru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Cheng-Feng Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Jie Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Rui-Ying Zhu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Yan Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Jian Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Shi-Ru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Pei-Pei Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China.
| |
Collapse
|
3
|
Ali T, Usman R, Shah SA, Parvez A, Anwar S, Muneer Z, Saeed M. Aberrant HIF1- α and SIX-1 Expression is Associated with Poor Prognosis in Acute Myeloid Leukemia Patients with Isocitrate Dehydrogenase 1 Mutations. Cancer Control 2024; 31:10732748241271714. [PMID: 39110525 PMCID: PMC11307363 DOI: 10.1177/10732748241271714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND IDH1 mutations are common in many cancers, however, their role in promoting the Warburg effect remains elusive. This study elucidates the putative involvement of mutant-IDH1 in regulating hypoxia-inducible factor (HIF1-α) and Sine-Oculis Homeobox-1 (SIX-1) expression. METHODOLOGY Genetic screening was performed using the ARMS-PCR in acute myeloid leukemia (AML), brain, and breast cancer (BC) cohorts, while transcript expression was determined using qPCR. Further, a meta-analysis of risk factors associated with the R132 mutation was performed. RESULTS Approximately 32% of AML and ∼60% of glioma cases were mutants, while no mutation was found in the BC cohort. 'AA' and TT' were associated with higher disease risk (OR = 12.18 & 4.68) in AML and had significantly upregulated IDH1 expression. Moreover, downregulated HIF1-α and upregulated SIX-1 expression was also observed in these patients, suggesting that mutant-IDH1 may alter glucose metabolism. Perturbed IDH1 and HIF-α levels exhibited poor prognosis in univariate and multivariate analysis, while age and gender were found to be contributory factors as well. Based on the ROC model, these had a good potential to be used as prognostic markers. A significant variation in frequencies of R132 mutations in AML among different populations was observed. Cytogenesis (R2 = 12.2%), NMP1 mutation status (R2 = 18.5%), and ethnic contributions (R2 = 73.21%) were critical moderators underlying these mutations. Women had a higher risk of R132 mutation (HR = 1.3, P < 0.04). The pooled prevalence was calculated to be 0.29 (95% CI 0.26-0.33, P < 0.01), indicating that IDH1 mutations are a significant prognostic factor in AML. CONCLUSION IDH1 and HIF1-α profiles are linked to poor survival and prognosis, while high SIX-1 expression in IDH1 mutants suggests a role in leukemic transformation and therapy response in AML.
Collapse
Affiliation(s)
- Tariq Ali
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Rohma Usman
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Syed Alasar Shah
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Aamir Parvez
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Summayya Anwar
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Zahid Muneer
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Muhammad Saeed
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
4
|
Ting KKY, Jongstra-Bilen J, Cybulsky MI. The multi-faceted role of NADPH in regulating inflammation in activated myeloid cells. Front Immunol 2023; 14:1328484. [PMID: 38106413 PMCID: PMC10722250 DOI: 10.3389/fimmu.2023.1328484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Recent advances in the immunometabolism field have demonstrated the importance of metabolites in fine-tuning the inflammatory responses in myeloid cells. Cofactors, which are metabolites comprised of inorganic ions and organic molecules, may tightly or loosely bind to distinct sites of enzymes to catalyze a specific reaction. Since many enzymes that mediate inflammatory and anti-inflammatory processes require the same cofactors to function, this raises the possibility that under conditions where the abundance of these cofactors is limited, inflammatory and anti-inflammatory enzymes must compete with each other for the consumption of cofactors. Thus, this competition may reflect a naturally evolved mechanism to efficiently co-regulate inflammatory versus anti-inflammatory pathways, fine-tuning the extent of an inflammatory response. The role of NADPH, the reduced form of nicotinamide adenine dinucleotide phosphate (NADP+), in mediating inflammatory and anti-inflammatory responses in activated myeloid cells has been well-established in the past decades. However, how the dynamic of NADPH consumption mediates the co-regulation between individual inflammatory and anti-inflammatory pathways is only beginning to be appreciated. In this review, we will summarize the established roles of NADPH in supporting inflammatory and anti-inflammatory pathways, as well as highlight how the competition for NADPH consumption by these opposing pathways fine-tunes the inflammatory response in activated myeloid cells.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jenny Jongstra-Bilen
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Myron I. Cybulsky
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
5
|
Liu Y, Xu W, Li M, Yang Y, Sun D, Chen L, Li H, Chen L. The regulatory mechanisms and inhibitors of isocitrate dehydrogenase 1 in cancer. Acta Pharm Sin B 2023; 13:1438-1466. [PMID: 37139412 PMCID: PMC10149907 DOI: 10.1016/j.apsb.2022.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 02/04/2023] Open
Abstract
Reprogramming of energy metabolism is one of the basic characteristics of cancer and has been proved to be an important cancer treatment strategy. Isocitrate dehydrogenases (IDHs) are a class of key proteins in energy metabolism, including IDH1, IDH2, and IDH3, which are involved in the oxidative decarboxylation of isocitrate to yield α-ketoglutarate (α-KG). Mutants of IDH1 or IDH2 can produce d-2-hydroxyglutarate (D-2HG) with α-KG as the substrate, and then mediate the occurrence and development of cancer. At present, no IDH3 mutation has been reported. The results of pan-cancer research showed that IDH1 has a higher mutation frequency and involves more cancer types than IDH2, implying IDH1 as a promising anti-cancer target. Therefore, in this review, we summarized the regulatory mechanisms of IDH1 on cancer from four aspects: metabolic reprogramming, epigenetics, immune microenvironment, and phenotypic changes, which will provide guidance for the understanding of IDH1 and exploring leading-edge targeted treatment strategies. In addition, we also reviewed available IDH1 inhibitors so far. The detailed clinical trial results and diverse structures of preclinical candidates illustrated here will provide a deep insight into the research for the treatment of IDH1-related cancers.
Collapse
|
6
|
Koju N, Qin ZH, Sheng R. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin 2022; 43:1889-1904. [PMID: 35017669 PMCID: PMC9343382 DOI: 10.1038/s41401-021-00838-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couples function as cofactors or/and substrates for numerous enzymes to retain cellular redox balance and energy metabolism. Thus, maintaining cellular NADH and NADPH balance is critical for sustaining cellular homeostasis. The sources of NADPH generation might determine its biological effects. Newly-recognized biosynthetic enzymes and genetically encoded biosensors help us better understand how cells maintain biosynthesis and distribution of compartmentalized NAD(H) and NADP(H) pools. It is essential but challenging to distinguish how cells sustain redox couple pools to perform their integral functions and escape redox stress. However, it is still obscure whether NADPH is detrimental or beneficial as either deficiency or excess in cellular NADPH levels disturbs cellular redox state and metabolic homeostasis leading to redox stress, energy stress, and eventually, to the disease state. Additional study of the pathways and regulatory mechanisms of NADPH generation in different compartments, and the means by which NADPH plays a role in various diseases, will provide innovative insights into its roles in human health and may find a value of NADPH for the treatment of certain diseases including aging, Alzheimer's disease, Parkinson's disease, cardiovascular diseases, ischemic stroke, diabetes, obesity, cancer, etc.
Collapse
Affiliation(s)
- Nirmala Koju
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
7
|
GIM SA, PARK DJ, KANG JB, SHAH FA, KOH PO. Identification of regulated proteins by resveratrol in glutamate-induced cortical injury of newborn rats. J Vet Med Sci 2021; 83:724-733. [PMID: 33716268 PMCID: PMC8111349 DOI: 10.1292/jvms.21-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022] Open
Abstract
Glutamate induces neuronal damage by generating oxidative stress and neurotoxicities. The neurological damage caused by glutamate is more severe during brain development in newborns than in adults. Resveratrol is naturally present in a variety of fruits and medicinal plants and exerts a neuroprotective effect against brain damage. The goal of this study was to evaluate the neuroprotective effects of resveratrol and to identify changed proteins in response to resveratrol treatment during glutamate-induced neonatal cortical damage. Sprague-Dawley rat pups (7 days old) were randomly divided into vehicle, resveratrol, glutamate, and glutamate and resveratrol groups. The animals were intraperitoneally injected with glutamate (10 mg/kg) and/or resveratrol (20 mg/kg) and their brain tissue was collected 4 hr after drug administration. Glutamate exposure caused severe histopathological changes, while resveratrol attenuated this damage. We identified regulated proteins by resveratrol in glutamate-induced cortical damaged tissue using two-dimensional gel electrophoresis and mass spectrometry. Among identified proteins, we focused on eukaryotic initiation factor 4A2, γ-enolase, protein phosphatase 2A subunit B, and isocitrate dehydrogenase. These proteins decreased in the glutamate-treated group, whereas the combination treatment of glutamate and resveratrol attenuated these protein reductions. These proteins are anti-oxidant proteins and anti-apoptotic proteins. These results suggest that glutamate induces brain cortical damage in newborns; resveratrol exerts a neuroprotective effect by controlling expression of various proteins with anti-oxidant and anti-apoptotic functions.
Collapse
Affiliation(s)
- Sang-A GIM
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju,
52828, South Korea
| | - Dong-Ju PARK
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju,
52828, South Korea
| | - Ju-Bin KANG
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju,
52828, South Korea
| | - Fawad-Ali SHAH
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju,
52828, South Korea
- Current affiliation: Riphah Institute of Pharmaceutical
Sciences, Riphah International University, near Hajj Complex, I-14, Islamabad, Islamabad
Capital Territory 46000, Pakistan
| | - Phil-Ok KOH
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju,
52828, South Korea
| |
Collapse
|
8
|
Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:830-847. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two key molecules in plant cells that participate, directly or indirectly, as regulators of protein functions through derived post-translational modifications, mainly tyrosine nitration, S-nitrosation, and persulfidation. These post-translational modifications allow the participation of both NO and H2S signal molecules in a wide range of cellular processes either physiological or under stressful circumstances. NADPH participates in cellular redox status and it is a key cofactor necessary for cell growth and development. It is involved in significant biochemical routes such as fatty acid, carotenoid and proline biosynthesis, and the shikimate pathway, as well as in cellular detoxification processes including the ascorbate-glutathione cycle, the NADPH-dependent thioredoxin reductase (NTR), or the superoxide-generating NADPH oxidase. Plant cells have diverse mechanisms to generate NADPH by a group of NADP-dependent oxidoreductases including ferredoxin-NADP reductase (FNR), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), NADP-dependent malic enzyme (NADP-ME), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and both enzymes of the oxidative pentose phosphate pathway, designated as glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH). These enzymes consist of different isozymes located in diverse subcellular compartments (chloroplasts, cytosol, mitochondria, and peroxisomes) which contribute to the NAPDH cellular pool. We provide a comprehensive overview of how post-translational modifications promoted by NO (tyrosine nitration and S-nitrosation), H2S (persulfidation), and glutathione (glutathionylation), affect the cellular redox status through regulation of the NADP-dependent dehydrogenases.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - José M Palma
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| |
Collapse
|
9
|
Wang L, Yu H, Xu J, Ruan H, Zhang W. Deciphering the crucial roles of AraC-type transcriptional regulator Cgl2680 on NADPH metabolism and L-lysine production in Corynebacterium glutamicum. World J Microbiol Biotechnol 2020; 36:82. [PMID: 32458148 DOI: 10.1007/s11274-020-02861-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/20/2020] [Indexed: 11/28/2022]
Abstract
Lysine is widely used in food, medical and feed industries. The biosynthesis of L-lysine is closely related to NADPH level, but the regulation mechanism between the biosynthesis of L-lysine in C. glutamicum and the cofactor NADPH is still not clear. Here, a high intracellular NADPH level strain C. glutamicum XQ-5Δpgi::(zwf-gnd) was constructed by blocking the glycolytic pathway and overexpressing the pentose phosphate pathway in the lysine-producing strain C. glutamicum XQ-5, and the intracellular NADPH level in strain XQ-5Δpgi::(zwf-gnd) was increased from 3.57 × 10-5 nmol/(104 cells) to 1.8 × 10-4 nmol/(104 cell). Transcriptome analyses pointed to Cgl2680 as an important regulator of NADPH levels and L-lysine biosynthesis in C. glutamicum. By knocking out the gene Cgl2680, the intracellular NADPH level of the recombinant C. glutamicum lysCfbr ΔCgl2680 was raised from 7.95 × 10-5 nmol/(104 cells) to 2.04 × 10-4 nmol/(104 cells), consequently leading to a 2.3-fold increase in the NADPH/NADP+ ratio. These results indicated that the regulator Cgl2680 showed the negative regulation for NADPH regeneration. In addition, Cgl2680-deficient strain C. glutamicum lysCfbr ΔCgl2680 showed the increase of yield of both L-lysine and L-leucine as well as the increase of H2O2 tolerance. Collectively, our data demonstrated that Cgl2680 plays an important role in negatively regulating NADPH regeneration, and these results provides new insights for breeding L-lysine or L-leucine high-yielding strain.
Collapse
Affiliation(s)
- Luping Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Haibo Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Jianzhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Haozhe Ruan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Weiguo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| |
Collapse
|
10
|
Methyl Jasmonate Reduces Inflammation and Oxidative Stress in the Brain of Arthritic Rats. Antioxidants (Basel) 2019; 8:antiox8100485. [PMID: 31618993 PMCID: PMC6826661 DOI: 10.3390/antiox8100485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/29/2022] Open
Abstract
Methyl jasmonate (MeJA), common in the plant kingdom, is capable of reducing articular and hepatic inflammation and oxidative stress in adjuvant-induced arthritic rats. This study investigated the actions of orally administered MeJA (75–300 mg/kg) on inflammation, oxidative stress and selected enzyme activities in the brain of Holtzman rats with adjuvant-induced arthritis. MeJA prevented the arthritis-induced increased levels of nitrites, nitrates, lipid peroxides, protein carbonyls and reactive oxygen species (ROS). It also prevented the enhanced activities of myeloperoxidase and xanthine oxidase. Conversely, the diminished catalase and superoxide dismutase activities and glutathione (GSH) levels caused by arthritis were totally or partially prevented. Furthermore, MeJA increased the activity of the mitochondrial isocitrate dehydrogenase, which helps to supply NADPH for the mitochondrial glutathione cycle, possibly contributing to the partial recovery of the GSH/oxidized glutathione (GSSG) ratio. These positive actions on the antioxidant defenses may counterbalance the effects of MeJA as enhancer of ROS production in the mitochondrial respiratory chain. A negative effect of MeJA is the detachment of hexokinase from the mitochondria, which can potentially impair glucose phosphorylation and metabolism. In overall terms, however, it can be concluded that MeJA attenuates to a considerable extent the negative effects caused by arthritis in terms of inflammation and oxidative stress.
Collapse
|
11
|
Zhou TY, Xiang XW, Du M, Zhang LF, Cheng NX, Liu XL, Zheng B, Wen ZS. Protective effect of polysaccharides of sea cucumber Acaudina leucoprocta on hydrogen peroxide-induced oxidative injury in RAW264.7 cells. Int J Biol Macromol 2019; 139:1133-1140. [PMID: 31419551 DOI: 10.1016/j.ijbiomac.2019.08.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 12/18/2022]
Abstract
The aim of this experiment was to investigate the protective effects of polysaccharides of sea cucumber Acaudina leucoprocta (ALP) against hydrogen peroxide (H2O2) induced oxidative injury in RAW264.7 cells. Analysis of monosaccharide composition and structure of one fraction from ALP (ALPN) were analyzed by High Performance Liquid Chromatography (HPLC) and Fourier Transform Infrared Spectoscopy (FT-IR). The results showed that ALPN contain sulfate groups, which is sulfated polysaccharides. The results from MTT assay indicated that ALPN could markedly increase viability of cells compared with RAW264.7 cells exposed to H2O2. Moreover, ALPN significantly increased the levels of catalase (CAT), glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD), decreased the production of malondialdehyde (MDA) and lactate dehydrogenase (LDH) in RAW264.7 cells. The data from RT-PCR showed that ALPN (300 μg/mL) could increase the gene expression levels of SOD1 and GPX1. ALPN could also observably increase the protein expression level of Nrf2 and decrease the protein expression level of Keap1 with western blot. Collectively, this study suggested that polysaccharides of sea cucumber Acaudina leucoprocta (ALP) could effectively protect RAW264.7 cells against H2O2-induced oxidative injury. This protection mechanism may be related to activation of the Nrf2/Keap1 signaling pathway.
Collapse
Affiliation(s)
- Tian-Yi Zhou
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China
| | - Xing-Wei Xiang
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Ming Du
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China
| | - Lei-Fang Zhang
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China
| | - Nai-Xue Cheng
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China
| | - Xuan-Lin Liu
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China
| | - Bin Zheng
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China; Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang 316000, People's Republic of China
| | - Zheng-Shun Wen
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China.
| |
Collapse
|
12
|
Nie Y, Hu J, Hou Q, Zheng W, Zhang X, Yang T, Ma L, Yan X. Lactobacillus frumenti improves antioxidant capacity via nitric oxide synthase 1 in intestinal epithelial cells. FASEB J 2019; 33:10705-10716. [PMID: 31262191 DOI: 10.1096/fj.201900253rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Oxidative damages have adverse effects on mammals. Growing studies have focused on exploring new antioxidants. Here, we report that Lactobacillus frumenti increases the total antioxidation capacity activities and decreases the total reactive oxygen species levels in porcine intestinal epithelial cells. Comparative proteomics revealed that expressions of peroxiredoxin 2, isocitrate dehydrogenase 1, NAD(P)H dehydrogenase quinone 1, antioxidant protein 1, and metallothionein-2A, which are associated with antioxidant defense system, were significantly increased with L. frumenti treatment. In germ-free mice, L. frumenti treatment also remarkably improves the intestinal antioxidant capacity. We further illustrated that nitric oxide production-mediated by nitric oxide synthase 1 activation is essential for L. frumenti-induced improvements in intestinal epithelial antioxidant capacity and barrier function. This study suggested that L. frumenti may be a potential probiotic used to prevent oxidative stress-induced aging and diseases in mammals.-Nie, Y., Hu, J., Hou, Q., Zheng, W., Zhang, X., Yang, T., Ma, L., Yan, X. Lactobacillus frumenti improves antioxidant capacity via nitric oxide synthase 1 in intestinal epithelial cells.
Collapse
Affiliation(s)
- Yangfan Nie
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Jun Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Qiliang Hou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Wenyong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Xianghua Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Tao Yang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| |
Collapse
|
13
|
PhoU2 but Not PhoU1 as an Important Regulator of Biofilm Formation and Tolerance to Multiple Stresses by Participating in Various Fundamental Metabolic Processes in Staphylococcus epidermidis. J Bacteriol 2017; 199:JB.00219-17. [PMID: 28947672 PMCID: PMC5686610 DOI: 10.1128/jb.00219-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
PhoU, a conserved protein that has been proposed to coordinate phosphate import, is a negative regulator of drug tolerance in most bacteria. In Staphylococcus epidermidis, the role of PhoU in biofilm formation and drug tolerance has not yet been investigated. Two PhoU homologs in the genome of S. epidermidis have been identified by the presence of the conserved motif E(D)XXXD of PhoU. We separately constructed ΔphoU1 and ΔphoU2 mutants of S. epidermidis strain 1457. The ΔphoU2 mutant displayed growth retardation, a weakened biofilm formation capacity, a higher sensitivity to H2O2, and reduced tolerance to multiple antibiotics. However, deletion of phoU1 had no effect on those. We compared the transcriptome profiles of the ΔphoU2 and ΔphoU1 mutants with that of the parent strain. In the ΔphoU2 mutant, expression of genes related to inorganic phosphate uptake was significantly upregulated (pst operon) and the levels of intracellular inorganic polyphosphate (polyP) were increased. In the ΔphoU2 mutant, expression of enzymes in the pentose phosphate pathway (PPP) was downregulated and less NADP (NADPH) was detected, consistent with the high sensitivity to H2O2 and the growth retardation of the ΔphoU2 mutant. The upregulated expression of ATP synthase was consistent with the high intracellular ATP content in the ΔphoU2 mutant, which may have been related to the lower drug tolerance of the ΔphoU2 mutant. This study demonstrates that PhoU2, but not PhoU1, in S. epidermidis regulates bacterial growth, biofilm formation, oxidative stress, and drug tolerance in association with alterations to inorganic phosphate metabolism, the pentose phosphate pathway, galactose metabolism, the tricarboxylic acid (TCA) or citric cycle, glycolysis and gluconeogenesis, and respiratory reactions. IMPORTANCE PhoU is widely conserved throughout the bacterial kingdom and plays an important role in response to stress and metabolic maintenance. In our study, two PhoU homologs were found in S. epidermidis. The function of phoU2, but not phoU1, in S. epidermidis is related to growth, drug tolerance, the oxidative stress response, polyP levels, and ATP accumulation. In addition, phoU2 regulates biofilm formation. Hence, phoU2 is a regulator of both drug tolerance and biofilm formation, which are two bacterial properties that present major challenges to the clinical treatment of infections. Analysis of differential gene expression revealed that phoU2 is involved in fundamental metabolic processes, such as the PPP pathway. These findings indicate that phoU2 is a crucial regulator in S. epidermidis.
Collapse
|
14
|
Dong Y, Fang X, Yang Y, Xue GP, Chen X, Zhang W, Wang X, Yu C, Zhou J, Mei Q, Fang W, Yan C, Chen J. Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper. FRONTIERS IN PLANT SCIENCE 2017; 8:1744. [PMID: 29089949 PMCID: PMC5651024 DOI: 10.3389/fpls.2017.01744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 05/29/2023]
Abstract
The small brown planthopper (Laodelphax striatellus Fallén, Homoptera, Delphacidae-SBPH) is one of the major destructive pests of rice (Oryza sativa L.). Understanding on how rice responds to SBPH infestation will contribute to developing strategies for SBPH control. However, the response of rice plant to SBPH is poorly understood. In this study, two contrasting rice genotypes, Pf9279-4 (SBPH-resistant) and 02428 (SBPH-susceptible), were used for comparative analysis of protein profiles in the leaf sheath of rice plants in responses to SBPH infestation. One hundred and thirty-two protein spots that were differentially expressed between the resistant and susceptible rice lines were identified with significant intensity differences (≥2-fold, P < 0.05) at 0, 6, and 12 h after SBPH infestation. Protein expression profile analysis in the leaf sheath of SBPH-resistant and SBPH-susceptible rice lines after SBPH infestation showed that proteins induced by SBPH feeding were involved mainly in stress response, photosynthesis, protein metabolic process, carbohydrate metabolic process, energy metabolism, cell wall-related proteins, amino acid metabolism and transcriptional regulation. Gene expression analysis of 24 differentially expressed proteins (DEPs) showed that more than 50% DEPs were positively correlated with their mRNA levels. Analysis of some physiological indexes mainly involved in the removal of oxygen reactive species showed that the levels of superoxide dismutase (SOD) and glutathione (GSH) were considerably higher in Pf9279-4 than 02428 during SBPH infestation. The catalase (CAT) activity and hydroxyl radical inhibition were lower in Pf9279-4 than 02428. Analysis of enzyme activities indicates that Pf9279-4 rice plants defend against SBPH through the activation of the pathway of the salicylic acid (SA)-dependent systemic acquired resistance. In conclusion, this study provides some insights into the molecular networks involved on cellular and physiological responses to SBPH infestation.
Collapse
Affiliation(s)
- Yan Dong
- Agricultural Insect Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xianping Fang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and Hunan Provincial Key Laboratory of Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Yong Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gang-Ping Xue
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Xian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Weilin Zhang
- Plant Genetic Engineering Laboratory, College of Plant Protection, Zhejiang Normal University, Jinhua, China
| | - Xuming Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chulang Yu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiong Mei
- Plant Pathogens Laboratory, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wang Fang
- Institute of Biotechnology, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Chengqi Yan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- Agricultural Insect Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
15
|
Andrejeva G, Rathmell JC. Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metab 2017; 26:49-70. [PMID: 28683294 PMCID: PMC5555084 DOI: 10.1016/j.cmet.2017.06.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022]
Abstract
It has been appreciated for nearly 100 years that cancer cells are metabolically distinct from resting tissues. More recently understood is that this metabolic phenotype is not unique to cancer cells but instead reflects characteristics of proliferating cells. Similar metabolic transitions also occur in the immune system as cells transition from resting state to stimulated effectors. A key finding in immune metabolism is that the metabolic programs of different cell subsets are distinctly associated with immunological function. Further, interruption of those metabolic pathways can shift immune cell fate to modulate immunity. These studies have identified numerous metabolic similarities between cancer and immune cells but also critical differences that may be exploited and that affect treatment of cancer and immunological diseases.
Collapse
Affiliation(s)
- Gabriela Andrejeva
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center and Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center and Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Oakley CA, Durand E, Wilkinson SP, Peng L, Weis VM, Grossman AR, Davy SK. Thermal Shock Induces Host Proteostasis Disruption and Endoplasmic Reticulum Stress in the Model Symbiotic Cnidarian Aiptasia. J Proteome Res 2017; 16:2121-2134. [PMID: 28474894 DOI: 10.1021/acs.jproteome.6b00797] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Coral bleaching has devastating effects on coral survival and reef ecosystem function, but many of the fundamental cellular effects of thermal stress on cnidarian physiology are unclear. We used label-free liquid chromatography-tandem mass spectrometry to compare the effects of rapidly (33.5 °C, 24 h) and gradually (30 and 33.5 °C, 12 days) elevated temperatures on the proteome of the model symbiotic anemone Aiptasia. We identified 2133 proteins in Aiptasia, 136 of which were differentially abundant between treatments. Thermal shock, but not acclimation, resulted in significant abundance changes in 104 proteins, including those involved in protein folding and synthesis, redox homeostasis, and central metabolism. Nineteen abundant structural proteins showed particularly reduced abundance, demonstrating proteostasis disruption and potential protein synthesis inhibition. Heat shock induced antioxidant mechanisms and proteins involved in stabilizing nascent proteins, preventing protein aggregation and degrading damaged proteins, which is indicative of endoplasmic reticulum stress. Host proteostasis disruption occurred before either bleaching or symbiont photoinhibition was detected, suggesting host-derived reactive oxygen species production as the proximate cause of thermal damage. The pronounced abundance changes in endoplasmic reticulum proteins associated with proteostasis and protein turnover indicate that these processes are essential in the cellular response of symbiotic cnidarians to severe thermal stress.
Collapse
Affiliation(s)
- Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington , Wellington 6012, New Zealand
| | - Elysanne Durand
- Department of Ecology and Environmental Sciences, Université Pierre et Marie Curie , Paris 75005, France
| | - Shaun P Wilkinson
- School of Biological Sciences, Victoria University of Wellington , Wellington 6012, New Zealand
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington , Wellington 6012, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University , Corvallis, Oregon 97331, United States
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science , Stanford, California 94305, United States
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington , Wellington 6012, New Zealand
| |
Collapse
|
17
|
Purification, Characterization and Biological Activity of Polysaccharides from Dendrobium officinale. Molecules 2016; 21:molecules21060701. [PMID: 27248989 PMCID: PMC6272863 DOI: 10.3390/molecules21060701] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 11/16/2022] Open
Abstract
Polysaccharide (DOPA) from the stem of D. officinale, as well as two fractions (DOPA-1 and DOPA-2) of it, were isolated and purified by DEAE cellulose-52 and Sephacryl S-300 chromatography, and their structural characteristics and bioactivities were investigated. The average molecular weights of DOPA-1 and DOPA-2 were 394 kDa and 362 kDa, respectively. They were mainly composed of d-mannose, d-glucose, and had a backbone consisting of 1,4-linked β-d-Manp and 1,4-linked β-d-Glcp with O-acetyl groups. Bioactivity studies indicated that both DOPA and its purified fractions (DOPA-1 and DOPA-2) could activate splenocytes and macrophages. The D. officinale polysaccharides had stimulatory effects on splenocytes, T-lymphocytes and B-lymphocytes, promoting the cell viability and NO production of RAW 264.7 macrophages. Furthermore, DOPA, DOPA-1 and DOPA-2 were found to protect RAW 264.7 macrophages against hydrogen peroxide (H₂O₂)-induced oxidative injury by promoting cell viability, suppressing apoptosis and ameliorating oxidative lesions. These results suggested that D. officinale polysaccharides possessed antioxidant activity and mild immunostimulatory activity.
Collapse
|
18
|
Schubert AC, Wendt MMN, de Sá-Nakanishi AB, Amado CAB, Peralta RM, Comar JF, Bracht A. Oxidative state and oxidative metabolism of the heart from rats with adjuvant-induced arthritis. Exp Mol Pathol 2016; 100:393-401. [PMID: 27032477 DOI: 10.1016/j.yexmp.2016.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/11/2016] [Accepted: 03/20/2016] [Indexed: 02/01/2023]
Abstract
The aim of the present work was to investigate, in a more extensive way, the oxidative state and parameters related to energy metabolism of the heart tissue of rats using the model of adjuvant-induced arthritis. The latter is a model for the human arthritic disease. Measurements were done in the total tissue homogenate, isolated mitochondria and cytosolic fraction. The adjuvant-induced arthritis caused several modifications in the oxidative state of the heart which, in general, indicate an increased oxidative stress (+80% reactive oxygen species), protein damage (+53% protein carbonyls) and lipid damage (+63% peroxidation) in the whole tissue. The distribution of these changes over the various cell compartments was frequently unequal. For example, protein carbonyls were increased in the whole tissue and in the cytosol, but not in the mitochondria. No changes in GSH content of the whole tissue were found, but it was increased in the mitochondria (+33%) and decreased in the cytosol (-19%). The activity of succinate dehydrogenase was 77% stimulated by arthritis; the activities of glutamate dehydrogenase, isocitrate dehydrogenase and cytochrome c oxidase were diminished by 31, 25 and 35.3%, respectively. In spite of these alterations, no changes in the mitochondrial respiratory activity and in the efficiency of energy transduction were found. It can be concluded that the adjuvant-induced arthritis in rats causes oxidative damage to the heart with an unequal intracellular distribution. Compared to the liver and brain the modifications caused by arthritis in the heart are less pronounced on variables such as GSH levels and protein integrity. Possibly this occurs because the antioxidant system of the heart is less impaired by arthritis than that reported for the former tissues. Even so, the modifications caused by arthritis represent an imbalanced situation that probably contributes to the cardiac symptoms of the arthritis disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adelar Bracht
- Department of Biochemistry, University of Maringá, 87020900 Maringá, Brazil.
| |
Collapse
|
19
|
Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent. Proc Natl Acad Sci U S A 2016; 113:1564-9. [PMID: 26811453 DOI: 10.1073/pnas.1518000113] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as needed. Upon mitogenic stimulation, quiescent macrophages enter the cell cycle, increasing their bioenergetic and biosynthetic activity to meet the demands of cell growth. Proinflammatory stimulation, however, suppresses cell proliferation, while maintaining a heightened metabolic activity imposed by the production of bactericidal factors. Here, we report that the mitogenic stimulus, colony-stimulating factor 1 (CSF-1), engages a myelocytomatosis viral oncogen (Myc)-dependent transcriptional program that is responsible for cell cycle entry and the up-regulation of glucose and glutamine catabolism in bone marrow-derived macrophages (BMDMs). However, the proinflammatory stimulus, lipopolysaccharide (LPS), suppresses Myc expression and cell proliferation and engages a hypoxia-inducible factor alpha (HIF1α)-dependent transcriptional program that is responsible for heightened glycolysis. The acute deletion of Myc or HIF1α selectively impaired the CSF-1- or LPS-driven metabolic activities in BMDM, respectively. Finally, inhibition of glycolysis by 2-deoxyglucose (2-DG) or genetic deletion of HIF1α suppressed LPS-induced inflammation in vivo. Our studies indicate that a switch from a Myc-dependent to a HIF1α-dependent transcriptional program may regulate the robust bioenergetic support for an inflammatory response, while sparing Myc-dependent proliferation.
Collapse
|
20
|
Idh1 protects murine hepatocytes from endotoxin-induced oxidative stress by regulating the intracellular NADP(+)/NADPH ratio. Cell Death Differ 2015; 22:1837-45. [PMID: 25882048 PMCID: PMC4648331 DOI: 10.1038/cdd.2015.38] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
Isocitrate dehydrogenase-1 (Idh1) is an important metabolic enzyme that produces NADPH by converting isocitrate to α-ketoglutarate. Idh1 is known to reduce reactive oxygen species (ROS) induced in cells by treatment with lipopolysaccharide (LPS) in vitro. Here, we used Idh1-deficient knockout (Idh1 KO) mice to investigate the role of Idh1 in antioxidant defense in vivo. Idh1 KO mice showed heightened susceptibility to death induced by LPS and exhibited increased serum levels of inflammatory cytokines such as tumor necrosis factor-α and interleukin-6. The serum of LPS-injected Idh1 KO mice also contained elevated levels of AST, a marker of inflammatory liver damage. Furthermore, after LPS injection, livers of Idh1 KO mice showed histological evidence of elevated oxidative DNA damage compared with livers of wild-type (WT) mice. Idh1 KO livers showed a faster and more pronounced oxidative stress than WT livers. In line with that, Idh1 KO hepatocytes showed higher ROS levels and an increase in the NADP(+)/NADPH ratio when compared with hepatocytes isolated from WT mice. These results suggest that Idh1 has a physiological function in protecting cells from oxidative stress by regulating the intracellular NADP(+)/NADPH ratio. Our findings suggest that stimulation of Idh1 activity may be an effective therapeutic strategy for reducing oxidative stress during inflammatory responses, including the early stages of septic shock.
Collapse
|
21
|
Cueno ME, Tamura M, Ochiai K. Middle-aged rats orally supplemented with gel-encapsulated catechin favorably increases blood cytosolic NADPH levels. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:425-430. [PMID: 25925963 DOI: 10.1016/j.phymed.2015.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
Green tea catechins are primarily known to function as free radical scavengers and have several beneficial uses. Orally supplemented catechin (OSC) was previously shown to increase mitochondrial heme and catalase levels in rat heart blood, however, its effect in the cytosol has not been elucidated. Here, we determined the effects of OSC in the rat heart blood cytosol. We used middle-aged (40 week-old) and young (4 week-old) rats throughout the study. We isolated blood cytosol, verified its purity, and determined heme, hydrogen peroxide (H2O2) levels, catalase (CAT) activities, gp91(phox) amounts, NADP and NAD pools, sirtuin 1 (SIRT1) and glutathione reductase (GR) activities, and free fatty acids (FFA). We established that OSC is associated with decreased heme-dependent H2O2 amounts while increasing heme-independent CAT activity. Moreover, we found that OSC-related decrease in NAD(+) amounts among middle-aged rats is associated to increased NADPH levels and SIRT1 activity. In contrast, we associated OSC-related decrease in NAD(+) amounts among young rats to decreased NADPH levels and increased SIRT1 activity. This highlights a major difference between catechin-treated middle-aged and young rats. Furthermore, we observed that cytosolic FFA and GR levels were significantly increased only among OSC-treated middle-aged rats which we hypothesize are related to increased NADPH levels. This insinuates that OSC treatment allows higher catechin amounts to enter the bloodstream of middle-aged rats. We propose that this would favorably increase NADPH amounts and lead to the simultaneous decrease in NADPH-related pro-oxidant activity and increase in NADPH-related biomolecules and anti-oxidant activities.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kuniyasu Ochiai
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
22
|
Wen ZS, Liu LJ, OuYang XK, Qu YL, Chen Y, Ding GF. Protective effect of polysaccharides from Sargassum horneri against oxidative stress in RAW264.7 cells. Int J Biol Macromol 2014; 68:98-106. [PMID: 24769083 DOI: 10.1016/j.ijbiomac.2014.04.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 03/26/2014] [Accepted: 04/16/2014] [Indexed: 01/27/2023]
Abstract
This study was designed to investigate chemical composition and the protective effects of polysaccharides isolated from Sargassum horneri against hydrogen peroxide (H2O2)-induced oxidative injury in RAW264.7 cells. Results showed that isolated polysaccharides (SHSc) and the major fractions (SHS1, SHS0.5) contained sulfate ester, and SHS1 was high fucose-containing sulfated polysaccharide. After preincubation with three isolated polysaccharides, RAW264.7 cells viability were significantly restored and decreased in cellular LDH release (P<0.05). SHS1 and SHS0.5 decreased intracellular ROS level, intracellular NO and malonic dialdehyde (MDA) level (P<0.05), restoring activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) (P<0.05), decreasing inducible nitric oxide synthase (iNOS) (P<0.05). Moreover, preincubation of SHS1 with RAW264.7 cells resulted in the increase of the gene expression level of endogenous antioxidant enzymes such as MnSOD and GSH-Px (P<0.05). These results clearly showed that SHSc and its fractions could attenuate H2O2-induced stress injury in RAW264.7 cells, and a similar efficiency in protecting RAW264.7 cells against H2O2-induced oxidative injury between SHS1 and Vitamin C. Taken together, our findings suggested that SHS1 can effectively protect RAW264.7 cells against oxidative stress by H2O2, which might be used as a potential natural antioxidant in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zheng-Shun Wen
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000 Zhejiang, China.
| | - Li-Jia Liu
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000 Zhejiang, China
| | - Xiao-Kun OuYang
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000 Zhejiang, China
| | - You-Le Qu
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000 Zhejiang, China.
| | - Yin Chen
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000 Zhejiang, China
| | - Guo-Fang Ding
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000 Zhejiang, China
| |
Collapse
|
23
|
Effects of treating old rats with an aqueous Agaricus blazei extract on oxidative and functional parameters of the brain tissue and brain mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:563179. [PMID: 24876914 PMCID: PMC4020171 DOI: 10.1155/2014/563179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/07/2014] [Accepted: 04/07/2014] [Indexed: 11/26/2022]
Abstract
Dysfunction of the mitochondrial respiratory chain and increased oxidative stress is a striking phenomenon in the brain of aged individuals. For this reason there has been a constant search for drugs and natural products able to prevent or at least to mitigate these problems. In the present study the effects of an aqueous extract of Agaricus blazei, a medicinal mushroom, on the oxidative state and on the functionality of mitochondria from the brain of old rats (21 months) were conducted. The extract was administered intragastrically during 21 days at doses of 200 mg/kg. The administration of the A. blazei extract was protective to the brain of old rats against oxidative stress by decreasing the lipid peroxidation levels and the reactive oxygen species content and by increasing the nonenzymic and enzymic antioxidant capacities. Administration of the A. blazei extract also increased the activity of several mitochondrial respiratory enzymes and, depending on the substrate, the mitochondrial coupled respiration.
Collapse
|
24
|
Propofol reduces lipopolysaccharide-induced, NADPH oxidase (NOX 2) mediated TNF- α and IL-6 production in macrophages. Clin Dev Immunol 2013; 2013:325481. [PMID: 24371447 PMCID: PMC3859231 DOI: 10.1155/2013/325481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 12/21/2022]
Abstract
During an infection, lipopolysaccharide (LPS) stimulates the production of reactive oxygen species (ROS), which is mediated, in large part, by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs); NOX2 is the major NOX isoform found in the macrophage cell membrane. While the immunomodulatory activity of propofol is highly documented, its effect on the LPS-induced NOX2/ROS/NF-κB signaling pathway in macrophages has not been addressed. In present study, we used murine macrophage cell line RAW264.7 pretreated with propofol and stimulated with LPS. IL-6 and TNF-α expression, ROS production, and NOX activity were determined. Results showed that propofol attenuated LPS-induced TNF-α and IL-6 expression. Moreover, LPS-stimulated phosphorylation of NF-κB and generation of ROS were weakened in response to propofol. Propofol also reduced LPS-induced NOX activity and expression of gp91phox and p47phox. We conclude that propofol modulates LPS signaling in macrophages by reducing NOX-mediated production of TNF-α and IL-6.
Collapse
|
25
|
Wen ZS, Liu LJ, Qu YL, OuYang XK, Yang LY, Xu ZR. Chitosan nanoparticles attenuate hydrogen peroxide-induced stress injury in mouse macrophage RAW264.7 cells. Mar Drugs 2013; 11:3582-600. [PMID: 24084781 PMCID: PMC3826124 DOI: 10.3390/md11103582] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/18/2013] [Accepted: 08/30/2013] [Indexed: 12/30/2022] Open
Abstract
This study was carried out to investigate the protective effects of chitosan nanoparticles (CNP) against hydrogen peroxide (H2O2)-induced oxidative damage in murine macrophages RAW264.7 cells. After 24 h pre-incubation with CNP (25–200 μg/mL) and chitosan (CS) (50–200 μg/mL, as controls), the viability loss in RAW264.7 cells induced by H2O2 (500 μM) for 12 h was markedly restored in a concentration-dependent manner as measured by MTT assay (P < 0.05) and decreased in cellular LDH release (P < 0.05). Moreover, CNP also exerted preventive effects on suppressing the production of lipid peroxidation such as malondialdehyde (MDA) (P < 0.05), restoring activities of endogenous antioxidant including superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) (P < 0.05), along with increasing total antioxidant capacity (T-AOC) (P < 0.05). In addition, pre-incubation of CNP with RAW264.7 cells for 24 h resulted in the increase of the gene expression level of endogenous antioxidant enzymes, such as MnSOD and GSH-Px (P < 0.05). At the same concentration, CNP significantly decreased LDH release and MDA (P < 0.05) as well as increased MnSOD, GSH-Px, and T-AOC activities (P < 0.05) as compared to CS. Taken together, our findings suggest that CNP can more effectively protect RAW264.7 cells against oxidative stress by H2O2 as compared to CS, which might be used as a potential natural compound-based antioxidant in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zheng-Shun Wen
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China; E-Mails: (L.-J.L.); (Y.-L.Q.); (X.-K.O.Y.); (L.-Y.Y.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.-S.W.); (Z.-R.X.); Tel./Fax: +86-580-2554781 (Z.-S.W.); Tel./Fax: +86-571-86996351 (Z.-R.X.)
| | - Li-Jia Liu
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China; E-Mails: (L.-J.L.); (Y.-L.Q.); (X.-K.O.Y.); (L.-Y.Y.)
| | - You-Le Qu
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China; E-Mails: (L.-J.L.); (Y.-L.Q.); (X.-K.O.Y.); (L.-Y.Y.)
| | - Xiao-Kun OuYang
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China; E-Mails: (L.-J.L.); (Y.-L.Q.); (X.-K.O.Y.); (L.-Y.Y.)
| | - Li-Ye Yang
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China; E-Mails: (L.-J.L.); (Y.-L.Q.); (X.-K.O.Y.); (L.-Y.Y.)
| | - Zi-Rong Xu
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Authors to whom correspondence should be addressed; E-Mails: (Z.-S.W.); (Z.-R.X.); Tel./Fax: +86-580-2554781 (Z.-S.W.); Tel./Fax: +86-571-86996351 (Z.-R.X.)
| |
Collapse
|
26
|
Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal 2012; 16:1323-67. [PMID: 22146081 PMCID: PMC3324814 DOI: 10.1089/ars.2011.4123] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 02/06/2023]
Abstract
Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function.
Collapse
Affiliation(s)
- Diane E Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Wang X, Wang L, Yao C, Qiu L, Zhang H, Zhi Z, Song L. Alternation of immune parameters and cellular energy allocation of Chlamys farreri under ammonia-N exposure and Vibrio anguillarum challenge. FISH & SHELLFISH IMMUNOLOGY 2012; 32:741-749. [PMID: 22326939 DOI: 10.1016/j.fsi.2012.01.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/20/2012] [Accepted: 01/29/2012] [Indexed: 05/31/2023]
Abstract
The complex interactions among host, pathogen and environment are believed to be the main causes for the mass mortality of cultured scallops. In the present study, the temporal variations of immune parameters and cellular energy allocation (CEA) of Chlamys farreri under ammonia-N, Vibrio anguillarum as well as their combined treatment were investigated to better understand the energetic mechanisms of scallop in immune defense. After 1 d exposure to ammonia-N, V. anguillarum and their combination, the superoxide anion level and superoxide dismutase (SOD) activity in the serum of scallops increased substantially. At 24 d post exposure, the mRNA expression levels of isocitrate dehydrogenase (IDH), heat shock protein 70 (HSP 70), HSP 90 and glutamine synthetase (GS), as well as the malondialdehyde content remarkably increased, while SOD activity was depressed significantly (P < 0.05). The glycogen reserved in the tissues from scallops exposed to the combined stress for 1 d, 12 d and 24 d were significantly lower than those in the control (P < 0.05). The CEA values in all the examined tissues including gonad, gill, hepatopancreas and adductor muscle were significantly lower than those of control (P < 0.05) when exposure to ammonia-N, V. anguillarum and their combined treatment for 12 and 24 d. Furthermore, the combined stress also had a significant impact upon CEA in all the examined tissues in scallops post 1 d exposure (P < 0.05). The above results demonstrated that SOD, IDH, HSPs and GS in hemolymph of treated scallops are necessary, but not sufficient to the complete protection against stress-induced cellular damage along with the treatment duration. Immune defense against the combination of pathogen invasion and environmental stress can impose greater costs on scallop's energy expenditure than a single stressor, and the combined treatment preferentially consumed more available glycogen in scallops for immune defense. Hence, in addition to be used in immunological evaluation, CEA is also a powerful tool to provide valuable insights into possible mechanisms of mass mortalities in cultured scallops.
Collapse
Affiliation(s)
- Xingqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Lee SH, Ha SO, Koh HJ, Kim K, Jeon SM, Choi MS, Kwon OS, Huh TL. Upregulation of cytosolic NADP+-dependent isocitrate dehydrogenase by hyperglycemia protects renal cells against oxidative stress. Mol Cells 2010; 29:203-8. [PMID: 20012373 DOI: 10.1007/s10059-009-0183-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022] Open
Abstract
Hyperglycemia-induced oxidative stress is widely recognized as a key mediator in the pathogenesis of diabetic nephropathy, a complication of diabetes. We found that both expression and enzymatic activity of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) were upregulated in the renal cortexes of diabetic rats and mice. Similarly, IDPc was induced in murine renal proximal tubular OK cells by high hyperglycemia, while it was abrogated by co-treatment with the antioxidant N-Acetyl-Cysteine (NAC). In OK cells, increased expression of IDPc by stable transfection prevented hyperglycemia-mediated reactive oxygen species (ROS) production, subsequent cellular oxidative stress and extracellular matrix accumulation, whereas these processes were all stimulated by decreased IDPc expression. In addition, production of NADPH and GSH in the cytosol was positively correlated with the expression level of IDPc in OK cells. These results together indicate that upregulation of IDPc in response to hyperglycemia might play an essential role in preventing the progression of diabetic nephropathy, which is accompanied by ROS-induced cellular damage and fibrosis, by providing NADPH, the reducing equivalent needed for recycling reduced glutathione and low molecular weight antioxidant thiol proteins.
Collapse
Affiliation(s)
- Soh-Hyun Lee
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang H, Guo X, Ge X, Chen Y, Sun Q, Yang H. Changes in the Cellular Proteins of Pulmonary Alveolar Macrophage Infected with Porcine Reproductive and Respiratory Syndrome Virus by Proteomics Analysis. J Proteome Res 2009; 8:3091-7. [DOI: 10.1021/pr900002f] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haiming Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Yanhong Chen
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Qixin Sun
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Hanchun Yang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
31
|
Pruett SB, Cheng B, Fan R, Tan W, Sebastian T. Oxidative stress and sodium methyldithiocarbamate-induced modulation of the macrophage response to lipopolysaccharide in vivo. Toxicol Sci 2009; 109:237-46. [PMID: 19339665 DOI: 10.1093/toxsci/kfp054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sodium methyldithiocarbamate (SMD) is the third most abundantly used conventional pesticide in the United States, and hundreds of thousands of persons are exposed to this compound or its major breakdown product, methylisothiocyanate, at levels greater than recommended by the Environmental Protection Agency. A previous study suggests three mechanisms of action involved to some degree in the inhibition of inflammation and decreased resistance to infection caused by exposure of mice to the compound. One of these mechanisms is oxidative stress. The purpose of the present study was to confirm that this mechanism is involved in the effects of SMD on cytokine production by peritoneal macrophages and to further characterize its role in altered cytokine production. Results indicated that SMD significantly decreased the intracellular concentration of reduced glutathione (GSH), suggesting oxidative stress. This was further indicated by the upregulation of genes involved in the "response to oxidative stress" as determined by microarray analysis. These effects were associated with the inhibition of lipopolysaccharide (LPS)-induced production of several proinflammatory cytokines. Experimental depletion of GSH with buthionine sulfoximine (BSO) partially prevented the decrease in LPS-induced interleukin (IL)-6 production caused by SMD and completely prevented the decrease in IL-12. In contrast, BSO plus SMD substantially enhanced the production of IL-10. These results along with results from a previous study are consistent with the hypothesis that SMD causes oxidative stress, which contributes to modulation of cytokine production. However, oxidative stress alone cannot explain the increased IL-10 production caused by SMD.
Collapse
Affiliation(s)
- Stephen B Pruett
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71103, USA.
| | | | | | | | | |
Collapse
|
32
|
Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 2008; 10:179-206. [PMID: 18020963 DOI: 10.1089/ars.2007.1672] [Citation(s) in RCA: 1101] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence has suggested that NAD (including NAD+ and NADH) and NADP (including NADP+ and NADPH) could belong to the fundamental common mediators of various biological processes, including energy metabolism, mitochondrial functions, calcium homeostasis, antioxidation/generation of oxidative stress, gene expression, immunological functions, aging, and cell death: First, it is established that NAD mediates energy metabolism and mitochondrial functions; second, NADPH is a key component in cellular antioxidation systems; and NADH-dependent reactive oxygen species (ROS) generation from mitochondria and NADPH oxidase-dependent ROS generation are two critical mechanisms of ROS generation; third, cyclic ADP-ribose and several other molecules that are generated from NAD and NADP could mediate calcium homeostasis; fourth, NAD and NADP modulate multiple key factors in cell death, such as mitochondrial permeability transition, energy state, poly(ADP-ribose) polymerase-1, and apoptosis-inducing factor; and fifth, NAD and NADP profoundly affect aging-influencing factors such as oxidative stress and mitochondrial activities, and NAD-dependent sirtuins also mediate the aging process. Moreover, many recent studies have suggested novel paradigms of NAD and NADP metabolism. Future investigation into the metabolism and biological functions of NAD and NADP may expose fundamental properties of life, and suggest new strategies for treating diseases and slowing the aging process.
Collapse
Affiliation(s)
- Weihai Ying
- Department of Neurology, University of California at San Francisco, San Francisco, California 94121, USA.
| |
Collapse
|
33
|
Fuchs D, Vafeiadou K, Hall WL, Daniel H, Williams CM, Schroot JH, Wenzel U. Proteomic biomarkers of peripheral blood mononuclear cells obtained from postmenopausal women undergoing an intervention with soy isoflavones. Am J Clin Nutr 2007; 86:1369-75. [PMID: 17991648 DOI: 10.1093/ajcn/86.5.1369] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The incidence of cardiovascular diseases increases after menopause, and soy consumption is suggested to inhibit disease development. OBJECTIVE The objective was to identify biomarkers of response to a dietary supplementation with an isoflavone extract in postmenopausal women by proteome analysis of peripheral blood mononuclear cells. DESIGN The study with healthy postmenopausal woman was performed in a placebo-controlled sequential design. Peripheral mononuclear blood cells were collected from 10 volunteers after 8 wk of receiving daily 2 placebo cereal bars and after a subsequent 8 wk of intervention with 2 cereal bars each providing 25 mg of isoflavones. The proteome of the cells was visualized after 2-dimensional gel electrophoresis, and peptide mass fingerprinting served to identify proteins that by the intervention displayed altered protein concentrations. RESULTS Twenty-nine proteins were identified that showed significantly altered expression in the mononuclear blood cells under the soy-isoflavone intervention, including a variety of proteins involved in an antiinflammatory response. Heat shock protein 70 or a lymphocyte-specific protein phosphatase and proteins that promote increased fibrinolysis, such as alpha-enolase, were found at increased intensities, whereas those that mediate adhesion, migration, and proliferation of vascular smooth muscle cells, such as galectin-1, were found at reduced intensities after soy extract consumption. CONCLUSION Proteome analysis identified in vivo markers that respond to a dietary intervention with isoflavone-enriched soy extract in postmenopausal women. The nature of the proteins identified suggests that soy isoflavones may increase the antiinflammatory response in blood mononuclear cells that might contribute to the atherosclerosis-preventive activities of a soy-rich diet.
Collapse
Affiliation(s)
- Dagmar Fuchs
- Department of Food and Nutrition, Molecular Nutrition Unit, Technical University of Munich, Freising, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Structure-activity Relationships of Neoechinulin A Analogues with Cytoprotection against Peroxynitrite-induced PC12 Cell Death. J Antibiot (Tokyo) 2007; 60:614-21. [DOI: 10.1038/ja.2007.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Pollak N, Niere M, Ziegler M. NAD kinase levels control the NADPH concentration in human cells. J Biol Chem 2007; 282:33562-33571. [PMID: 17855339 DOI: 10.1074/jbc.m704442200] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NAD kinases (NADKs) are vital, as they generate the cellular NADP pool. As opposed to three compartment-specific isoforms in plants and yeast, only a single NADK has been identified in mammals whose cytoplasmic localization we established by immunocytochemistry. To understand the physiological roles of the human enzyme, we generated and analyzed cell lines stably deficient in or overexpressing NADK. Short hairpin RNA-mediated down-regulation led to similar (about 70%) decrease of both NADK expression, activity, and the NADPH concentration and was accompanied by increased sensitivity toward H(2)O(2). Overexpression of NADK resulted in a 4-5-fold increase in the NADPH, but not NADP(+), concentration, although the recombinant enzyme phosphorylated preferentially NAD(+). Surprisingly, NADK overexpression and the ensuing increase of the NADPH level only moderately enhanced protection against oxidant treatment. Apparently, to maintain the NADPH level for the regeneration of oxidative defense systems human cells depend primarily on NADP-dependent dehydrogenases (which re-reduce NADP(+)), rather than on a net increase of NADP. The stable shifts of the NADPH level in the generated cell lines were also accompanied by alterations in the expression of peroxiredoxin 5 and Nrf2. Because the basal oxygen radical level in the cell lines was only slightly changed, the redox state of NADP may be a major transmitter of oxidative stress.
Collapse
Affiliation(s)
- Nadine Pollak
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Marc Niere
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Mathias Ziegler
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| |
Collapse
|
36
|
Singh R, Mailloux RJ, Puiseux-Dao S, Appanna VD. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J Bacteriol 2007; 189:6665-75. [PMID: 17573472 PMCID: PMC2045160 DOI: 10.1128/jb.00555-07] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The fate of all aerobic organisms is dependent on the varying intracellular concentrations of NADH and NADPH. The former is the primary ingredient that fuels ATP production via oxidative phosphorylation, while the latter helps maintain the reductive environment necessary for this process and other cellular activities. In this study we demonstrate a metabolic network promoting NADPH production and limiting NADH synthesis as a consequence of an oxidative insult. The activity and expression of glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-isocitrate dehydrogenase, the main generators of NADPH, were markedly increased during oxidative challenge. On the other hand, numerous tricarboxylic acid cycle enzymes that supply the bulk of intracellular NADH were significantly downregulated. These metabolic pathways were further modulated by NAD(+) kinase (NADK) and NADP(+) phosphatase (NADPase), enzymes known to regulate the levels of NAD(+) and NADP(+). While in menadione-challenged cells, the former enzyme was upregulated, the phosphatase activity was markedly increased in control cells. Thus, NADK and NADPase play a pivotal role in controlling the cross talk between metabolic networks that produce NADH and NADPH and are integral components of the mechanism involved in fending off oxidative stress.
Collapse
Affiliation(s)
- Ranji Singh
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | | | | | | |
Collapse
|
37
|
de Souza LF, Barreto F, da Silva EG, Andrades ME, Guimarães ELM, Behr GA, Moreira JCF, Bernard EA. Regulation of LPS stimulated ROS production in peritoneal macrophages from alloxan-induced diabetic rats: involvement of high glucose and PPARgamma. Life Sci 2007; 81:153-9. [PMID: 17532345 DOI: 10.1016/j.lfs.2007.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/15/2007] [Accepted: 04/27/2007] [Indexed: 01/21/2023]
Abstract
An increased occurrence of long term bacterial infections is common in diabetic patients. Bacterial cell wall components are described as the main antigenic agents from these microorganisms and high blood glucose levels are suggested to be involved in altered immune response. Hyperglycemia is reported to alter macrophages response to lipopolysaccharide (LPS) and peroxisome proliferators activated receptor gamma (PPARgamma) expression. Additionally, glucose is the main metabolic fuel for reduced nicotinamide adenine dinucleotide phosphate (NADPH) production by pentose phosphate shunt. In this work, lipopolysaccharide (LPS) stimulated reactive oxygen species (ROS) and nitrite production were evaluated in peritoneal macrophages from alloxan-induced diabetic rats. Cytosolic dehydrogenases and PPARgamma expression were also investigated. LPS was ineffective to stimulate ROS and nitrite production in peritoneal macrophages from diabetic rats, which presented increased glucose-6-phosphate dehydrogenase and malate dehydrogenase activity. In RAW 264.7 macrophages, acute high glucose treatment abolished LPS stimulated ROS production, with no effect on nitrite and dehydrogenase activities. Peritoneal macrophages from alloxan-treated rats presented reduced PPARgamma expression. Treating RAW 264.7 macrophages with a PPARgamma antagonist resulted in defective ROS production in response to LPS, however, stimulated nitrite production was unaltered. In conclusion, in the present study we have reported reduced nitric oxide and reactive oxygen species production in LPS-treated peritoneal macrophages from alloxan-induced diabetic rats. The reduced production of reactive oxygen species seems to be dependent on elevated glucose levels and reduced PPARgamma expression.
Collapse
|
38
|
Bernstein H, Holubec H, Bernstein C, Ignatenko NA, Gerner E, Dvorak K, Besselsen D, Blohm-Mangone KA, Padilla-Torres J, Dvorakova B, Garewal H, Payne CM. Deoxycholate-induced colitis is markedly attenuated in Nos2 knockout mice in association with modulation of gene expression profiles. Dig Dis Sci 2007; 52:628-42. [PMID: 17253130 DOI: 10.1007/s10620-006-9608-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 12/12/2022]
Abstract
Nos2 knockout mice were compared to wild-type mice for susceptibility to colitis in response to a diet supplemented with deoxycholate, a bile acid increased in the colon of individuals on a high-fat diet. Wild-type mice fed a fat-related diet, supplemented with 0.2% DOC, develop colonic inflammation associated with increases in nitrosative stress, proliferation, oxidative DNA/RNA damage, and angiogenesis, as well as altered expression of numerous genes. However, Nos2 knockout mice fed a diet supplemented with deoxycholate were resistant to these alterations. In particular, 35 genes were identified whose expression was significantly altered at the mRNA level in deoxycholate-fed Nos2(+/+) mice but not in deoxycholate-fed Nos2(-/-) mice. Some of these alterations in NOS2-dependent gene expression correspond to those reported in human inflammatory bowel disease. Overall, our results indicate that NOS2 expression is necessary for the development of deoxycholate-induced colitis in mice, a unique dietary-related model of colitis.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, Arizona 85724-5044, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Leterrier M, Del Río LA, Corpas FJ. Cytosolic NADP-isocitrate dehydrogenase of pea plants: genomic clone characterization and functional analysis under abiotic stress conditions. Free Radic Res 2007; 41:191-9. [PMID: 17364945 DOI: 10.1080/10715760601034055] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NADPH is an essential electron donor in numerous biosynthetic and detoxification reactions. In animal, yeast and bacteria, the NADP-dependent isocitrate dehydrogenase (NADP-ICDH), which catalyzes the production of NADPH, is being recognized as an essential component of the antioxidative defence mechanisms. In plant cells, there is little information on the antioxidant properties of NADP-ICDH. Using a pea cDNA lambdagt11 library, the full-length cDNA of a NADP-ICDH was obtained. In pea leaves, the analyses of activity, protein and transcript expression of NADP-ICDH under six different abiotic stress conditions (CL, continuous light, HLI, high light intensity, D, continuous dark, LT, low-temperature HT, high-temperature and W, mechanical wounding) revealed a differential regulation at transcriptional and post-translational level depending on the abiotic stress. The activity and protein expression of NADP-ICDH and catalase increased only under HLI but the NADP-ICDH transcripts were up-regulated by cold stress (70%) and W (40%). Under the same conditions, the transcript analysis of glutathione reductase (GR), monodehydroascorbate reductase (MDAR) and ascorbate peroxidase (APX), key components of the antioxidative ascorbate-glutathione cycle, showed similar inductions. These data indicate that in pea plants the cytosolic NADP-ICDH shows a differential response, at mRNA and activity level, depending on the type of abiotic stress and suggests that this dehydrogenase could have a protective antioxidant role against certain environmental stresses in plants.
Collapse
Affiliation(s)
- Marina Leterrier
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Instituto de Biología Vegetal y Medio Ambiente, Estación Experimental del Zaidín, CSIC, Apartado 419, Granada, E-18080, Spain
| | | | | |
Collapse
|
40
|
Bernstein H, Holubec H, Bernstein C, Ignatenko N, Gerner E, Dvorak K, Besselsen D, Ramsey L, Dall'Agnol M, Blohm-Mangone KA, Padilla-Torres J, Cui H, Garewal H, Payne CM. Unique dietary-related mouse model of colitis. Inflamm Bowel Dis 2006; 12:278-93. [PMID: 16633050 DOI: 10.1097/01.mib.0000209789.14114.63] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND A high-fat diet is a risk factor for the development of inflammatory bowel disease (IBD) in humans. Deoxycholate (DOC) is increased in the colonic contents in response to a high-fat diet. Thus, an elevated level of DOC in the colonic lumen may play a role in the natural course of development of IBD. METHODS Wild-type B6.129 mice were fed an AIN-93G diet, either supplemented with 0.2% DOC or unsupplemented and sacrificed at 1 week, 1 month, 3 months, 4 months, and 8 months. Colon samples were assessed by histopathological, immunohistochemical, and cDNA microarray analyses. RESULTS Mice fed the DOC-supplemented diet developed focal areas of colonic inflammation associated with increases in angiogenesis, nitrosative stress, DNA/RNA damage, and proliferation. Genes that play a central role in inflammation and angiogenesis and other related processes such as epithelial barrier function, oxidative stress, apoptosis, cell proliferation/cell cycle/DNA repair, membrane transport, and the ubiquitin-proteasome pathway showed altered expression in the DOC-fed mice compared with the control mice. Changes in expression of individual genes (increases or reductions) correlated over time. These changes were greatest 1 month after the start of DOC feeding. CONCLUSIONS The results suggest that exposure of the colonic mucosa to DOC may be a key etiologic factor in IBD. The DOC-fed mouse model may reflect the natural course of development of colitis/IBD in humans, and thus may be useful for determining new preventive strategies and lifestyle changes in affected individuals.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Cell Biology and Anatomy, College of Medicine, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Oh HM, Kang YJ, Lee YS, Park MK, Kim SH, Kim HJ, Seo HG, Lee JH, Chang KC. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW264.7 cells from hydrogen peroxide-induced injury. JOURNAL OF ETHNOPHARMACOLOGY 2006; 103:229-35. [PMID: 16185832 DOI: 10.1016/j.jep.2005.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 06/08/2005] [Accepted: 08/06/2005] [Indexed: 05/04/2023]
Abstract
It has been proposed that the inducible isoform of heme oxygenase (HO) protects cells against oxidant-mediated injury. Although components of Agastache rugosa showed antioxidant effect, it is unclear this effect is related with HO-1 activity. Thus, we investigated the effects of Agastache rugosa leaf extract (ALE) on HO-1 protein expression and enzyme activity, and its protective effect against H(2)O(2)-induced oxidative damage was also investigated using RAW264.7 macrophage cells. Results showed that ALE concentration dependently increased HO-1 protein and enzyme activity, and protected cells from H(2)O(2)-induced cytotoxicity, with an IC(50) of 0.526 mg/ml. Hemin, a HO-1 inducer, also showed similar effect to ALE. Furthermore, the protective effect of both ALE and hemin was inhibited by a HO inhibitor, zinc protoporphyrin IX. The expression of HO-1 protein by ALE was reduced by pretreatment with LY83583 and ODQ, specific inhibitors of guanylate cyclase, but not by PKA inhibitors, H89 and KT5720, indicating that PKG signaling pathway regulates HO-1 induction by ALE. Taken together, it is concluded that PKG-dependent HO-1 induction is one of the important antioxidant mechanisms by which ALE protects RAW264.7 cells from H(2)O(2). Thus, ALE along with other actions may be beneficial for the treatment of oxidant-induced cellular injuries.
Collapse
Affiliation(s)
- Hwa Min Oh
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, 92 Chilam-dong, Jinju 660-751, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bériault R, Chénier D, Singh R, Middaugh J, Mailloux R, Appanna V. Detection and purification of glucose 6-phosphate dehydrogenase, malic enzyme, and NADP-dependent isocitrate dehydrogenase by blue native polyacrylamide gel electrophoresis. Electrophoresis 2005; 26:2892-7. [PMID: 16078188 DOI: 10.1002/elps.200500040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We describe a blue native polyacrylamide gel electrophoretic technique that allows the facile detection, quantitation and purification of three NADPH-producing enzymes. Glucose 6-phosphate dehydrogenase, malic enzyme and NADP-dependent isocitrate dehydrogenase were detected simultaneously. Activity staining based on the formation of NADPH from the respective substrates and the subsequent precipitation of formazan enabled the relative quantitation of enzymatic activities, while Coomassie staining on one-dimensional or two-dimensional gels helped monitor the amount of protein associated with these enzymatic activities. This technique provides a simple and effective route to obtain homogeneous protein for further analyses and also enables the screening of these NADPH-producing enzymes in various cellular systems.
Collapse
Affiliation(s)
- Robin Bériault
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Singh R, Beriault R, Middaugh J, Hamel R, Chenier D, Appanna VD, Kalyuzhnyi S. Aluminum-tolerant Pseudomonas fluorescens: ROS toxicity and enhanced NADPH production. Extremophiles 2005; 9:367-73. [PMID: 15970995 DOI: 10.1007/s00792-005-0450-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 04/07/2005] [Indexed: 11/27/2022]
Abstract
Aluminum (Al) triggered a marked increase in reactive oxygen species (ROS) such as O(2) (-) and H(2)O(2) in Pseudomonas fluorescens. Although the Al-stressed cells were characterized with higher amounts of oxidized lipids and proteins than controls, NADPH production was markedly increased in these cells. Blue native polyacrylamide gel electrophoresis (BN-PAGE) analyses coupled with activity and Coomassie staining revealed that NADP(+) -dependent isocitrate dehydrogenase (ICDH, E.C. 1.1.1.42) and glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) played a pivotal role in diminishing the oxidative environment promoted by Al. These enzymes were overexpressed in the Al-tolerant microbes and were modulated by the presence of either Al or hydrogen peroxide (H(2)O(2)) or menadione. The activity of superoxide dismutase (SOD, E.C. 1.15.1.1), an enzyme known to combat ROS stress was also increased in the cells cultured in millimolar amounts of Al. Hence, Al-tolerant P. fluorescens invokes an anti-oxidative defense strategy in order to survive.
Collapse
Affiliation(s)
- Ranji Singh
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E2C6, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Peroxides are generated continuously in cells that consume oxygen. Among the different peroxides, hydrogen peroxide is the molecule that is formed in highest quantities. In addition, organic hydroperoxides are synthesized as products of cellular metabolism. Generation and disposal of peroxides is a very important process in the human brain, because cells of this organ consume 20% of the oxygen used by the body. To prevent cellular accumulation of peroxides and damage generated by peroxide-derived radicals, brain cells contain efficient antioxidative defense mechanisms that dispose of peroxides and protect against oxidative damage. Cultured brain cells have been used frequently to investigate peroxide metabolism of neural cells. Efficient disposal of exogenous hydrogen peroxide was found for cultured astrocytes, oligodendrocytes, microglial cells, and neurons. Comparison of specific peroxide clearance rates revealed that cultured oligodendrocytes dispose of the peroxide quicker than the other neural cell cultures. Both catalase and the glutathione system contribute to the clearance of hydrogen peroxide by brain cells. For efficient glutathione-dependent reduction of peroxides, neural cells contain glutathione in high concentration and have substantial activity of glutathione peroxidase, glutathione reductase, and enzymes that supply the NADPH required for the glutathione reductase reaction. This article gives an overview on the mechanisms involved in peroxide detoxification in brain cells and on the capacity of the different types of neural cells to dispose of peroxides.
Collapse
Affiliation(s)
- Ralf Dringen
- Interfakultäres Institut für Biochemie der Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
45
|
Abstract
The cellular stress response is a universal mechanism of extraordinary physiological/pathophysiological significance. It represents a defense reaction of cells to damage that environmental forces inflict on macromolecules. Many aspects of the cellular stress response are not stressor specific because cells monitor stress based on macromolecular damage without regard to the type of stress that causes such damage. Cellular mechanisms activated by DNA damage and protein damage are interconnected and share common elements. Other cellular responses directed at re-establishing homeostasis are stressor specific and often activated in parallel to the cellular stress response. All organisms have stress proteins, and universally conserved stress proteins can be regarded as the minimal stress proteome. Functional analysis of the minimal stress proteome yields information about key aspects of the cellular stress response, including physiological mechanisms of sensing membrane lipid, protein, and DNA damage; redox sensing and regulation; cell cycle control; macromolecular stabilization/repair; and control of energy metabolism. In addition, cells can quantify stress and activate a death program (apoptosis) when tolerance limits are exceeded.
Collapse
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|