1
|
Han J. Copper trafficking systems in cells: insights into coordination chemistry and toxicity. Dalton Trans 2023; 52:15277-15296. [PMID: 37702384 DOI: 10.1039/d3dt02166a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal ions, such as copper, are indispensable components in the biological system. Copper ions which primarily exist in two major oxidation states Cu(I) and Cu(II) play crucial roles in various cellular processes including antioxidant defense, biosynthesis of neurotransmitters, and energy metabolism, owing to their inherent redox activity. The disturbance in copper homeostasis can contribute to the development of copper metabolism disorders, cancer, and neurodegenerative diseases, highlighting the significance of understanding the copper trafficking system in cellular environments. This review aims to offer a comprehensive overview of copper homeostatic machinery, with an emphasis on the coordination chemistry of copper transporters and trafficking proteins. While copper chaperones and the corresponding metalloenzymes are thoroughly discussed, we also explore the potential existence of low-molecular-mass metal complexes within cellular systems. Furthermore, we summarize the toxicity mechanisms originating from copper deficiency or accumulation, which include the dysregulation of oxidative stress, signaling pathways, signal transduction, and amyloidosis. This perspective review delves into the current knowledge regarding the intricate aspects of the copper trafficking system, providing valuable insights into potential treatment strategies from the standpoint of bioinorganic chemistry.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
2
|
Wen MH, Xie X, Huang PS, Yang K, Chen TY. Crossroads between membrane trafficking machinery and copper homeostasis in the nerve system. Open Biol 2021; 11:210128. [PMID: 34847776 PMCID: PMC8633785 DOI: 10.1098/rsob.210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Imbalanced copper homeostasis and perturbation of membrane trafficking are two common symptoms that have been associated with the pathogenesis of neurodegenerative and neurodevelopmental diseases. Accumulating evidence from biophysical, cellular and in vivo studies suggest that membrane trafficking orchestrates both copper homeostasis and neural functions-however, a systematic review of how copper homeostasis and membrane trafficking interplays in neurons remains lacking. Here, we summarize current knowledge of the general trafficking itineraries for copper transporters and highlight several critical membrane trafficking regulators in maintaining copper homeostasis. We discuss how membrane trafficking regulators may alter copper transporter distribution in different membrane compartments to regulate intracellular copper homeostasis. Using Parkinson's disease and MEDNIK as examples, we further elaborate how misregulated trafficking regulators may interplay parallelly or synergistically with copper dyshomeostasis in devastating pathogenesis in neurodegenerative diseases. Finally, we explore multiple unsolved questions and highlight the existing challenges to understand how copper homeostasis is modulated through membrane trafficking.
Collapse
Affiliation(s)
- Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Xihong Xie
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Karen Yang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Suzuki Y, Ogra Y, Machida N, Watanabe I. Changes in copper, zinc and cadmium distributions in the liver of Formosan squirrels with characteristic high copper accumulation. Metallomics 2020; 11:1753-1758. [PMID: 31528898 DOI: 10.1039/c9mt00204a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discovered previously that Formosan squirrels (Callosciurus erythraeus) accumulate copper (Cu) in their livers at levels averaging 1700 μg per dry g (approximately 420 μg per wet g). In the current study, we investigated the relationship between Cu accumulation and hepatic injury, and we determined the distribution and chemical form of Cu in the liver supernatant. In particular, we explored the role of metallothionein in the liver supernatant. We observed no significant differences in hepatic Cu concentration between squirrels that showed pathological changes in the liver and those that did not. Serum alanine aminotransferase activity did not increase with increasing hepatic Cu concentration. These results suggest that abnormal Cu accumulation in the livers of Formosan squirrels does not induce severe hepatic injury. We found that 26.7% of the Cu in the liver was distributed to the supernatant, and only 11.0% of the Cu in the liver was bound to metallothionein, suggesting that metallothionein in the hepatic supernatant does not contribute to detoxification of excess Cu in Formosan squirrels.
Collapse
Affiliation(s)
- Yoshinari Suzuki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | | | | | | |
Collapse
|
4
|
Boyd SD, Ullrich MS, Skopp A, Winkler DD. Copper Sources for Sod1 Activation. Antioxidants (Basel) 2020; 9:antiox9060500. [PMID: 32517371 PMCID: PMC7346115 DOI: 10.3390/antiox9060500] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Copper ions (i.e., copper) are a critical part of several cellular processes, but tight regulation of copper levels and trafficking are required to keep the cell protected from this highly reactive transition metal. Cu, Zn superoxide dismutase (Sod1) protects the cell from the accumulation of radical oxygen species by way of the redox cycling activity of copper in its catalytic center. Multiple posttranslational modification events, including copper incorporation, are reliant on the copper chaperone for Sod1 (Ccs). The high-affinity copper uptake protein (Ctr1) is the main entry point of copper into eukaryotic cells and can directly supply copper to Ccs along with other known intracellular chaperones and trafficking molecules. This review explores the routes of copper delivery that are utilized to activate Sod1 and the usefulness and necessity of each.
Collapse
|
5
|
You F, Tang W, Yung LYL. Real-time monitoring of the Trojan-horse effect of silver nanoparticles by using a genetically encoded fluorescent cell sensor. NANOSCALE 2018; 10:7726-7735. [PMID: 29658041 DOI: 10.1039/c7nr05975b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Silver nanoparticles (AgNPs) are widely incorporated into commercial products due to their antimicrobial properties. As a consequence, concerns about the adverse effects induced by AgNPs to humans and the environment need to be carefully examined. The existing literature reveals that AgNPs exhibit certain toxic effects, but it remains to be proved whether AgNPs or the ionic silver (Ag+) released from AgNPs are the main toxic species. Here, a genetically encoded fluorescent protein sensor with high affinity to Ag+ was developed. The resulting sensor, MT2a-FRET, was found to be ratiometric, sensitive and selective toward only Ag+ but inert against AgNPs. This makes this sensor a potential useful tool for monitoring the real-time intracellular dissolutions of AgNPs. Our data supported that AgNPs display the "Trojan-horse" mechanism, where AgNPs are internalized by cells and undergo dissolution intracellularly. We further found that cells exhibited a detoxification ability to remove active Ag+ from cells in 48 hours.
Collapse
Affiliation(s)
- Fang You
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| | | | | |
Collapse
|
6
|
Scheller JS, Irvine GW, Wong DL, Hartwig A, Stillman MJ. Stepwise copper(i) binding to metallothionein: a mixed cooperative and non-cooperative mechanism for all 20 copper ions. Metallomics 2017; 9:447-462. [DOI: 10.1039/c7mt00041c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Fan W, Peng R, Li X, Ren J, Liu T, Wang X. Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: Role of organic matter. WATER RESEARCH 2016; 105:129-137. [PMID: 27611640 DOI: 10.1016/j.watres.2016.08.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/16/2016] [Accepted: 08/28/2016] [Indexed: 05/29/2023]
Abstract
Inevitably released into natural water, titanium dioxide nanoparticles (nano-TiO2) may affect the toxicity of other contaminants. Ubiquitous organic matter (OM) may influence their combined toxicity, which has been rarely reported. This study investigated the effect of nano-TiO2 on Cu toxicity to Daphnia magna and the role of OM (dissolved or particle surface bound) in inducing combined effects. The effect of nano-TiO2 on heavy metal accumulation depended on the adsorption capacity for heavy metals of nano-TiO2 and the uptake of nano-TiO2-metal complexes by organisms. Nano-TiO2 significantly decreased Cu accumulation in D. magna, but the reducing effect of nano-TiO2 was eliminated in the presence of humic acid (HA, a model OM). In the Cu and HA solution, nano-TiO2 slightly affected the bioavailability of Cu2+ and Cu-HA complexes and thus slightly influenced Cu toxicity. The nanoparticle surface-bound HA reduced the effect of nano-TiO2 on the speciation of the accumulated Cu; therefore, the combined effects of nano-TiO2 and Cu on biomarkers similarly weakened. HA-altered Cu speciation may be the main factor responsible for the influence of HA on the combined effects of nano-TiO2 and Cu. This study provides insights into the combined effects of nano-TiO2 and heavy metals in natural water.
Collapse
Affiliation(s)
- Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China.
| | - Ruishuang Peng
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Jinqian Ren
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Tong Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Xiangrui Wang
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| |
Collapse
|
8
|
Jenny MJ, Payton SL, Baltzegar DA, Lozier JD. Phylogenetic Analysis of Molluscan Metallothioneins: Evolutionary Insight from Crassostrea virginica. J Mol Evol 2016; 83:110-125. [DOI: 10.1007/s00239-016-9758-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
|
9
|
Irvine GW, Duncan KER, Gullons M, Stillman MJ. Metalation Kinetics of the Human α-Metallothionein 1a Fragment Is Dependent on the Fluxional Structure of the apo-Protein. Chemistry 2014; 21:1269-79. [DOI: 10.1002/chem.201404283] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 01/06/2023]
|
10
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
11
|
Sutherland DEK, Stillman MJ. Challenging conventional wisdom: single domain metallothioneins. Metallomics 2014; 6:702-28. [DOI: 10.1039/c3mt00216k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metallation studies of human metallothioneins support the role of single metal-binding-domains as commonplace with the typical two-domain-cluster structure as exceptional.
Collapse
|
12
|
Tokuda E, Okawa E, Watanabe S, Ono SI. Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1. Hum Mol Genet 2013; 23:1271-85. [PMID: 24163136 DOI: 10.1093/hmg/ddt517] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over 170 mutations in superoxide dismutase-1 (SOD1) cause familial amyotrophic lateral sclerosis (ALS), a lethal motor neuron disease. Although the molecular properties of SOD1 mutants differ considerably, we have recently shown that intracellular copper dyshomeostasis is a common pathogenic feature of different SOD1 mutants. Thus, the potentiation of endogenous copper regulation could be a therapeutic strategy. In this study, we investigated the effects of the overexpression of metallothionein-I (MT-I), a major copper-regulating protein, on the disease course of a mouse model of ALS (SOD1(G93A)). Using double transgenic techniques, we found that the overexpression of MT-I in SOD1(G93A) mice significantly extended the lifespan and slowed disease progression, but the effects on disease onset were modest. Genetically induced MT-I normalized copper dyshomeostasis in the spinal cord without influencing SOD1 enzymatic activity. The overexpression of MT-I in SOD1(G93A) mice markedly attenuated the pathological features of the mice, including the death of motor neurons, the degeneration of ventral root axons, the atrophy of skeletal muscles, and the activation of glial cells. Double transgenic mice also showed a decreased level of SOD1 aggregates within the glial cells of the spinal cord. Furthermore, the overexpression of MT-I in SOD1(G93A) mice reduced the number of spheroid-shaped astrocytes cleaved by active caspase-3. We concluded that therapeutic strategies aimed at the potentiation of copper regulation by MT-I could be of benefit in cases of ALS caused by SOD1 mutations.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | | | | | | |
Collapse
|
13
|
Summers KL, Sutherland DEK, Stillman MJ. Single-domain metallothioneins: evidence of the onset of clustered metal binding domains in Zn-rhMT 1a. Biochemistry 2013; 52:2461-71. [PMID: 23506369 DOI: 10.1021/bi400021b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian metallothioneins bind up to seven Zn(2+) ions in two distinct domains: an N-terminal β-domain that binds three Zn(2+) ions and a C-terminal α-domain that binds four Zn(2+) ions. Domain specificity has been invoked in the metalation mechanism with cluster formation and bridging of the 20 Cys residues taking place prior to saturation with seven Zn(2+) ions. We report a novel experiment that examines Zn(2+) metalation by exploiting the expected decrease in K(F) at the onset of clustering using electrospray ionization mass spectrometry (ESI-MS). During the titration with Zn(2+), the ESI-MS data show that several metalated species coexist until the fully saturated proteins are formed. The relative Zn binding affinities of the seven total sites in the α- and β-fragments were determined through direct competition for added Zn(2+). The K(F) values for each Zn(2+) are expected to decrease as a function of the remaining available sites and the onset of clustering. Analysis shows that Zn(2+) binds to β-rhMT with a greater affinity than α-rhMT. The incremental distribution of Zn(2+) between the competing fragments and apo-βα-rhMT (essentially three and four sites competing with seven sites) identifies the exact point at which clustering begins in the full protein. Analysis of the speciation data shows that Zn(5)-MT forms before clustering begins. This means that all 20 Cys residues of apo-βα-rhMT are bound terminally to Zn(2+) as [Zn(Cys)(4)](2-) units before clustering begins; there is no domain preference in this first metalation stage. Preferential binding of Zn(2+) to β- and α-rhMT at the point where βα-rhMT must form clusters is caused by a significant decrease in the affinity of βα-rhMT for further Zn(2+). The single-domain Zn(5)-rhMT, in which there are no exposed cysteine sulfurs, is a key component of the metalation pathway because the lower affinities of the two clustered Zn(2+) ions allow donation to apoenzymes.
Collapse
Affiliation(s)
- Kelly L Summers
- Department of Chemistry, The University of Western Ontario, London, Canada N6A 5B7
| | | | | |
Collapse
|
14
|
Sutherland DEK, Summers KL, Stillman MJ. Noncooperative Metalation of Metallothionein 1a and Its Isolated Domains with Zinc. Biochemistry 2012; 51:6690-700. [DOI: 10.1021/bi3004523] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Kelly L. Summers
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Martin J. Stillman
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
15
|
Sutherland DEK, Willans MJ, Stillman MJ. Single Domain Metallothioneins: Supermetalation of Human MT 1a. J Am Chem Soc 2012; 134:3290-9. [DOI: 10.1021/ja211767m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Mathew J. Willans
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Martin J. Stillman
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
16
|
Abstract
Metallothioneins (MT) are a family of small cysteine rich proteins, which since their discovery in 1957, have been implicated in a range of roles including toxic metal detoxification, protection against oxidative stress, and as a metallochaperone involved in the homeostasis of both zinc and copper. The most well studied member of the family is the mammalian metallothionein, which consists of two domains: a β-domain with 9 cysteine residues, which sequesters 3 Cd(2+) or Zn(2+) or 6 Cu(+) ions, and an α-domain with 11 cysteine residues and, which sequesters 4 Cd(2+) or Zn(2+) or 6 Cu(+) ions. Despite over half a century of research, the exact functions of MT are still unknown. Much of current research aims to elucidate the mechanism of metal binding, as well as to isolate intermediates in metal exchange reactions; reactions necessary to maintain homeostatic equilibrium. These studies further our understanding of the role(s) of this remarkable and ubiquitous protein. Recently, supermetallated forms of the protein, where supermetallation describes metallation in excess of traditional levels, have been reported. These species may potentially be the metal exchange intermediates necessary to maintain homeostatic equilibrium. This review focuses on recent advances in the understanding of the mechanistic properties of metal binding, the implications for the metal induced protein folding reactions proposed for metallothionein metallation, the value of "magic numbers", which we informally define as the commonly determined metal-to-protein stoichiometric ratios and the significance of the new supermetallated states of the protein and the possible interpretation of the structural properties of this new metallation status. Together we provide a commentary on current experimental and theoretical advances and frame our consideration in terms of the possible functions of MT.
Collapse
|
17
|
Miyayama T, Ishizuka Y, Iijima T, Hiraoka D, Ogra Y. Roles of copper chaperone for superoxide dismutase 1 and metallothionein in copper homeostasis. Metallomics 2011; 3:693-701. [DOI: 10.1039/c1mt00016k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Mounicou S, Ouerdane L, L'Azou B, Passagne I, Ohayon-Courtès C, Szpunar J, Lobinski R. Identification of metallothionein subisoforms in HPLC using accurate mass and online sequencing by electrospray hybrid linear ion trap-orbital ion trap mass spectrometry. Anal Chem 2010; 82:6947-57. [PMID: 20669907 DOI: 10.1021/ac101245h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A comprehensive approach to the characterization of metallothionein (MT) isoforms based on microbore HPLC with multimodal detection was developed. MTs were separated as Cd(7) complexes, detected by ICP MS and tentatively identified by molecular mass measured with 1-2 ppm accuracy using Orbital ion trap mass spectrometry. The identification was validated by accurate mass of the corresponding apo-MTs after postcolumn acidification and by their sequences acquired online by higher-energy collision dissociation MS/MS. The detection limits down to 10 fmol and 45 fmol could be obtained by ESI MS for apo- and Cd(7)-isoforms, respectively, and were lower than those obtained by ICP MS (100 fmol). The individual MT isoforms could be sequenced at levels as low as 200 fmol with the sequence coverage exceeding 90%. The approach was successfully applied to the identification of MT isoforms induced in a pig kidney cell line (LLC-PK(1)) exposed to CdS nanoparticles.
Collapse
Affiliation(s)
- Sandra Mounicou
- CNRS/UPPA, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, UMR 5254, 2, av. Pr. Angot, 64053 Pau, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Ren F, Jiang H, Sun J, He L, Li W, Wang Y, Wang Q. Cloning, characterization, expression, and copper sensitivity of the metallothionein-1 gene in the Chinese mitten crab, Eriocheir sinensis. Mol Biol Rep 2010; 38:2383-93. [PMID: 21082264 DOI: 10.1007/s11033-010-0372-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 11/04/2010] [Indexed: 11/28/2022]
Abstract
A full-length metallothionein-1(MT-1) cDNA was cloned from the Chinese mitten crab, Eriocheir sinensis, based upon the hepatopancreas cDNA library. The full-length cDNA contained a single 180 bp open reading frame that encoded a 59 amino acid protein. The deduced amino acid sequence was cysteine (Cys)-rich, with residues observed in patterns characteristic of other reported MTs: Cys-X-Cys, Cys-X-X-Cys, or Cys-X-X-X-Cys. Gene structure obtained via PCR yielded a 3816 bp gene, which was comprised of three exons and two introns arranged in a "3 + 2" pattern. The cloned 5'flanking region (1,735 bp) contained several predicted binding sites, which included MREs, AP-1, SP1, USF, GATA, HNF-1, and HSF. MT-1 mRNA expression analysis revealed that while levels were highest in the hepatopancreas, expression was abundant in testis and thoracic ganglia, moderate in intestine (P<0.05), and weak in other tissues (P<0.05). MT-1 mRNA expression exhibited reproductive variation in the male, with levels approximately tenfold greater in August, during seasonal gonadal maturation, compared to other times of the year. Cu2+ exposure via tank water (0-1 mg/l for 7 days) resulted in a dose-dependent bell curve response in MT-1 mRNA expression, with peak expression observed after exposure to 0.1 mg/l Cu2+. A time course experiment (0.1 mg/l Cu2+ over 9 days) revealed MT-1 mRNA expression peaked sharply on day 5 before gradually decreasing with prolonged exposure. In the present report, we provide sequence analysis of the first MT-1 gene cloned in E. sinensis, and evidence that its physiological and toxicological regulation is evolutionary conserved.
Collapse
Affiliation(s)
- Fei Ren
- School of Life Science, East China Normal University, Shanghai, 200062, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Ngu TT, Lee JA, Rushton MK, Stillman MJ. Arsenic metalation of seaweed Fucus vesiculosus metallothionein: the importance of the interdomain linker in metallothionein. Biochemistry 2009; 48:8806-16. [PMID: 19655782 DOI: 10.1021/bi9007462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The presence of metallothionein in seaweed Fucus vesiculosus has been suggested as the protecting agent against toxic metals in the contaminated waters it can grow in. We report the first kinetic pathway data for A3+ binding to an algal metallothionein, F. vesiculosus metallothionein (rfMT). The time and temperature dependence of the relative concentrations of apo-rfMT and the five As-containing species have been determined following mixing of As3+ and apo-rfMT using electrospray ionization mass spectrometry (ESI MS). Kinetic analysis of the detailed time-resolved mass spectral data for As3+ metalation allows the simulation of the metalation reactions showing the consumption of apo-rfMT, the formation and consumption of As1- to As4-rfMT, and subsequent, final formation of As5-rfMT. The kinetic model proposed here provides a stepwise analysis of the metalation reaction showing time-resolved occupancy of the Cys7 and the Cys9 domain. The rate constants (M(-1) s(-1)) calculated from the fits for the 7-cysteine gamma domain are k1gamma, 19.8, and k2gamma, 1.4, and for the 9-cysteine beta domain are k1beta, 16.3, k2beta, 9.1, and k3beta, 2.2. The activation energies and Arrhenius factors for each of the reaction steps are also reported. rfMT has a long 14 residue linker, which as we show from analysis of the ESI MS data, allows each of its two domains to bind As3+ independently of each other. The analysis provides for the first time an explanation of the differing metal-binding properties of two-domain MTs with linkers of varying lengths, suggesting further comparison between plant (with long linkers) and mammalian (with short linkers) metallothioneins will shed light on the role of the interdomain linker.
Collapse
Affiliation(s)
- Thanh T Ngu
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | |
Collapse
|
21
|
Miyayama T, Suzuki KT, Ogra Y. Copper accumulation and compartmentalization in mouse fibroblast lacking metallothionein and copper chaperone, Atox1. Toxicol Appl Pharmacol 2009; 237:205-13. [PMID: 19362104 DOI: 10.1016/j.taap.2009.03.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/18/2009] [Accepted: 03/29/2009] [Indexed: 10/20/2022]
Abstract
Copper (Cu) is the active center of some enzymes because of its redox-active property, although that property could have harmful effects. Because of this, cells have strict regulation/detoxification systems for this metal. In this study, multi-disciplinary approaches, such as speciation and elemental imaging of Cu, were applied to reveal the detoxification mechanisms for Cu in cells bearing a defect in Cu-regulating genes. Although Cu concentration in metallothionein (MT)-knockout cells was increased by the knockdown of the Cu chaperone, Atox1, the concentrations of the Cu influx pump, Ctr1, and another Cu chaperone, Ccs, were paradoxically increased; namely, the cells responded to the Cu deficiency despite the fact that cellular Cu concentration was actually increased. Cu imaging showed that the elevated Cu was compartmentalized in cytoplasmic vesicles. Together, the results point to the novel roles of MT and cytoplasmic vesicles in the detoxification of Cu in mammalian cells.
Collapse
Affiliation(s)
- Takamitsu Miyayama
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan
| | | | | |
Collapse
|
22
|
|
23
|
Ngu TT, Easton A, Stillman MJ. Kinetic analysis of arsenic-metalation of human metallothionein: significance of the two-domain structure. J Am Chem Soc 2009; 130:17016-28. [PMID: 19053406 DOI: 10.1021/ja8060326] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metallothionein (MT) is ubiquitous in Nature, underlying MT's importance in the cellular chemistry of metals. Mammalian MT consists of two metal-binding domains while microorganisms like cyanobacteria consist of a single metal-binding domain MT. The evolution of a two-domain protein has been speculated on for some time; however, no conclusive evidence explaining the evolutionary necessity of the two-domain structure has been reported. The results presented in this report provide the complete kinetic analysis and subsequent mechanism of the As(3+)-metalation of the two-domain beta alpha hMT and the isolated single domain fragments using time- and temperature-resolved electrospray ionization mass spectrometry. The mechanism for beta alpha hMT binding As(3+) is noncooperative and involves six sequential bimolecular reactions in which the alpha domain binds As(3+) first followed by the beta domain. At room temperature (295 K) and pH 3.5, the sequential individual rate constants, k(n) (n = 1-6) for the As(3+)-metalation of beta alpha hMT starting at k(1beta alpha) are 25, 24, 19, 14, 8.7, and 3.7 M(-1)s(-1). The six rate constants follow an almost linear trend directly dependent on the number of unoccupied sites for the incoming metal. Analysis of the temperature-dependent kinetic electrospray ionization mass spectra data allowed determination of the activation energy for the formation of As(1)-H(17)-beta alpha hMT (14 kJ mol(-1)) and As(2-6)-beta alpha hMT (22 kJ mol(-1)). On the basis of the increased rate of metalation for the two-domain protein when compared with the isolated single-domain, we propose that there is an evolutionary advantage for the two-domain MT structures in higher organism, which allows MT to bind metals faster and, therefore, be a more efficient metal scavenger.
Collapse
Affiliation(s)
- Thanh T Ngu
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | | | | |
Collapse
|
24
|
Abstract
The number of reported cases of chronic arsenic poisoning is on the rise throughout the world, making the study of the long-term effects of arsenic critical. As(3+) binds readily to biological thiols, including mammalian metallothionein (MT), which is an ubiquitous sulfur-rich metalloprotein known to coordinate a wide range of metals. The two-domain mammalian protein binds divalent metals (M) into two metal-thiolate clusters with stoichiometries of M(3)S(cys9) (beta) and M(4)S(cys11) (alpha). We report that As(3+) binds with stoichiometries of As(3)S(cys9) (beta) and As(3)S(cys11) (alpha) to the recombinant human metallothionein (rhMT) isoform 1a protein. Further, we report the complete kinetic analysis of the saturation reactions of the separate alpha and beta domains of rhMT with As(3+). Speciation in the metalation reactions was determined using time- and temperature-resolved electrospray ionization mass spectrometry. The binding reaction of As(3+) to the alpha and beta MT domains is shown to be noncooperative and involves three sequential, bimolecular metalation steps. The analyses allow for the first time the complete simulation of the experimental data for the stepwise metalation reaction of MT showing the relative concentrations of the metal-free, apo MT and each of the As-MT intermediate species as a function of time and temperature. At room temperature (298 K) and pH 3.5, the individual rate constants for the first, second, and third As(3+) binding to apo-alphaMT are 5.5, 6.3, and 3.9 M(-)(1) s(-)(1) and for apo-betaMT the constants are 3.6, 2.0, and 0.6 M(-)(1) s(-)(1). The activation energy for formation of As(1)-H(6)-betaMT is 32 kJ mol(-)(1), for As(2)-H(3)-betaMT it is 35 kJ mol(-)(1), for As(3)-betaMT it is 29 kJ mol(-)(1), for As(1)-H(8)-alphaMT it is 33 kJ mol(-)(1), for As(2)-H(5)-alphaMT it is 29 kJ mol(-)(1), and for As(3)-H(2)-alphaMT it is 23 kJ mol(-)(1).
Collapse
Affiliation(s)
- Thanh T Ngu
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | |
Collapse
|
25
|
Vergani L, Grattarola M, Grasselli E, Dondero F, Viarengo A. Molecular characterization and function analysis of MT-10 and MT-20 metallothionein isoforms from Mytilus galloprovincialis. Arch Biochem Biophys 2007; 465:247-53. [PMID: 17601485 DOI: 10.1016/j.abb.2007.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/15/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
Structure and function of molluscan metallothioneins (MTs) are still poorly understood. The sea mussel Mytilus galloprovincialis displays two MT isoforms which differ in both primary sequences and physiological functions. MT-10 is the constitutive isoform, whereas MT-20 is mainly induced by cadmium (Cd). Both MTs were produced as recombinant proteins and showed identical Cd content and similar Cd-binding properties. Conversely, circular dichroism disclosed marked differences in the secondary conformations of the two Cd(7)-MTs. The possible relapses of these structural differences on protein stability and function were assessed. MT-10 presented a higher thermal stability and a more compact structure than MT-20, as it was inferred by absorption and emission spectroscopy studies. Moreover, the kinetics of Cd-release clearly indicated that MT-10 is much more sensitive to oxidation than is MT-20. The observed differences between MT-10 and MT-20 are discussed in terms of the different physiological roles exerted by the two isoforms in mussel.
Collapse
Affiliation(s)
- Laura Vergani
- Department of Biology, University of Genova, Genova, Corso Europa 26, 16132 Genova, Italy.
| | | | | | | | | |
Collapse
|
26
|
Dolderer B, Echner H, Beck A, Hartmann HJ, Weser U, Luchinat C, Del Bianco C. Coordination of three and four Cu(I) to the alpha- and beta-domain of vertebrate Zn-metallothionein-1, respectively, induces significant structural changes. FEBS J 2007; 274:2349-62. [PMID: 17403038 DOI: 10.1111/j.1742-4658.2007.05770.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vertebrate metallothioneins are found to contain Zn(II) and variable amounts of Cu(I), in vivo, and are believed to be important for d10-metal control. To date, structural information is available for the Zn(II) and Cd(II) forms, but not for the Cu(I) or mixed metal forms. Cu(I) binding to metallothionein-1 has been investigated by circular dichroism, luminescence and 1H NMR using two synthetic fragments representing the alpha- and the beta-domain. The 1H NMR data and thus the structures of Zn4alpha metallothionein (MT)-1 and Zn3betaMT-1 were essentially the same as those already published for the corresponding domains of native Cd7MT-1. Cu(I) titration of the Zn(II)-reconstituted domains provided clear evidence of stable polypeptide folds of the three Cu(I)-containing alpha- and the four Cu(I)-containing beta-domains. The solution structures of these two species are grossly different from the structures of the starting Zn(II) complexes. Further addition of Cu(I) to the two single domains led to the loss of defined domain structures. Upon mixing of the separately prepared aqueous three and four Cu(I) loaded alpha- and beta-domains, no interaction was seen between the two species. There was neither any indication for a net transfer of Cu(I) between the two domains nor for the formation of one large single Cu(I) cluster involving both domains.
Collapse
Affiliation(s)
- Benedikt Dolderer
- Interfakultäres Institut für Biochemie, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Salgado MT, Bacher KL, Stillman MJ. Probing structural changes in the α and β domains of copper- and silver-substituted metallothionein by emission spectroscopy and electrospray ionization mass spectrometry. J Biol Inorg Chem 2006; 12:294-312. [PMID: 17086417 DOI: 10.1007/s00775-006-0187-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 10/06/2006] [Indexed: 10/24/2022]
Abstract
Steady-state emission spectra, excited-state lifetimes, kinetic data, and mass spectroscopic properties are reported for Ag(I)- and mixed Ag(I)/Cu(I)-substituted alpha and beta domains of recombinant human metallothionein (MT1a). Kinetic analysis of the changes in the Cu(I) emission spectra during the stepwise displacement of Cu(I) ions by Ag(I) at room temperature shows that the rate of displacement of Cu(I) is unexpectedly slow. Although the first Ag(I) added results in major changes in the Cu(I)-MT binding site, Cu(I) displacement by Ag(I) does not take place until the addition of the third Ag(I), and is completed by the addition of the seventh Ag(I). The emission from Ag(I) and mixed Cu(I)/Ag(I)-MT species at 77 K shows that the band maxima shift as a function of Ag(I) loading, which can be correlated with shifts in coordination geometry from trigonal to digonal. Two phosphorescence lifetimes were detected for the Ag(I)-substituted alpha and beta domains of MT, which are attributed to the presence of Ag(I) ions in two different environments. The lifetime of Ag(I)-substituted MT was found to be shorter when the Ag(I)-MT species were formed by Ag(I) additions to the Cu(I)-substituted alpha and beta fragments than when the Ag(I)-MT species were formed from the apo-alpha and apo-beta fragments, suggesting the formation of structurally different Ag(I)-MT clusters. Electrospray ionization mass spectrometric studies suggest the metallation reactions of Ag(I) with MT take place in a series of steps to form a series of Ag(I)-substituted MT species. Ag(I)-substituted MT species are not detected until past the addition of 3 mol equiv of Ag(I), suggesting that cluster formation begins only at this point, stabilizing the metallated species sufficiently to survive ionization.
Collapse
Affiliation(s)
- Maria T Salgado
- Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | | | | |
Collapse
|
28
|
Duncan KER, Ngu TT, Chan J, Salgado MT, Merrifield ME, Stillman MJ. Peptide folding, metal-binding mechanisms, and binding site structures in metallothioneins. Exp Biol Med (Maywood) 2006; 231:1488-99. [PMID: 17018871 DOI: 10.1177/153537020623100907] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This minireview specifically focuses on recent studies carried out on structural aspects of metal-free metallothionein (MT), the mechanism of metal binding for copper and arsenic, structural studies using x-ray absorption spectroscopy and molecular mechanics modeling, and speciation studies of a novel cadmium and arsenic binding algal MT. Molecular mechanics-molecular dynamics calculations of apo-MT show that significant secondary structural features are retained by the polypeptide backbone upon sequential removal of the metal ions, which is stabilized by a possible H-bonding network. In addition, the cysteinyl sulfurs were shown to rotate from within the domain core, where they are found in the metallated state, to the exterior surface of the domain, suggesting an explanation for the rapid metallation reactions that were measured. Mixing Cu6beta-MT with Cd4alpha-MT and Cu6alpha-MT with Cd3beta-MT resulted in redistribution of the metal ions to mixed metal species in each domain; however, the Cu+ ions preferentially coordinated to the beta domain in each case. Reaction of As3+ with the individual metal-free beta and alpha domains of MT resulted in three As3+ ions coordinating to each of the domains, respectively, in a proposed distorted trigonal pyramid structure. Kinetic analysis provides parameters that allow simulation of the binding of each of the As3+ ions. X-ray absorption spectroscopy provides detailed information about the coordination environment of the absorbing element. We have combined measurement of x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) data with extensive molecular dynamics calculations to determine accurate metal-thiolate structures. Simulation of the XANES data provides a powerful technique for probing the coordination structures of metals in metalloproteins. The metal binding properties of an algal MT, Fucus vesiculosus, has been investigated by UV absorption and circular dichroism spectroscopy and electrospray ionization-mass spectrometry. The 16 cysteine residues of this algal MT were found to coordinate six Cd2+ ions in two domains with stoichiometries of a novel Cd3S7 cluster and a beta-like Cd3S9 cluster.
Collapse
Affiliation(s)
- Kelly E Rigby Duncan
- Department of Chemistry, The University of Western Ontario, London, ON, Canada, N6A 5B7
| | | | | | | | | | | |
Collapse
|
29
|
Capasso C, Carginale V, Crescenzi O, Di Maro D, Spadaccini R, Temussi PA, Parisi E. Structural and functional studies of vertebrate metallothioneins: cross-talk between domains in the absence of physical contact. Biochem J 2006; 391:95-103. [PMID: 15926886 PMCID: PMC1237143 DOI: 10.1042/bj20050335] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In previous studies, we showed that the chemical and dynamic properties of fish and mouse MTs (metallothioneins) present a number of distinctive differences linked to their primary structures, and that phylogenetic relationships of mammal and fish MTs correlate with their three-dimensional structures. The different behaviours of MTs may also be linked to the interaction between their two domains. In the present study, we have compared the physicochemical properties of the isolated recombinant domains constituting Notothenia coriiceps and mouse MTs, and compared them with those of the corresponding whole MTs. NMR spectra of the separated domains of N. coriiceps are almost superimposable on those of the parent MT, suggesting an apparent lack of interaction between the two domains in the protein. However, certain dynamic and physicochemical features of the isolated domains are unlike those of the whole protein. In particular, the temperature-induced changes in the chiroptical properties, thiol reactivity of the Zn-MT domains and the Zn2+/Cd2+ rate of exchange are different for the two domains and with respect to the whole protein. Taken together, these results provide a strong argument in favour of the interaction of the two domains in the MT molecule, in spite of the elusive evidence provided by the structural analyses.
Collapse
Affiliation(s)
- Clemente Capasso
- CNR, Institute of Protein Biochemistry, via P. Castellino 111 I 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Rigby KE, Chan J, Mackie J, Stillman MJ. Molecular dynamics study on the folding and metallation of the individual domains of metallothionein. Proteins 2005; 62:159-72. [PMID: 16288454 DOI: 10.1002/prot.20663] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
De novo synthesis of metallothionein (MT) initially forms the metal-free protein, which must, in a posttranslational reaction, coordinate metal ions via the cysteine sulfur ligands to form the fully folded protein structure. In this article, we use molecular dynamics (MD) and molecular mechanics (MM) to investigate the metal-dependent folding steps of the individual domains of recombinant human metallothionein (MT). The divalent metals were removed sequentially from the metal-sulfur M4(Scys)11 and M3(Scys)9 clusters within the alpha- and beta- domains of MT, respectively, after protonation of the previously coordinating sulfurs. With each of the four (alpha) or three (beta) sites defined, an order of metal release could be determined on the basis of a comparison of the strain energies for each combination by selecting the lowest energy demetallated conformations. The effect of an additional noninteracting, 34-residue peptide sequence on the demetallation order was assessed when bound to either the N- or C-termini of the individual domain fragments to identify the differences in cluster stability between one- and two-domain proteins. The N-terminal-bound peptide had no effect on the order of metal removal; however, addition to the C-terminus significantly altered the sequence. The number of hydrogen bonds was calculated for each energy-minimized demetallated structure and was increased on metal removal, indicating a possible stabilization mechanism for the protein structure via a hydrogen-bonding network. On complete demetallation, the cysteinyl sulfurs were shown to move to the exterior surface of the peptide chain.
Collapse
Affiliation(s)
- Kelly E Rigby
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Rigby KE, Stillman MJ. Structural studies of metal-free metallothionein. Biochem Biophys Res Commun 2004; 325:1271-8. [PMID: 15555564 DOI: 10.1016/j.bbrc.2004.10.144] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Indexed: 10/26/2022]
Abstract
We report the first molecular dynamics calculations on the structure of metal-free betaalpha recombinant human metallothionein, with comparison to the two isolated fragments, alpha-rhMT and beta-rhMT, starting from a linear synthesized strand as well as a demetallated conformation. Following a 5000 ps MM3/MD calculation, the cysteine side chains were found to populate the outside surface of the metal-free protein, regardless of the initial conformation. The polypeptide backbone adopted a random coil conformation when starting from the linear strand, however, it retained a significant amount of secondary structure when starting from the demetallated conformation. We propose that the inverted cysteinyl sulfur orientation facilitates the binding of the metal ions to form the proteolytically stable, metallated protein.
Collapse
Affiliation(s)
- Kelly E Rigby
- Department of Chemistry, University of Western Ontario, London, Ont., Canada N6A 5B7.
| | | |
Collapse
|