1
|
Guo B, Zhu Y, Lu S, Chen X, Ren Z, Liu Y, Luo H, Wang C, Yang X, Zhu J. Targeting MCH Neuroendocrine Circuit in Lateral Hypothalamus to Protect Against Skeletal Senescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309951. [PMID: 39320347 DOI: 10.1002/advs.202309951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Neuroendocrine regulation is essential for maintaining metabolic homeostasis. However, whether neuroendocrine pathway influence bone metabolism and skeletal senescence is unelucidated. Here, a central neuroendocrine circuit is identified that directly controls osteogenesis. Using virus based tracing, this study is identified that melanin concentrating hormone (MCH) expressing neurons in the lateral hypothalamus (LH) are connected to the bone. Chemogenetic activation of MCH neurons in the LH induces osteogenesis, whereas inhibiting these neurons reduces osteogenesis. Meanwhile, MCH is released into the circulation upon chemogenetic activation of these neurons. Single cell sequencing reveals that blocking MCH neurons in the LH diminishes osteogenic differentiation of bone marrow stromal cells (BMSCs) and induces senescence. Mechanistically, MCH promotes BMSC differentiation by activating MCHR1 via PKA signaling, and activating MCHR1 by MCH agonists attenuate skeletal senescence in mice. By elucidating a brain-bone connection that autonomously enhances osteogenesis, these findings uncover the neuroendocrinological mechanisms governing bone mass regulation and protect against skeletal senescence.
Collapse
Affiliation(s)
- Bin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shuai Lu
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China
| | - Xiangming Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuoqun Ren
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Yuqi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hao Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chao Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xucheng Yang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jianxi Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Hunan, 410008, China
| |
Collapse
|
2
|
Fouhy LE, Lai CQ, Parnell LD, Tucker KL, Ordovás JM, Noel SE. Genome-wide association study of osteoporosis identifies genetic risk and interactions with Dietary Approaches to Stop Hypertension diet and sugar-sweetened beverages in a Hispanic cohort of older adults. J Bone Miner Res 2024; 39:697-706. [PMID: 38484114 PMCID: PMC11472150 DOI: 10.1093/jbmr/zjae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Osteoporosis (OP) and low bone mass can be debilitating and costly conditions if not acted on quickly. This disease is also difficult to diagnose as the symptoms develop unnoticed until fracture occurs. Therefore, gaining understanding of the genetic risk associated with these conditions could be beneficial for health-care professionals in early detection and prevention. The Boston Puerto Rican Osteoporosis (BPROS) study, an ancillary study to the Boston Puerto Rican Health Study (BPRHS), collected information regarding bone and bone health. All bone measurements were taken during regular BPROS visits using dual-energy X-ray absorptiometry. The OP was defined as T-score ≤ -2.5 (≥2.5 SDs below peak bone mass). Dietary variables were collected at the second wave of the BPRHS via a food frequency questionnaire. We conducted genome-wide associations with bone outcomes, including BMD and OP for 978 participants. We also examined the interactions with dietary quality on the relationships between genotype and bone outcomes. We further tested if candidate genetic variants described in previous GWAS on OP and BMD contribute to OP risk in this population. Four variants were associated with OP: rs114829316 (IQ motif containing J gene), rs76603051, rs12214684 (melanin-concentrating hormone receptor 2 gene), and rs77303493 (Ras and Rab interactor 2 gene), and 2 variants were associated with BMD of lumbar spine (rs11855618, cingulin-like 1 gene) and hip (rs73480593, NTRK2), reaching the genome-wide significance threshold of P ≤ 5E-08. In a gene-diet interaction analysis, we found that 1 SNP showed a significant interaction with the overall Dietary Approaches to Stop Hypertension (DASH) score, and 7 SNPs with sugar-sweetened beverages (SSBs), a major contributor to the DASH score. This study identifies new genetic markers related to OP and BMD in older Hispanic adults. Additionally, we uncovered unique genetic markers that interact with dietary quality, specifically SSBs, in relation to bone health. These findings may be useful to guide early detection and preventative care.
Collapse
Affiliation(s)
- Liam E Fouhy
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Chao-Qiang Lai
- JM-US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, USDA ARS, Nutrition and Genomics Laboratory, Boston, MA 02111, USA
| | - Laurence D Parnell
- JM-US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, USDA ARS, Nutrition and Genomics Laboratory, Boston, MA 02111, USA
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
- IMDEA-Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Sabrina E Noel
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
3
|
Wang M, Zhai Y, Lei X, Xu J, Jiang B, Kuang Z, Zhang C, Liu S, Bian S, Yang XM, Zan T, Jin LN, Li Q, Zhang C. Determination of the Interaction and Pharmacological Modulation of MCHR1 Signaling by the C-Terminus of MRAP2 Protein. Front Endocrinol (Lausanne) 2022; 13:848728. [PMID: 35311242 PMCID: PMC8931191 DOI: 10.3389/fendo.2022.848728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 11/15/2022] Open
Abstract
Melanin concentrating hormone (MCH), an orexigenic neuropeptide, is primarily secreted by the hypothalamus and acts on its receptor, the melanin-concentrating hormone receptor 1 (MCHR1), to regulate appetite and energy homeostasis. The Melanocortin Receptor Accessory Protein 2 (MRAP2), a small single transmembrane protein broadly expressed in multiple tissues, has been defined as a vital endocrine modulator of five melanocortin receptors (MC1R-MC5R) and several other GPCRs in the regulation of central neuronal activities and peripheral energy balance. Here, we demonstrated the interaction between MRAP2 and MCHR1 by immunoprecipitation and bimolecular fluorescent assay and found that MRAP2 could inhibit MCHR1 signaling in vitro. A series of functional truncations of different regions further identified that the C-terminal domains of MRAP2 protein were required for the pharmacological modulation of intracellular Ca2+ coupled cascades and membrane transport. These findings elucidated the broad regulatory profile of MRAP2 protein in the central nervous system and may provide implications for the modulation of central MCHR1 function in vivo.
Collapse
Affiliation(s)
- Meng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhai
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaowei Lei
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Xu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bopei Jiang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhe Kuang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangyun Liu
- Department of Hematology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Mei Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Tao Zan, ; Li-Na Jin, ; Qingfeng Li, ; Chao Zhang,
| | - Li-Na Jin
- Department of Hematology, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Tao Zan, ; Li-Na Jin, ; Qingfeng Li, ; Chao Zhang,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Tao Zan, ; Li-Na Jin, ; Qingfeng Li, ; Chao Zhang,
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Tao Zan, ; Li-Na Jin, ; Qingfeng Li, ; Chao Zhang,
| |
Collapse
|
4
|
The role of GPCRs in bone diseases and dysfunctions. Bone Res 2019; 7:19. [PMID: 31646011 PMCID: PMC6804689 DOI: 10.1038/s41413-019-0059-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals. Critical roles of GPCRs have been established in bone development, remodeling, and disease. Multiple human GPCR mutations impair bone development or metabolism, resulting in osteopathologies. Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals. To date, 92 receptors (5 glutamate family, 67 rhodopsin family, 5 adhesion, 4 frizzled/taste2 family, 5 secretin family, and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals). By analyzing data from these 92 GPCRs, we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions, and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models. Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD: 9 genes each for human height and osteoporosis; 4 genes each for human osteoarthritis (OA) and fracture risk; and 2 genes each for adolescent idiopathic scoliosis (AIS), periodontitis, osteosarcoma growth, and tooth development. Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass, while deficiency of 22 GPCRs increased bone mass and BMD; deficiency of 8 GPCRs reduced body length, while 5 mice had reduced femur size upon GPCR deletion. Furthermore, deficiency in 6 GPCRs induced osteoporosis; 4 induced osteoarthritis; 3 delayed fracture healing; 3 reduced arthritis severity; and reduced bone strength, increased bone strength, and increased cortical thickness were each observed in 2 GPCR-deficiency models. The ever-expanding number of GPCR mutation-associated diseases warrants accelerated molecular analysis, population studies, and investigation of phenotype correlation with SNPs to elucidate GPCR function in human diseases.
Collapse
|
5
|
Genetic Dissection of Trabecular Bone Structure with Mouse Intersubspecific Consomic Strains. G3-GENES GENOMES GENETICS 2017; 7:3449-3457. [PMID: 28855285 PMCID: PMC5633393 DOI: 10.1534/g3.117.300213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trabecular bone structure has an important influence on bone strength, but little is known about its genetic regulation. To elucidate the genetic factor(s) regulating trabecular bone structure, we compared the trabecular bone structures of two genetically remote mouse strains, C57BL/6J and Japanese wild mouse-derived MSM/Ms. Phenotyping by X-ray micro-CT revealed that MSM/Ms has structurally more fragile trabecular bone than C57BL/6J. Toward identification of genetic determinants for the difference in fragility of trabecular bone between the two mouse strains, we employed phenotype screening of consomic mouse strains in which each C57BL/6J chromosome is substituted by its counterpart from MSM/Ms. The results showed that many chromosomes affect trabecular bone structure, and that the consomic strain B6-Chr15MSM, carrying MSM/Ms-derived chromosome 15 (Chr15), has the lowest values for the parameters BV/TV, Tb.N, and Conn.D, and the highest values for the parameters Tb.Sp and SMI. Subsequent phenotyping of subconsomic strains for Chr15 mapped four novel trabecular bone structure-related QTL (Tbsq1-4) on mouse Chr15. These results collectively indicate that genetic regulation of trabecular bone structure is highly complex, and that even in the single Chr15, the combined action of the four Tbsqs controls the fragility of trabecular bone. Given that Tbsq4 is syntenic to human Chr 12q12-13.3, where several bone-related SNPs are assigned, further study of Tbsq4 should facilitate our understanding of the genetic regulation of bone formation in humans.
Collapse
|
6
|
Dotterweich J, Schlegelmilch K, Keller A, Geyer B, Schneider D, Zeck S, Tower RJJ, Ebert R, Jakob F, Schütze N. Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells -Implications for myeloma bone disease. Bone 2016; 93:155-166. [PMID: 27519972 DOI: 10.1016/j.bone.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/24/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Physical interaction of skeletal precursors with multiple myeloma cells has been shown to suppress their osteogenic potential while favoring their tumor-promoting features. Although several transcriptome analyses of myeloma patient-derived mesenchymal stem cells have displayed differences compared to their healthy counterparts, these analyses insufficiently reflect the signatures mediated by tumor cell contact, vary due to different methodologies, and lack results in lineage-committed precursors. To determine tumor cell contact-mediated changes on skeletal precursors, we performed transcriptome analyses of mesenchymal stem cells and osteogenic precursor cells cultured in contact with the myeloma cell line INA-6. Comparative analyses confirmed dysregulation of genes which code for known disease-relevant factors and additionally revealed upregulation of genes that are associated with plasma cell homing, adhesion, osteoclastogenesis, and angiogenesis. Osteoclast-derived coupling factors, a dysregulated adipogenic potential, and an imbalance in favor of anti-anabolic factors may play a role in the hampered osteoblast differentiation potential of mesenchymal stem cells. Angiopoietin-Like 4 (ANGPTL4) was selected from a list of differentially expressed genes as a myeloma cell contact-dependent target in skeletal precursor cells which warranted further functional analyses. Adhesion assays with full-length ANGPTL4-coated plates revealed a potential role of this protein in INA-6 cell attachment. This study expands knowledge of the myeloma cell contact-induced signature in the stromal compartment of myelomatous bones and thus offers potential targets that may allow detection and treatment of myeloma bone disease at an early stage.
Collapse
Affiliation(s)
- Julia Dotterweich
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Katrin Schlegelmilch
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Alexander Keller
- DNA-Analytics Core Facility, Biocenter and Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Beate Geyer
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Doris Schneider
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Sabine Zeck
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Robert J J Tower
- Section Biomedical Imaging, MOIN CC, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Regina Ebert
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany.
| | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Chartrel N, Alonzeau J, Alexandre D, Jeandel L, Alvear-Perez R, Leprince J, Boutin J, Vaudry H, Anouar Y, Llorens-Cortes C. The RFamide neuropeptide 26RFa and its role in the control of neuroendocrine functions. Front Neuroendocrinol 2011; 32:387-97. [PMID: 21530572 DOI: 10.1016/j.yfrne.2011.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/07/2011] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
Abstract
Identification of novel neuropeptides and their cognate G protein-coupled receptors is essential for a better understanding of neuroendocrine regulations. The RFamide peptides represent a family of regulatory peptides that all possess the Arg-Phe-NH2 motif at their C-terminus. In mammals, seven RFamide peptides encoded by five distinct genes have been characterized. The present review focuses on 26RFa (or QRFP) which is the latest member identified in this family. 26RFa is present in all vertebrate phyla and its C-terminal domain (KGGFXFRF-NH2), which is responsible for its biological activity, has been fully conserved during evolution. 26RFa is the cognate ligand of the orphan G protein-coupled receptor GPR103 that is also present from fish to human. In all vertebrate species studied so far, 26RFa-expressing neurons show a discrete localization in the hypothalamus, suggesting important neuroendocrine activities for this RFamide peptide. Indeed, 26RFa plays a crucial role in the control of feeding behavior in mammals, birds and fish. In addition, 26RFa up-regulates the gonadotropic axis in mammals and fish. Finally, evidence that the 26RFa/GPR103 system regulates steroidogenesis, bone formation, nociceptive transmission and arterial blood pressure has also been reported. Thus, 26RFa appears to act as a key neuropeptide in vertebrates controlling vital neuroendocrine functions. The pathophysiological implication of the 26RFa/GPR103 system in human is totally unknown and some fields of investigation are proposed.
Collapse
Affiliation(s)
- Nicolas Chartrel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IFRMP23, University of Rouen, 76821 Mont-Saint-Aignan Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Eberle AN, Mild G, Zumsteg U. Cellular models for the study of the pharmacology and signaling of melanin-concentrating hormone receptors. J Recept Signal Transduct Res 2010; 30:385-402. [PMID: 21083507 DOI: 10.3109/10799893.2010.524223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular models for the study of the neuropeptide melanin-concentrating hormone (MCH) have become indispensable tools for pharmacological profiling and signaling analysis of MCH and its synthetic analogues. Although expression of MCH receptors is most abundant in the brain, MCH-R(1) is also found in different peripheral tissues. Therefore, not only cell lines derived from nervous tissue but also from peripheral tissues that naturally express MCH receptors have been used to study receptor signaling and regulation. For screening of novel compounds, however, heterologous expression of MCH-R(1) or MCH-R(2) genes in HEK293, Chinese hamster ovary, COS-7, or 3T3-L1 cells, or amplified MCH-R(1) expression/signaling in IRM23 cells transfected with the G(q) protein gene are the preferred tools because of more distinct pharmacological effects induced by MCH, which include inhibition of cAMP formation, stimulation of inositol triphosphate production, increase in intracellular free Ca(2+) and/or activation of mitogen-activated protein kinases. Most of the published data originate from this type of model system, whereas data based on studies with cell lines endogenously expressing MCH receptors are more limited. This review presents an update on the different cellular models currently used for the analysis of MCH receptor interaction and signaling.
Collapse
Affiliation(s)
- Alex N Eberle
- Laboratory of Endocrinology, Department of Biomedicine, University Hospital and University Children's Hospital, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
9
|
Mul JD, Yi CX, van den Berg SAA, Ruiter M, Toonen PW, van der Elst MCJ, Voshol PJ, Ellenbroek BA, Kalsbeek A, la Fleur SE, Cuppen E. Pmch expression during early development is critical for normal energy homeostasis. Am J Physiol Endocrinol Metab 2010; 298:E477-88. [PMID: 19934402 DOI: 10.1152/ajpendo.00154.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Postnatal development and puberty are times of strong physical maturation and require large quantities of energy. The hypothalamic neuropeptide melanin-concentrating hormone (MCH) regulates nutrient intake and energy homeostasis, but the underlying mechanisms are not completely understood. Here we use a novel rat knockout model in which the MCH precursor Pmch has been inactivated to study the effects of loss of MCH on energy regulation in more detail. Pmch(-/-) rats are lean, hypophagic, osteoporotic, and although endocrine parameters were changed in pmch(-/-) rats, endocrine dynamics were normal, indicating an adaptation to new homeostatic levels rather than disturbed metabolic mechanisms. Detailed body weight growth and feeding behavior analysis revealed that Pmch expression is particularly important during early rat development and puberty, i.e., the first 8 postnatal weeks. Loss of Pmch resulted in a 20% lower set point for body weight that was determined solely during this period and remained unchanged during adulthood. Although the final body weight is diet dependent, the Pmch-deficiency effect was similar for all diets tested in this study. Loss of Pmch affected energy expenditure in both young and adult rats, although these effects seem secondary to the observed hypophagia. Our findings show an important role for Pmch in energy homeostasis determination during early development and indicate that the MCH receptor 1 system is a plausible target for childhood obesity treatment, currently a major health issue in first world countries.
Collapse
Affiliation(s)
- Joram D Mul
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Glick M, Segal-Lieberman G, Cohen R, Kronfeld-Schor N. Chronic MCH infusion causes a decrease in energy expenditure and body temperature, and an increase in serum IGF-1 levels in mice. Endocrine 2009; 36:479-85. [PMID: 19859841 DOI: 10.1007/s12020-009-9252-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Melanin concentrating hormone (MCH) is an orexigenic peptide secreted from the lateral hypothalamus. Various observations suggest a role for MCH in energy expenditure in transgenic mice; however, the influence of MCH on energy expenditure and body temperature in WT mice was inadequately studied. Therefore, our first goal was to characterize the influence of chronic intracerebroventrical MCH infusion on energy homeostasis in mice. Our second goal was to explore the effect of MCH on the GH-insulin like growth factor 1 (IGF-1) axis in vivo. We have recently published that MCH directly increased GH-secretion from pituitary cells in vitro, suggesting that MCH may exert part of its effects on energy balance via direct pituitary hormone regulation. Mice were centrally infused with MCH for 14 days, resulting in a significant increase in food intake, body weight, fat mass and plasma IGF-1 levels, while decreasing body temperature and energy expenditure. Our data emphasize the role of MCH as a key regulator of energy homeostasis by means of appetite regulation, regulation of energy expenditure, and an integrator of energy balance with the neuroendocrine system regulating pituitary hormone secretion. They also support the notion that MCH may have a physiologic role in GH regulation that may, in turn, contribute to its effect on body weight.
Collapse
Affiliation(s)
- Moran Glick
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
11
|
The Role of Melanin-Concentrating Hormone in Energy Homeostasis and Mood Disorders. J Mol Neurosci 2009; 39:86-98. [DOI: 10.1007/s12031-009-9207-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 04/19/2009] [Indexed: 12/24/2022]
|
12
|
Zhang F, Xiao P, Yang F, Shen H, Xiong DH, Deng HY, Papasian CJ, Drees BM, Hamilton JJ, Recker RR, Deng HW. A whole genome linkage scan for QTLs underlying peak bone mineral density. Osteoporos Int 2008; 19:303-10. [PMID: 17882466 DOI: 10.1007/s00198-007-0468-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 07/31/2007] [Indexed: 01/28/2023]
Abstract
UNLABELLED We conducted a whole genome linkage scan for quantitative trait loci (QTLs) underlying peak bone mineral density (PBMD). Our efforts identified several potential genomic regions for PBMD and highlighted the importance of epistatic interaction and sex-specific analyses in identifying genetic regions underlying PBMD variation. INTRODUCTION Peak bone mineral density (PBMD) is an important clinical risk predictor of osteoporosis and explains a large part of bone mineral density (BMD) variation. METHODS To detect susceptive quantitative trait loci (QTLs) for PBMD variation including consideration of epistatic and sex-specific effects, we conducted a whole genome linkage scan (WGLS) for PBMD using 2,200 Caucasians from 207 pedigrees, aged 20-50 years. All the individuals were genotyped with 410 microsatellite markers. In addition to WGLS in the total combined sample of males and females, we conducted epistatic interaction analyses, and sex-specific subgroup linkage analyses. RESULTS We identified several potential genomic regions that met the criteria for suggestive linkage. The most impressing region is 12p12 for hip PBMD (LOD = 2.79) in the total sample. Epistatic interaction analyses found a significant epistatic interaction between 12p12 and 22q13 (p = 0.0021) for hip PBMD. Additionally, we detected suggestive linkage evidence at 15q26 (LOD = 2.93), 2p13 (LOD = 2.64), and Xq27 (LOD = 2.64). Sex-specific analyses suggested the presence of sex-specific QTLs for PBMD variation. CONCLUSIONS Our efforts identified several potential regions for PBMD and highlighted the importance of epistatic interaction and sex-specific analyses in identifying genetic regions underlying PBMD variation.
Collapse
Affiliation(s)
- F Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rokosz LL. Discovery and development of melanin-concentrating hormone receptor 1 antagonists for the treatment of obesity. Expert Opin Drug Discov 2007; 2:1301-27. [DOI: 10.1517/17460441.2.10.1301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Luthin DR. Anti-obesity effects of small molecule melanin-concentrating hormone receptor 1 (MCHR1) antagonists. Life Sci 2007; 81:423-40. [PMID: 17655875 DOI: 10.1016/j.lfs.2007.05.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 05/09/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Over the past ten years, tremendous advances in our understanding of the role of the hypothalamic neurohormone, melanin-concentrating hormone (MCH), and its involvement in the regulation of food intake and body weight have been achieved. The MCHR1 receptor has been actively targeted as a much-needed, novel treatment for obesity, a disease of epidemic proportion in the United States. Numerous companies have joined the competition to be the first to produce a small molecule antagonist targeting MCHR1 receptors in the race for therapeutics for this disease. This review details the rising need for new treatments for obesity; the rationale and target validation of MCHR1 receptor antagonists as potential treatments for this disease; and the current status of the numerous small molecule MCHR1 antagonists in development by different companies. MCHR1 antagonists might find an additional usage in the treatment of anxiety and depression disorders. The rationale and current status of this effort by several companies is also reviewed.
Collapse
Affiliation(s)
- David R Luthin
- Samford University, McWhorter School of Pharmacy, 800 Lakeshore Drive, Birmingham, AL 35229, USA.
| |
Collapse
|
15
|
Tavares FX, Al-Barazanji KA, Bigham EC, Bishop MJ, Britt CS, Carlton DL, Feldman PL, Goetz AS, Grizzle MK, Guo YC, Handlon AL, Hertzog DL, Ignar DM, Lang DG, Ott RJ, Peat AJ, Zhou HQ. Potent, Selective, and Orally Efficacious Antagonists of Melanin-Concentrating Hormone Receptor 1. J Med Chem 2006; 49:7095-107. [PMID: 17125262 DOI: 10.1021/jm060572f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The high expression of MCH in the hypothalamus with the lean hypophagic phenotype coupled with increased resting metabolic rate and resistance to high fat diet-induced obesity of MCH KO mice has spurred considerable efforts to develop small molecule MCHR1 antagonists. Starting from a lead thienopyrimidinone series, structure-activity studies at the 3- and 6-positions of the thienopyrimidinone core afforded potent and selective MCHR1 antagonists with representative examples having suitable pharmacokinetic properties. Based on structure-activity relationships, a structural model for MCHR1 was constructed to explain the binding mode of these antagonists. In general, a good correlation was observed between pKas and activity in the right-hand side of the template, with Asp123 playing an important role in the enhancement of binding affinity. A representative example when evaluated chronically in diet-induced obese mice resulted in good weight loss effects. These antagonists provide a viable lead series in the discovery of new therapies for the treatment of obesity.
Collapse
Affiliation(s)
- Francis X Tavares
- Department of Medicinal Chemistry, GlaxoSmithKline, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu YJ, Shen H, Xiao P, Xiong DH, Li LH, Recker RR, Deng HW. Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J Bone Miner Res 2006; 21:1511-35. [PMID: 16995806 PMCID: PMC1829484 DOI: 10.1359/jbmr.051002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes comprehensively the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of December 2004. It is intended to constitute a sequential update of our previously published review covering the available data up to the end of 2002. Evidence from candidate gene association studies and genome-wide linkage studies in humans, as well as quantitative trait locus mapping animal models are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. An important extension of this update is incorporation of functional genomic studies (including DNA microarrays and proteomics) on osteogenesis and osteoporosis, in light of the rapid advances and the promising prospects of the field. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hui Shen
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Peng Xiao
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Dong-Hai Xiong
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Li-Hua Li
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hong-Wen Deng
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
17
|
Handlon AL, Zhou H. Melanin-concentrating hormone-1 receptor antagonists for the treatment of obesity. J Med Chem 2006; 49:4017-22. [PMID: 16821761 DOI: 10.1021/jm058239j] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anthony L Handlon
- Metabolic and Viral Center of Excellence for Drug Discovery, GlaxoSmithKline, P.O. Box 13398, Research Triangle Park, North Carolina 27709-3398, USA.
| | | |
Collapse
|
18
|
Hervieu GJ. Further insights into the neurobiology of melanin-concentrating hormone in energy and mood balances. Expert Opin Ther Targets 2006; 10:211-29. [PMID: 16548771 DOI: 10.1517/14728222.10.2.211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Melanin-concentrating hormone (MCH) is a critical hypothalamic anabolic neuropeptide, with key central and peripheral actions on energy balance regulation. The actions of MCH are, so far, known to be transduced through two seven-transmembrane-like receptor paralogues, named MCH1R and MCH2R. MCH2R is not functional in rodents. MCH1R is an important receptor involved in mediating feeding behaviour modulation by MCH in rodents. Pharmacological antagonism at MCH1R in rodents diminishes food intake and results in significant and sustained weight loss in fat tissues, particularly in obese animals. Additionally, MCH1R antagonists have been shown to have anxiolytic and antidepressant properties. The purpose of this review is to highlight the recent numerous pieces of evidence showing that pharmacological blockade at MCH1R could be a potential treatment for obesity and its related metabolic syndrome, as well as for various psychiatric disorders.
Collapse
Affiliation(s)
- Guillaume J Hervieu
- GlaxoSmithKline R&D, Neurology Centre of Excellence for Drug Discovery, NFSP-North, HW1713 Building H17, L1-130 C06 Third Avenue, Harlow, Essex CM19 5AW, UK.
| |
Collapse
|
19
|
Baribault H, Danao J, Gupte J, Yang L, Sun B, Richards W, Tian H. The G-protein-coupled receptor GPR103 regulates bone formation. Mol Cell Biol 2006; 26:709-17. [PMID: 16382160 PMCID: PMC1346910 DOI: 10.1128/mcb.26.2.709-717.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GPR103 is a G-protein-coupled receptor with reported expression in brain, heart, kidney, adrenal gland, retina, and testis. It encodes a 455-amino-acid protein homologous to neuropeptide FF2, neuropeptide Y2, and galanin GalR1 receptors. Its natural ligand was recently identified as 26RFa, a novel human RF-amide-related peptide with orexigenic activity. To identify the function of GPR103, we generated GPR103-deficient mice. Homozygous mutant mice were viable and fertile. Their body weight was undistinguishable from that of their wild-type littermates. Histological analysis revealed that GPR103-/- mice exhibited a thinned osteochondral growth plate, a thickening of trabecular branches, and a reduction in osteoclast number, suggestive of an early arrest of osteochondral bone formation. Microcomputed tomography confirmed the reduction in trabecular bone and connective tissue densities in GPR103 knockout animals. Whole-body radiography followed by morphometric analysis revealed a kyphosis in mutant animals. Reverse transcription-PCR analysis showed that GPR103 was expressed in human skull, mouse spine, and several osteoblast cell lines. Dexamethasone, a known inhibitor of osteoblast growth and inducer of osteoblast differentiation, inhibited GPR103 expression in human osteoblast primary cultures. Altogether, these results suggest that osteopenia in GPR103-/- mice may be mediated directly by the loss of GPR103 expression in bone.
Collapse
Affiliation(s)
- Helene Baribault
- Department of Biology Research, Amgen, Mail Stop ASF1-1, 1120 Veterans Blvd., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Roy M, David NK, Danao JV, Baribault H, Tian H, Giorgetti M. Genetic inactivation of melanin-concentrating hormone receptor subtype 1 (MCHR1) in mice exerts anxiolytic-like behavioral effects. Neuropsychopharmacology 2006; 31:112-20. [PMID: 15988472 DOI: 10.1038/sj.npp.1300805] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biological effects of the melanin-concentrating hormone (MCH) are mediated by the melanin concentrating hormone receptor 1 (MCHR1) in mice. This receptor is enriched in brain areas that are involved in the modulation of mood and affect, suggesting that MCH-dependent signaling may influence neurobiological mechanisms underlying fear and anxiety processes. To test this, we have generated mice lacking functional MCHR1 and characterized phenotypic traits using a number of behavioral tests. Mice carrying a null mutation of the MCHR1 gene display anxiolytic-like behavior across a battery different behavioral paradigms commonly used to assess fear and anxiety responses in rodents: open field, elevated plus maze, social interaction, and stress-induced hyperthermia. The brain serotonin (5-HT) system is central to the control of mood- and anxiety-related processes. To examine the impact of MCHR1 receptor deletion on 5-HT neurotransmission, we used in vivo microdialysis in freely moving knockout and wild-type mice. Baseline dialysate 5-HT levels were significantly lower in MCHR1 knockout mice as compared with wild-type controls (9.53+/-0.24 fmol for wild types vs 6.91+/-0.36 fmol for knockouts) in the prefrontal cortex (PFC), one of the main target structures of the serotonergic system and one that is highly associated with the control of emotional processes. Moreover, forced swim increased 5-HT efflux in the PFC of wild-type but not MCHR1 knockout mice. In summary, we show that MCHR1 can modulate stress- and anxiety-like behaviors and suggest that this may be due to changes in serotonergic transmission in forebrain regions.
Collapse
|
21
|
Kowalski TJ, McBriar MD. Therapeutic potential of melanin-concentrating hormone-1 receptor antagonists for the treatment of obesity. Expert Opin Investig Drugs 2005; 13:1113-22. [PMID: 15330743 DOI: 10.1517/13543784.13.9.1113] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The compelling genetic and pharmacological evidence implicating melanin-concentrating hormone-1 receptor (MCH-1R) signalling in the regulation of food intake and energy expenditure has generated a great deal of interest by pharmaceutical companies for the discovery of MCH-1R antagonists, evidenced by the increased number of patents describing MCH-1R antagonists for the treatment of obesity and metabolic syndrome. The structural diversity of small molecular weight drug-like MCH-1R antagonists produced and preclinical studies showing hypophagia and weight loss with small molecular weight and peptidal antagonists in rodents is encouraging and suggests that the identification of clinical candidates will be forthcoming.
Collapse
Affiliation(s)
- Timothy J Kowalski
- Department of Cardiovascular/Metabolic Disease Research, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | |
Collapse
|
22
|
Dyck B. Small molecule melanin-concentrating hormone receptor 1 (MCH1R) antagonists as anxiolytic and antidepressive agents. Drug Dev Res 2005. [DOI: 10.1002/ddr.20030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Schöneberg T, Schulz A, Biebermann H, Hermsdorf T, Römpler H, Sangkuhl K. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 2004; 104:173-206. [PMID: 15556674 DOI: 10.1016/j.pharmthera.2004.08.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G-protein-coupled receptors (GPCR) are involved in directly and indirectly controlling an extraordinary variety of physiological functions. Their key roles in cellular communication have made them the target for more than 60% of all currently prescribed drugs. Mutations in GPCR can cause acquired and inherited diseases such as retinitis pigmentosa (RP), hypo- and hyperthyroidism, nephrogenic diabetes insipidus, several fertility disorders, and even carcinomas. To date, over 600 inactivating and almost 100 activating mutations in GPCR have been identified which are responsible for more than 30 different human diseases. The number of human disorders is expected to increase given the fact that over 160 GPCR have been targeted in mice. Herein, we summarize the current knowledge relevant to understanding the molecular basis of GPCR function, with primary emphasis on the mechanisms underlying GPCR malfunction responsible for different human diseases.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Institute of Biochemistry, Department of Molecular Biochemistry (Max-Planck-Institute Interim), Medical Faculty, University of Leipzig, Deutscher Platz 6, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Eberle AN, Mild G, Schlumberger S, Drozdz R, Hintermann E, Zumsteg U. Expression and characterization of melanin-concentrating hormone receptors on mammalian cell lines. Peptides 2004; 25:1585-95. [PMID: 15476925 DOI: 10.1016/j.peptides.2004.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 06/08/2004] [Indexed: 11/24/2022]
Abstract
The neuropeptide melanin-concentrating hormone (MCH) is expressed in central and peripheral tissues where it participates in the complex network regulating energy homeostasis as well as in other physiologically important functions. Two MCH receptor subtypes, MCH-R1 and MCH-R2, have been cloned which signal through activation of Gi/o/q proteins and hence regulate different intracellular signals, such as inhibition of cAMP formation, stimulation of IP3 production, increase in intracellular free Ca2+ and/or activation of MAP kinases. Most of the data were obtained with cell systems heterologously expressing either of the MCH receptors. Fewer reports exist on studies with cell lines which endogenously express MCH receptors. Here, we describe human and other mammalian cell lines with which MCH receptor activation can be studied under "natural" conditions and we summarize the characteristics and signaling pathways of the MCH receptors in the different cell systems.
Collapse
Affiliation(s)
- Alex N Eberle
- Laboratory of Endocrinology, Department of Research, University Hospital Basel and University Children's Hospital Basel, Klingelbergstrasse 23, CH-4031 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|