1
|
Lindsay RT, Thisted L, Zois NE, Thrane ST, West JA, Fosgerau K, Griffin JL, Fink LN, Murray AJ. Beta-adrenergic agonism protects mitochondrial metabolism in the pancreatectomised rat heart. Sci Rep 2024; 14:19383. [PMID: 39169098 PMCID: PMC11339431 DOI: 10.1038/s41598-024-70335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
The diabetic heart is characterised by functional, morphological and metabolic alterations predisposing it to contractile failure. Chronic sympathetic activation is a feature of the pathogenesis of heart failure, however the type 1 diabetic heart shows desensitisation to β-adrenergic stimulation. Here, we sought to understand the impact of repeated isoprenaline-mediated β-stimulation upon cardiac mitochondrial respiratory capacity and substrate metabolism in the 90% pancreatectomy (Px) rat model of type 1 diabetes. We hypothesised these hearts would be relatively protected against the metabolic impact of stress-induced cardiomyopathy. We found that individually both Px and isoprenaline suppressed cardiac mitochondrial respiration, but that this was preserved in Px rats receiving isoprenaline. Px and isoprenaline had contrasting effects on cardiac substrate metabolism, with increased reliance upon cardiac fatty acid oxidation capacity and altered ketone metabolism in the hearts of Px rats, but enhanced capacity for glucose uptake and metabolism in isoprenaline-treated rats. Moreover, Px rats were protected against isoprenaline-induced mortality, whilst isoprenaline elevated cGMP and protected myocardial energetic status in Px rat hearts. Our work suggests that adrenergic stimulation may be protective in the type 1 diabetic heart, and underlines the importance of studying pathological features in combination when modeling complex disease in rodents.
Collapse
Affiliation(s)
- Ross T Lindsay
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark.
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, UK.
| | - Louise Thisted
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Nora E Zois
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
- Ascendis Pharma A/S, Hellerup, Denmark
| | | | - James A West
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, UK
- AstraZeneca, Cambridge, UK
| | - Keld Fosgerau
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
- Pephexia Therapeutics ApS, Copenhagen, Denmark
| | - Julian L Griffin
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, UK
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Lisbeth N Fink
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
- Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Tan J, Xiao A, Yang L, Tao YL, Shao Y, Zhou Q. Diabetes and high-glucose could upregulate the expression of receptor for activated C kinase 1 in retina. World J Diabetes 2024; 15:519-529. [PMID: 38591093 PMCID: PMC10999037 DOI: 10.4239/wjd.v15.i3.519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major ocular complication of diabetes mellitus, leading to visual impairment. Retinal pigment epithelium (RPE) injury is a key component of the outer blood retinal barrier, and its damage is an important indicator of DR. Receptor for activated C kinase 1 (RACK1) activates protein kinase C-ε (PKC-ε) to promote the generation of reactive oxygen species (ROS) in RPE cells, leading to apoptosis. Therefore, we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS, thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR. AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR. METHODS In this study, Sprague-Dawley rats and adult RPE cell line-19 (ARPE-19) cells were used as in vivo and in vitro models, respectively, to explore the role of RACK1 in mediating PKC-ε in early DR. Furthermore, the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model. RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and up-regulated expression of RACK1 and PKC-ε proteins in RPE cells following a prolonged modeling. Similarly, ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε, accompanied by an increases in ROS production, apoptosis rate, and monolayer permeability. However, silencing RACK1 significantly downregulated the expression of PKC-ε and ROS, reduced cell apoptosis and permeability, and protected barrier function. CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.
Collapse
Affiliation(s)
- Jian Tan
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ang Xiao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Lin Yang
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yu-Lin Tao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
3
|
Dludla PV, Nkambule BB, Nyambuya TM, Ziqubu K, Mabhida SE, Mxinwa V, Mokgalaboni K, Ndevahoma F, Hanser S, Mazibuko-Mbeje SE, Basson AK, Sabbatinelli J, Tiano L. Vitamin C intake potentially lowers total cholesterol to improve endothelial function in diabetic patients at increased risk of cardiovascular disease: A systematic review of randomized controlled trials. Front Nutr 2022; 9:1011002. [PMID: 36386907 PMCID: PMC9659906 DOI: 10.3389/fnut.2022.1011002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/29/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Vitamin C is one of the most consumed dietary compounds and contains abundant antioxidant properties that could be essential in improving metabolic function. Thus, the current systematic review analyzed evidence on the beneficial effects of vitamin C intake on cardiovascular disease (CVD)-related outcomes in patients with diabetes or metabolic syndrome. METHODS To identify relevant randomized control trials (RCTs), a systematic search was run using prominent search engines like PubMed and Google Scholar, from beginning up to March 2022. The modified Black and Downs checklist was used to assess the quality of evidence. RESULTS Findings summarized in the current review favor the beneficial effects of vitamin C intake on improving basic metabolic parameters and lowering total cholesterol levels to reduce CVD-risk in subjects with type 2 diabetes or related metabolic diseases. Moreover, vitamin C intake could also reduce the predominant markers of inflammation and oxidative stress like C-reactive protein, interleukin-6, and malondialdehyde. Importantly, these positive outcomes were consistent with improved endothelial function or increased blood flow in these subjects. Predominantly effective doses were 1,000 mg/daily for 4 weeks up to 12 months. The included RCTs presented with the high quality of evidence. CONCLUSION Clinical evidence on the beneficial effects of vitamin C intake or its impact on improving prominent markers of inflammation and oxidative stress in patients with diabetes is still limited. Thus, more RCTs are required to solidify these findings, which is essential to better manage diabetic patients at increased risk of developing CVD.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tawanda M. Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
| | - Sihle E. Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Life and Consumer Sciences, University of South Africa, Florida Campus, Roodepoort, South Africa
| | - Fransina Ndevahoma
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, South Africa
| | | | - Albertus K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
4
|
Lyhne MK, Debes KP, Helgogaard T, Vegge A, Kildegaard J, Pedersen-Bjergaard U, Olsen LH. Electrocardiography and heart rate variability in Göttingen Minipigs: Impact of diurnal variation, lead placement, repeatability and streptozotocin-induced diabetes. J Pharmacol Toxicol Methods 2022; 118:107221. [PMID: 36100059 DOI: 10.1016/j.vascn.2022.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND The Göttingen Minipig is widely used in preclinical research and safety pharmacology, but standardisation of porcine electrocardiography (ECG) is lacking. The aim of this study was to investigate diurnal effects, change over time and choice of lead on ECG morphology and heart rate variability (HRV) in healthy and streptozotocin (STZ) induced diabetic Göttingen Minipigs. METHODS Diabetes was experimentally induced using STZ in 11 Göttingen Minipigs (DIA). Seven controls (CON) were included. 24-h ECG was recorded at baseline and four months. Morphological parameters (QRS and T wave duration, P- and T-wave amplitude, PR and QT (Bazett's (QTcb) or Fridericia (QTcf) correction) intervals and ST segment), presence of cardiac arrhythmias, heart rate (HR) and HRV (time and frequency domain) were analysed. RESULTS Four months after induction, DIA had decreased P-wave amplitude (P < 0.0001) and T-wave duration (P = 0.017), compared to CON. QTcb was lower in DIA, but not in CON. Both groups had decreased HR (P < 0.0001) and QRS duration (lead II, P = 0.04) and length of PR-segment increased (lead I and II, P < 0.01) while selected HRV parameters also increased (all P < 0.01). Time of day influenced HR, QRS duration, PR segment, ST segment, T- and P-wave amplitude and some parameters of HRV. Inter- and intra-observer variability of morphological measurements was low (<6%). CONCLUSION ECG parameters were influenced by time setting, diurnal variation and lead. Some ECG and HRV changes were found in diabetic minipigs four months after STZ induction. The findings underline the need for standardisation of ECG and HRV in Göttingen Minipigs.
Collapse
Affiliation(s)
- Mille Kronborg Lyhne
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark.
| | - Karina Poulsdóttir Debes
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark.
| | - Terese Helgogaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark
| | - Andreas Vegge
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark.
| | - Jonas Kildegaard
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark.
| | - Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Nordsjællands Hospital Hillerød, Dyrehavevej 29, 3400 Hillerød, Denmark.
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark.
| |
Collapse
|
5
|
Peng H, Fu S, Wang S, Xu H, Dhanasekaran M, Chen H, Shao C, Yuanzhuo, Ren J. Ablation of FUNDC1-dependent mitophagy renders myocardium resistant to paraquat-induced ferroptosis and contractile dysfunction. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166448. [DOI: 10.1016/j.bbadis.2022.166448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
|
6
|
Cluzel GL, Ryan PM, Herisson FM, Caplice NM. High-fidelity porcine models of metabolic syndrome: a contemporary synthesis. Am J Physiol Endocrinol Metab 2022; 322:E366-E381. [PMID: 35224983 DOI: 10.1152/ajpendo.00413.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review aims to describe and compare porcine models of metabolic syndrome. This syndrome and its associated secondary comorbidities are set to become the greatest challenge to healthcare providers and policy makers in the coming century. However, an incomplete understanding of the pathogenesis has left significant knowledge gaps in terms of efficacious therapeutics. To further our comprehension and, in turn, management of metabolic syndrome, appropriate high-fidelity models of the disease complex are of great importance. In this context, our review aims to assess the most promising porcine models of metabolic syndrome currently available for their similarity to the human phenotype. In addition, we aim to highlight the strengths and shortcomings of each model in an attempt to identify the most appropriate application of each. Although no porcine model perfectly recapitulates the human metabolic syndrome, several pose satisfactory approximations. The Ossabaw miniature swine in particular represents a highly translatable model that develops each of the core parameters of the syndrome with many of the associated secondary comorbidities. Future high-fidelity porcine models of metabolic syndrome need to focus on secondary sequelae replication, which may require extended induction period to reveal.
Collapse
Affiliation(s)
- Gaston L Cluzel
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul M Ryan
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Florence M Herisson
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Noel M Caplice
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Chiao YA, Chakraborty AD, Light CM, Tian R, Sadoshima J, Shi X, Gu H, Lee CF. NAD + Redox Imbalance in the Heart Exacerbates Diabetic Cardiomyopathy. Circ Heart Fail 2021; 14:e008170. [PMID: 34374300 PMCID: PMC8373812 DOI: 10.1161/circheartfailure.120.008170] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Diabetes is a risk factor for heart failure and promotes cardiac dysfunction. Diabetic tissues are associated with nicotinamide adenine dinucleotide (NAD+) redox imbalance; however, the hypothesis that NAD+ redox imbalance causes diabetic cardiomyopathy has not been tested. This investigation used mouse models with altered NAD+ redox balance to test this hypothesis. METHODS Diabetic stress was induced in mice by streptozotocin. Cardiac function was measured by echocardiography. Heart and plasma samples were collected for biochemical, histological, and molecular analyses. Two mouse models with altered NAD+ redox states (1, Ndufs4 [NADH:ubiquinone oxidoreductase subunit S4] knockout, cKO, and 2, NAMPT [nicotinamide phosphoribosyltranferase] transgenic mice, NMAPT) were used. RESULTS Diabetic stress caused cardiac dysfunction and lowered NAD+/NADH ratio (oxidized/reduced ratio of nicotinamide adenine dinucleotide) in wild-type mice. Mice with lowered cardiac NAD+/NADH ratio without baseline dysfunction, cKO mice, were challenged with chronic diabetic stress. NAD+ redox imbalance in cKO hearts exacerbated systolic (fractional shortening: 27.6% versus 36.9% at 4 weeks, male cohort P<0.05), and diastolic dysfunction (early-to-late ratio of peak diastolic velocity: 0.99 versus 1.20, P<0.05) of diabetic mice in both sexes. Collagen levels and transcripts of fibrosis and extracellular matrix-dependent pathways did not show changes in diabetic cKO hearts, suggesting that the exacerbated cardiac dysfunction was due to cardiomyocyte dysfunction. NAD+ redox imbalance promoted superoxide dismutase 2 acetylation, protein oxidation, troponin I S150 phosphorylation, and impaired energetics in diabetic cKO hearts. Importantly, elevation of cardiac NAD+ levels by NAMPT normalized NAD+ redox balance, alleviated cardiac dysfunction (fractional shortening: 40.2% versus 24.8% in cKO:NAMPT versus cKO, P<0.05; early-to-late ratio of peak diastolic velocity: 1.32 versus 1.04, P<0.05), and reversed pathogenic mechanisms in diabetic mice. CONCLUSIONS Our results show that NAD+ redox imbalance to regulate acetylation and phosphorylation is a critical mediator of the progression of diabetic cardiomyopathy and suggest the therapeutic potential for diabetic cardiomyopathy by harnessing NAD+ metabolism.
Collapse
Affiliation(s)
- Ying Ann Chiao
- Aging and Metabolism Research Program (Y.A.C., A.D.C.), Oklahoma Medical Research Foundation, Oklahoma City
| | - Akash Deep Chakraborty
- Aging and Metabolism Research Program (Y.A.C., A.D.C.), Oklahoma Medical Research Foundation, Oklahoma City.,Cardiovascular Biology Research Program (A.D.C., C.M.L., C.F.L.), Oklahoma Medical Research Foundation, Oklahoma City
| | - Christine M Light
- Cardiovascular Biology Research Program (A.D.C., C.M.L., C.F.L.), Oklahoma Medical Research Foundation, Oklahoma City
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.). Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark (J.S.)
| | | | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale (X.S., H.G.)
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale (X.S., H.G.)
| | - Chi Fung Lee
- Cardiovascular Biology Research Program (A.D.C., C.M.L., C.F.L.), Oklahoma Medical Research Foundation, Oklahoma City.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (C.F.L.)
| |
Collapse
|
8
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
9
|
Barteková M, Adameová A, Görbe A, Ferenczyová K, Pecháňová O, Lazou A, Dhalla NS, Ferdinandy P, Giricz Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic Biol Med 2021; 169:446-477. [PMID: 33905865 DOI: 10.1016/j.freeradbiomed.2021.03.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiometabolic diseases (CMDs) are metabolic diseases (e.g., obesity, diabetes, atherosclerosis, rare genetic metabolic diseases, etc.) associated with cardiac pathologies. Pathophysiology of most CMDs involves increased production of reactive oxygen species and impaired antioxidant defense systems, resulting in cardiac oxidative stress (OxS). To alleviate OxS, various antioxidants have been investigated in several diseases with conflicting results. Here we review the effect of CMDs on cardiac redox homeostasis, the role of OxS in cardiac pathologies, as well as experimental and clinical data on the therapeutic potential of natural antioxidants (including resveratrol, quercetin, curcumin, vitamins A, C, and E, coenzyme Q10, etc.), synthetic antioxidants (including N-acetylcysteine, SOD mimetics, mitoTEMPO, SkQ1, etc.), and promoters of antioxidant enzymes in CMDs. As no antioxidant indicated for the prevention and/or treatment of CMDs has reached the market despite the large number of preclinical and clinical studies, a sizeable translational gap is evident in this field. Thus, we also highlight potential underlying factors that may contribute to the failure of translation of antioxidant therapies in CMDs.
Collapse
Affiliation(s)
- Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia.
| | - Adriana Adameová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Oľga Pecháňová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, And Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| |
Collapse
|
10
|
Wang Y, Sun H, Zhang J, Xia Z, Chen W. Streptozotocin-induced diabetic cardiomyopathy in rats: ameliorative effect of PIPERINE via Bcl2, Bax/Bcl2, and caspase-3 pathways. Biosci Biotechnol Biochem 2020; 84:2533-2544. [PMID: 32892714 DOI: 10.1080/09168451.2020.1815170] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of present investigation was to appraise the effects of piperine on STZ-induced diabetic cardiomyopathy in rats. Diabetes was induced in Sprague-Dawley rats with intraperitoneal STZ injection, and the rats were assigned to seven groups. Electrocardiograph, hemodynamic, various biochemical, molecular, and histological parameters were examined. Treatment with piperine significantly (p < 0.05) restored altered myocardial functions, inhibited cardiac marker, and restored electrocardiogram and hemodynamic alterations. The elevated level of cardiac oxido-nitrosative stress and decreased cardiac Na-K-ATPase concentration, after STZ administration, were significantly (p < 0.05) attenuated by piperine treatment. Piperine also considerably (p < 0.05) increased myocardial mitochondrial enzyme activity. STZ-induced alteration in heart ANP, BNP, cTn-I, Bcl2, Bax/Bcl2, and caspase3 mRNA expression was significantly (p < 0.05) restored by piperine treatment. Piperine administration reduced histopathological aberrations induced by STZ. In conclusion, the present investigation suggests that piperine ameliorates STZ-induced diabetic cardiomyopathy via modulation of caspase-3, Bcl2, Bax/Bcl2 pathways. Abbreviations: ACE: Angiotensin-Converting Enzyme; ANOVA: Analysis of Variance; ANP: Atrial Natriuretic Peptide; APAF: Apoptotic Protease-Activating Factor; ARB: Angiotensin Receptor Blockers; ATP: Adenosine Triphosphate; Bax: Bcl-2-associated X protein; Bcl2: B-cell lymphoma 2; BPM: Beats Per Minute; BNP: brain natriuretic peptide; CAD: Caspase-3-Activated DNase; cDNA: Complementary DNA; CK-MB: Creatine Kinase-MB; CPCSEA: Committee for the Purpose of Control And Supervision of Experiments on Animals; cTn-I: cardiac troponin I; DBP: Diastolic Blood Pressure; DCM: Diabetic Cardiomyopathy; DNA: Deoxyribonucleic Acid; DPX: DisterenePhthalate Xylene; ECG: Electrocardiogram; ETC: Electron Transport Chain; GOD-POD: Glucose Oxidase Peroxidase; GSH: Glutathione; IAEC: Institutional Animal Ethics Committee; IL-6: Interleukin-6; IL-1b: Interleukin-1b; LDH: Lactate Dehydrogenase; LV: Left Ventricle; LVEDP: left ventricular end-diastolic Pressure; MABP: Mean Arterial Blood Pressure; MDA: Malondialdehyde; mRNA: Messenger Ribonucleic Acid; MTT: 3- (4,5-Dimethylthiazol-2-yl)-2,5-DiphenyltetrazoliumBromide; NADH: Nicotinamide Adenine Dinucleotide Phosphate; NADPH: Nicotinamide Adenine Dinucleotide Phosphate Hydrogen; NO: nitric oxide; NP: Natriuretic Peptides; OXPHOS: Oxidative Phosphorylation; p.o.: per os; PCR: Polymerase Chain Reaction; RT-PCR: Reverse Transcriptionpolymerase Chain Reaction; PPAR: Peroxisome Proliferator-Activated Receptor Gamma; RAS: Renin-Angiotensin System; RNA: Ribonucleic Acid; ROS: Reactive Oxygen Species; SBP: Systolic Blood Pressure; SDH: Succinate Dehydrogenase; SEM: Standard Error Means; SOD: superoxide dismutase: STZ: Streptozotocin; TNF: Tumor Necrosis Factor Alpha; TnI: Troponin I.
Collapse
Affiliation(s)
- Yan Wang
- Department of Endocrinology, The Affiliated Hospital of North Sichuan Medical College , Nanchong City, Sichuan Province, China
| | - Hui Sun
- Department of Infectious Diseases, The Affiliated Hospital of North Sichuan Medical College , Nanchong City, Sichuan Province, China
| | - Jianwu Zhang
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College , Nanchong City, Sichuan Province, China
| | - Zhiyang Xia
- Department of Pathophysiology, School of Basic Medicine, North Sichuan Medical College , Nanchong City, Sichuan Province, China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medicine, North Sichuan Medical College , Nanchong City, Sichuan Province, China
| |
Collapse
|
11
|
Ali TM, Abo-Salem OM, El Esawy BH, El Askary A. The Potential Protective Effects of Diosmin on Streptozotocin-Induced Diabetic Cardiomyopathy in Rats. Am J Med Sci 2019; 359:32-41. [PMID: 31902439 DOI: 10.1016/j.amjms.2019.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a nonischemic myocardial disorder characterized by metabolic disturbances and oxidative stress in diabetic patients. The present paper aims to determine the protective effect of the phlebotrophic drug, diosmin, on DCM in a model of high-fat diet-fed and streptozotocin-induced type 2 diabetes in the rat. MATERIALS AND METHODS The animals were divided into 4 groups (8 rats/group) as follows: vehicle-treated nondiabetic control group, vehicle-treated diabetic group, diosmin (50 mg/kg)-treated diabetic group and diosmin (100 mg/kg)-treated diabetic group. Treatment was given once daily orally by gavage for 6 weeks. Oxidant and antioxidant stress markers, inflammatory markers and proapoptotic and antiapoptotic gene expression using quantified real-time polymerase chain reaction were investigated. RESULTS Diosmin treatment in diabetic rats lowered elevated blood glucose levels, homeostatic model assessment for insulin resistance, cardiac creatine kinase and lactate dehydrogenase enzymes, cardiac malondialdehyde and nitric oxide. Moreover, diosmin increased plasma insulin and c-peptide levels, cardiac glutathione content, superoxide dismutase, catalase and glutathione S-transferase activities. Also, diosmin treatment significantly (P < 0.05) lowered the levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), down-regulated cardiac Bcl-2-associated X protein and caspase 3 and 9 and up-regulated B-cell lymphoma 2 mRNA expression levels. CONCLUSIONS Diosmin may have a sizeable therapeutic potential in the treatment of DCM due to antidiabetic, antioxidative stress, anti-inflammatory and antiapoptotic effects. Detailed studies are needed to disclose the precise mechanisms motivating the protective effect of diosmin.
Collapse
Affiliation(s)
- Tarek Mohamed Ali
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Egypt & Taif University, Taif, Saudi Arabia.
| | - Osama M Abo-Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr-City, Cairo, Egypt
| | - Basem Hassan El Esawy
- Department of Medical Laboratory, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed El Askary
- Department of Medical Laboratory, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Department of Medical Biochemistry, Faculty of Medicine (New Damietta), Al Azhar University, Nasr-City, Cairo, Egypt
| |
Collapse
|
12
|
Nørgaard SA, Søndergaard H, Sørensen DB, Galsgaard ED, Hess C, Sand FW. Optimising streptozotocin dosing to minimise renal toxicity and impairment of stomach emptying in male 129/Sv mice. Lab Anim 2019; 54:341-352. [PMID: 31510860 DOI: 10.1177/0023677219872224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The streptozotocin (STZ)-induced diabetic mouse model has been extensively used as a model for diabetes and diabetic nephropathy, but it is still influenced by many off-target toxic effects and large variation in diabetes induction. Therefore, the aim of this study was to compare different STZ dosing regimens to optimise animal welfare and minimise unwanted effects of STZ measured by acute renal toxicity, impairment of stomach emptying and weight loss. Male 129/Sv mice were injected with 1 × 50, 1 × 100, 1 × 125, 1 × 150, 1 × 200, 5 × 50, 2 × 100 and 2 × 125 mg/kg STZ or vehicle and euthanized 24 hours after the last injection. All STZ doses were found to induce significant enlargement of the stomach. All multiple doses of STZ increased the albumin:creatinine ratio significantly, and immunohistochemical staining of KIM-1 and Ki-67 was increased by 5 × 50 and 2 × 100 mg/kg STZ. Renal gene expression of Cdkn1a, KIM-1, NGAL and MCP-1 was increased by most of the STZ doses. No difference was found between the double intermediate dose of 2 × 100 mg/kg and the multiple low dose of 5 × 50 mg/kg regarding either stomach enlargement or kidney injury. However, the reduced fasting periods and injections in the 2 × 100 mg/kg STZ group could have lowered the impact on the general condition measured as change in body weight. This shows that the double intermediate dose is a good alternative to the recommended multiple low dose for diabetes induction in these mice. The STZ-induced mouse model has again proven to be a model with large variations affecting both animal welfare and model robustness.
Collapse
Affiliation(s)
- Sisse A Nørgaard
- Department of Pharmacology, Novo Nordisk A/S, Denmark.,Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Dorte B Sørensen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
13
|
Wang J, Wang S, Wang W, Chen J, Zhang Z, Zheng Q, Liu Q, Cai L. Protection against diabetic cardiomyopathy is achieved using a combination of sulforaphane and zinc in type 1 diabetic OVE26 mice. J Cell Mol Med 2019; 23:6319-6330. [PMID: 31270951 PMCID: PMC6714218 DOI: 10.1111/jcmm.14520] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/20/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
Sulforaphane (SFN) can effectively induce nuclear factor E2-related factor 2 (Nrf2), and zinc (Zn) can effectively induce metallothionein (MT), both of which have been shown to protect against diabetic cardiomyopathy (DCM). However, it is unclear whether combined treatment with SFN and Zn offers better cardiac protection than either one alone. Here, we treated 5-week-old OVE mice that spontaneously develop type 1 diabetes with SFN and/or Zn for 18 weeks. Cardiac dysfunction, by echocardiography, and pathological alterations and remodelling, shown by cardiac hypertrophy, fibrosis, inflammation and oxidative damage, examined by histopathology, Western blotting and real-time PCR, were observed in OVE mice. All these dysfunction and pathological abnormalities seen in OVE mice were attenuated in OVE mice with treatment of either SFN, Zn or SFN/Zn, and the combined treatment with SFN/Zn was better than single treatments at ameliorating DCM. In addition, combined SFN and Zn treatment increased Nrf2 function and MT expression in the heart of OVE mice to a greater extent than SFN or Zn alone. This indicates that the dual activation of Nrf2 and MT by combined treatment with SFN and Zn may be more effective than monotherapy at preventing the development of DCM via complementary, additive mechanisms.
Collapse
Affiliation(s)
- Jiqun Wang
- The Center of Cardiovascular DiseasesThe First Hospital of Jilin UniversityChangchunChina
- Pediatric Research Institute, Department of PediatricsUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Shudong Wang
- The Center of Cardiovascular DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Wanning Wang
- Pediatric Research Institute, Department of PediatricsUniversity of LouisvilleLouisvilleKentuckyUSA
- Department of NephrologyThe First Hospital of Jilin UniversityChangchunChina
| | - Jing Chen
- Department of OtolaryngologyStanford UniversityPalo AltoCaliforniaUSA
| | - Zhiguo Zhang
- The Center of Cardiovascular DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Qi Zheng
- Department of Bioinformatics and BiostatisticsUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Quan Liu
- The Center of Cardiovascular DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Lu Cai
- Pediatric Research Institute, Department of PediatricsUniversity of LouisvilleLouisvilleKentuckyUSA
- Departments of Radiation Oncology, Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
14
|
Gezginci-Oktayoglu S, Coskun E, Ercin M, Bolkent S. 4-Methylcatechol prevents streptozotocin-induced acute kidney injury through modulating NGF/TrkA and ROS-related Akt/GSK3β/β-catenin pathways. Int Immunopharmacol 2018; 64:52-59. [DOI: 10.1016/j.intimp.2018.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 11/16/2022]
|
15
|
Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018; 9:119. [PMID: 29371661 PMCID: PMC5833737 DOI: 10.1038/s41419-017-0135-z] [Citation(s) in RCA: 779] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/29/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Chronic or intermittent hyperglycemia is associated with the development of diabetic complications. Several signaling pathways can be altered by having hyperglycemia in different tissues, producing oxidative stress, the formation of advanced glycation end products (AGEs), as well as the secretion of the pro-inflammatory cytokines and cellular death (pathological autophagy and/or apoptosis). However, the signaling pathways that are directly triggered by hyperglycemia appear to have a pivotal role in diabetic complications due to the production of reactive oxygen species (ROS), oxidative stress, and cellular death. The present review will discuss the role of cellular death in diabetic complications, and it will suggest the cause and the consequences between the hyperglycemia-induced signaling pathways and cell death. The signaling pathways discussed in this review are to be described step-by-step, together with their respective inhibitors. They involve diacylglycerol, the activation of protein kinase C (PKC) and NADPH-oxidase system, and the consequent production of ROS. This was initially entitled the “dangerous metabolic route in diabetes”. The historical usages and the recent advancement of new drugs in controlling possible therapeutical targets have been highlighted, in order to evaluate the evolution of knowledge in this sensitive area. It has recently been shown that the metabolic responses to stimuli (i.e., hyperglycemia) involve an integrated network of signaling pathways, in order to define the exact responses. Certain new drugs have been experimentally tested—or suggested and proposed—for their ability to modulate the possible biochemical therapeutical targets for the downregulation of retinopathy, nephropathy, neuropathy, heart disease, angiogenesis, oxidative stress, and cellular death. The aim of this study was to critically and didactically evaluate the exact steps of these signaling pathways and hence mark the indicated sites for the actions of such drugs and their possible consequences. This review will emphasize, besides others, the therapeutical targets for controlling the signaling pathways, when aimed at the downregulation of ROS generation, oxidative stress, and, consequently, cellular death—with all of these conditions being a problem in diabetes.
Collapse
Affiliation(s)
- Caroline Maria Oliveira Volpe
- Núcleo de Pós-Graduação e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigênia, Belo Horizonte, MG30150-240, Brazil
| | - Pedro Henrique Villar-Delfino
- Núcleo de Pós-Graduação e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigênia, Belo Horizonte, MG30150-240, Brazil
| | - Paula Martins Ferreira Dos Anjos
- Núcleo de Pós-Graduação e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigênia, Belo Horizonte, MG30150-240, Brazil
| | - José Augusto Nogueira-Machado
- Núcleo de Pós-Graduação e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigênia, Belo Horizonte, MG30150-240, Brazil.
| |
Collapse
|
16
|
Gu J, Wang S, Guo H, Tan Y, Liang Y, Feng A, Liu Q, Damodaran C, Zhang Z, Keller BB, Zhang C, Cai L. Inhibition of p53 prevents diabetic cardiomyopathy by preventing early-stage apoptosis and cell senescence, reduced glycolysis, and impaired angiogenesis. Cell Death Dis 2018; 9:82. [PMID: 29362483 PMCID: PMC5833384 DOI: 10.1038/s41419-017-0093-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023]
Abstract
Elevated tumor suppressor p53 expression has been associated with heart diseases, including the diabetic heart. However, its precise role in the pathogenesis of diabetic cardiomyopathy (DCM) remains unclear. We hypothesized that the development of DCM is attributed to up-regulated p53-mediated both early cardiac cell death and persistent cell senescence, glycolytic and angiogenetic dysfunctions. The present study investigated the effect of p53 inhibition with its specific inhibitor pifithrin-α (PFT-α) on the pathogenesis of DCM and its associated mechanisms. Type 1 diabetes was induced with multiple low doses of streptozotocin. Both hyperglycemic and age-matched control mice were treated with and without PFT-α five times a week for 2 months and then sacrificed at 3 and 6 months post-diabetes. Treatment with PFT-α significantly prevented the progression of diabetes-induced cardiac remodeling and dysfunction (i.e., DCM). Mechanistically, the inhibition of p53 prevented the cardiac apoptosis during early-stage diabetes (0.5 month), attenuated diabetes-induced cell senescence (3 and 6 months), and improved both glycolytic and angiogenic defects by increasing hypoxia-induced factor (HIF)-1α protein stability and upregulating HIF-1α transcription of specific target genes at 3 and 6 months after diabetes. Therefore, the targeted inhibition of p53 in diabetic individuals may provide a novel approach for the prevention of DCM.
Collapse
Affiliation(s)
- Junlian Gu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Ruian, China
- Chinese-American Research Institute for Diabetic Complications, the School of Pharmaceutical Sciences of the Wenzhou Medical University, Wenzhou, China
- the Department of Pediatrics of the University of Louisville, Pediatrics Research Institute, Louisville, KY, 40202, USA
| | - Shudong Wang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Hua Guo
- the Department of Pediatrics of the University of Louisville, Pediatrics Research Institute, Louisville, KY, 40202, USA
| | - Yi Tan
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Ruian, China
- Chinese-American Research Institute for Diabetic Complications, the School of Pharmaceutical Sciences of the Wenzhou Medical University, Wenzhou, China
- the Department of Pediatrics of the University of Louisville, Pediatrics Research Institute, Louisville, KY, 40202, USA
| | - Yaqin Liang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Anyun Feng
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Ruian, China
| | - Qiuju Liu
- Department of Hematology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Chendil Damodaran
- Department of Urology, the University of Louisville, Louisville, KY, USA
| | - Zhiguo Zhang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Bradley B Keller
- the Department of Pediatrics of the University of Louisville, Pediatrics Research Institute, Louisville, KY, 40202, USA
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, 40202, USA
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Ruian, China.
- Chinese-American Research Institute for Diabetic Complications, the School of Pharmaceutical Sciences of the Wenzhou Medical University, Wenzhou, China.
| | - Lu Cai
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Ruian, China
- Chinese-American Research Institute for Diabetic Complications, the School of Pharmaceutical Sciences of the Wenzhou Medical University, Wenzhou, China
- the Department of Pediatrics of the University of Louisville, Pediatrics Research Institute, Louisville, KY, 40202, USA
| |
Collapse
|
17
|
Sullivan R, McGirr R, Hu S, Tan A, Wu D, Charron C, Lalonde T, Arany E, Chakrabarti S, Luyt L, Dhanvantari S. Changes in the Cardiac GHSR1a-Ghrelin System Correlate With Myocardial Dysfunction in Diabetic Cardiomyopathy in Mice. J Endocr Soc 2017; 2:178-189. [PMID: 29450407 PMCID: PMC5799831 DOI: 10.1210/js.2017-00433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023] Open
Abstract
Ghrelin and its receptor, the growth hormone secretagogue receptor 1a (GHSR1a), are present in cardiac tissue. Activation of GHSR1a by ghrelin promotes cardiomyocyte contractility and survival, and changes in myocardial GHSR1a and circulating ghrelin track with end-stage heart failure, leading to the hypothesis that GHSR1a is a biomarker for heart failure. We hypothesized that GHSR1a could also be a biomarker for diabetic cardiomyopathy (DCM). We used two models of streptozotocin (STZ)-induced DCM: group 1, adult mice treated with 35 mg/kg STZ for 3 days; and group 2, neonatal mice treated with 70 mg/kg STZ at days 2 and 5 after birth. In group 1, mild fasting hyperglycemia (11 mM) was first detected 8 weeks after the last injection, and in group 2, severe fasting hyperglycemia (20 mM) was first detected 1 to 3 weeks after the last injection. In group 1, left ventricular function was slightly impaired as measured by echocardiography, and Western blot analysis showed a significant decrease in myocardial GHSR1a. In group 2, GHSR1a levels were also decreased as assessed by Cy5-ghrelin(1–19) fluorescence microscopy, and there was a significant negative correlation between GHSR1a levels and glucose tolerance. There were significant positive correlations between GHSR1a and ghrelin and between GHSR1a and sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a), a marker for contractility, but not between GHSR1a and B-type natriuretic peptide, a marker for heart failure. We conclude that the subclinical stage of DCM is accompanied by alterations in the myocardial ghrelin-GHSR1a system, suggesting the possibility of a biomarker for DCM.
Collapse
Affiliation(s)
- Rebecca Sullivan
- Imaging Research, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Rebecca McGirr
- Imaging Research, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Shirley Hu
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 3K7, Canada
| | - Alice Tan
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Derek Wu
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Carlie Charron
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| | - Tyler Lalonde
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| | - Edith Arany
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Leonard Luyt
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada.,Departments of Oncology and Medical Imaging, Western University, London, Ontario N6A 4L6, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Savita Dhanvantari
- Imaging Research, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada.,Department of Medical Biophysics, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
18
|
Guo R, Hua Y, Rogers O, Brown TE, Ren J, Nair S. Cathepsin K knockout protects against cardiac dysfunction in diabetic mice. Sci Rep 2017; 7:8703. [PMID: 28821796 PMCID: PMC5562704 DOI: 10.1038/s41598-017-09037-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a major risk factor for cardiovascular disease and the lysosomal cysteine protease cathepsin K plays a critical role in cardiac pathophysiology. To expand upon our previous findings, we tested the hypothesis that, knockout of cathepsin K protects against diabetes-associated cardiac anomalies. Wild-type and cathepsin K knockout mice were rendered diabetic by streptozotocin (STZ) injections. Body weight, organ mass, fasting blood glucose, energy expenditure, cardiac geometry and function, cardiac histomorphology, glutathione levels and protein levels of cathepsin K and those associated with Ca2+ handling, calcineurin/NFAT signaling, insulin signaling, cardiac apoptosis and fibrosis were determined. STZ-induced diabetic mice exhibited distinct cardiac dysfunction, dampened intracellular calcium handling, alterations in cardiac morphology, and elevated cardiomyocyte apoptosis, which were mitigated in the cathepsin K knockout mice. Additionally, cathepsin K knockout mice attenuated cardiac oxidative stress and calcineurin/NFAT signaling in diabetic mice. In cultured H9c2 myoblasts, pharmacological inhibition of cathepsin K, or treatment with calcineurin inhibitor rescued cells from high-glucose triggered oxidative stress and apoptosis. Therefore, cathepsin K may represent a potential target in treating diabetes-associated cardiac dysfunction.
Collapse
Affiliation(s)
- Rui Guo
- School of Pharmacy, College of Health Sciences and the Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, WY, 82071, USA
| | - Yinan Hua
- School of Pharmacy, College of Health Sciences and the Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, WY, 82071, USA
| | - Olivia Rogers
- School of Pharmacy, College of Health Sciences and the Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, WY, 82071, USA
| | - Travis E Brown
- School of Pharmacy, College of Health Sciences and the Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, WY, 82071, USA
| | - Jun Ren
- School of Pharmacy, College of Health Sciences and the Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, WY, 82071, USA
| | - Sreejayan Nair
- School of Pharmacy, College of Health Sciences and the Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, WY, 82071, USA.
| |
Collapse
|
19
|
Xia G, Wang X, Sun H, Qin Y, Fu M. Carnosic acid (CA) attenuates collagen-induced arthritis in db/db mice via inflammation suppression by regulating ROS-dependent p38 pathway. Free Radic Biol Med 2017; 108:418-432. [PMID: 28343998 DOI: 10.1016/j.freeradbiomed.2017.03.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 03/05/2017] [Accepted: 03/20/2017] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease, characterized by inflammation of synovial joints. Carnosic acid (CA) is a phenolic diterpene isolated from Rosmarinus officinailis, playing a central role in cytoprotective responses to oxidative stress and inflammation response. Our study aimed to investigate the effects of CA on RA progression in diabetic animals. Carnosic acid (CA) was used to treat collagen-induced arthritis (CIA)-induced db/db mice. Blood glucose, oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were investigated to explore insulin resistance. CA significantly down-regulated fasting blood glucose, glucose level in OGTT and ITT, ameliorated CIA-induced bone loss, and reduced pro-inflammatory cytokines and reactive oxygen species (ROS) in db/db mice with arthritis induced by CIA. In vitro, CA suppressed Receptor Activator for Nuclear Factor-κ B Ligand (RANKL)- and Macrophage colony-stimulating factor (M-CSF)-induced osteoclastogenesis. The osteoclastic specific markers were inhibited by CA. Signal transduction studies showed that CA significantly decreased the expression of molecules contributing to ROS and increased anti-oxidants. Additionally, CA inactivated the RANKL- and M-CSF-induced p38 mitogen activated protein kinases (MAPK), inhibited NF-κB phosphorylation, causing pro-inflammatory cytokines down-regulation. Together, CA ameliorated osteoclast formation and CIA-induced bone loss in db/db mice through inflammation suppression by regulating ROS-dependent p38 pathway.
Collapse
Affiliation(s)
- Guangtao Xia
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Xia Wang
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Hongsheng Sun
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China
| | - Yuhong Qin
- School of Life Sciences, Tsinghua University, Beijing 100000, PR China
| | - Min Fu
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China.
| |
Collapse
|
20
|
Dihydromyricetin Protects against Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetic Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3764370. [PMID: 28421194 PMCID: PMC5379084 DOI: 10.1155/2017/3764370] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Diabetic cardiomyopathy (DCM) is an important cause of heart failure in diabetic patients. The present study sought to explore the potential effects of dihydromyricetin (DHM) on DCM and its possible mechanism. A diabetic model was induced by intraperitoneal injection of streptozotocin (STZ) in C57BL/6J mice. Two weeks after the STZ injection, mice were randomly allocated into the following 4 groups for treatment: the control group (CON), the control treated with DHM group (CON + DHM), the diabetes group (DM), and the diabetes treated with DHM group (DM + DHM). DHM was dissolved in distilled water and administered daily by gavage. For 14 weeks, the CON + DHM group and DM + DHM group were given a dose of 100 mg/kg/day DHM (Sigma-Aldrich), while the CON and DM groups were intragastrically given equivalent volumes of distilled water. Assessments and comparisons were made among the groups based on cardiac function and structural changes, inflammation factors, markers of oxidative stress, mitochondria function, apoptosis, and autophagy. The DHM treatment normalized body weight, preserved cardiac function, attenuated oxidative stress (MDA, SOD, and GSH-Px), reduced the levels of inflammation factors (IL-6, TNF-α), alleviated pathological changes, improved mitochondrial function (ATP content, CS activity, and complex Ι/ΙΙ/ΙΙΙ/ΙV/V activities), inhibited cardiac apoptosis, and restored autophagy in diabetic mice. DHM may have a great therapeutic potential in the treatment of DCM.
Collapse
|
21
|
Yu M, Liu Y, Zhang B, Shi Y, Cui L, Zhao X. Inhibiting microRNA-144 abates oxidative stress and reduces apoptosis in hearts of streptozotocin-induced diabetic mice. Cardiovasc Pathol 2015; 24:375-81. [PMID: 26164195 DOI: 10.1016/j.carpath.2015.06.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Hyperglycemia-induced reactive oxygen species (ROS) generation contributes to the development of diabetic cardiomyopathy. However, little is known about the role of microRNAs in the regulation of ROS formation and myocardial apoptosis in streptozotocin (STZ)-induced diabetic mice. METHODS AND RESULTS It was observed that microRNA-144 (miR-144) level was lower in heart tissues of STZ-induced diabetic mice. High glucose exposure also reduced miR-144 levels in cultured cardiomyocytes. Moreover, miR-144 modulated high glucose-induced oxidative stress in cultured cardiomyocytes by directly targeting nuclear factor-erythroid 2-related factor 2 (Nrf2), which was a central regulator of cellular response to oxidative stress. The miR-144 mimics aggravated high glucose-induced ROS formation and apoptosis in cardiomyocytes, which could be attenuated by treatment with Dh404, an activator of Nrf2. Meanwhile, inhibition of miR-144 suppressed ROS formation and apoptosis induced by high glucose in cultured cardiomyocytes. What was more important is that reduced myocardial oxidative stress and apoptosis and improved cardiac function were identified in STZ-induced diabetic mice when treated with miR-144 antagomir. CONCLUSION Although miR-144 cannot explain the increased oxidative stress in STZ, therapeutic interventions directed at decreasing miR-144 may help to decrease oxidative stress in these hearts. Inhibition of miR-144 might have clinical potential to abate oxidative stress as well as to reduce cardiomyocyte apoptosis and improve cardiac function in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Manli Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yu Liu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bili Zhang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yicheng Shi
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ling Cui
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xianxian Zhao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
22
|
Liu X, Xu Q, Wang X, Zhao Z, Zhang L, Zhong L, Li L, Kang W, Zhang Y, Ge Z. Irbesartan ameliorates diabetic cardiomyopathy by regulating protein kinase D and ER stress activation in a type 2 diabetes rat model. Pharmacol Res 2015; 93:43-51. [DOI: 10.1016/j.phrs.2015.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
|
23
|
Bugger H, Bode C. The vulnerable myocardium. Diabetic cardiomyopathy. Hamostaseologie 2014; 35:17-24. [PMID: 25408270 DOI: 10.5482/hamo-14-09-0038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/11/2014] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease is the major cause of morbidity and mortality in subjects suffering from diabetes mellitus. While coronary artery disease is the leading cause of cardiac complications in diabetics, it is widely recognized that diabetes increases the risk for the development of heart failure independently of coronary heart disease and hypertension. This increased susceptibility of the diabetic heart to develop structural and functional impairment is termed diabetic cardiomyopathy. The number of different mechanisms proposed to contribute to diabetic cardiomyopathy is steadily increasing and underlines the complexity of this cardiac entity. In this review the mechanisms that account for the increased myocardial vulnerability in diabetic cardiomyopathy are discussed.
Collapse
Affiliation(s)
- H Bugger
- Heiko Bugger, MD, Heart Center Freiburg University, Cardiology and Angiology I, Hugstetter Str. 55, 79106 Freiburg, Germany, E-mail:
| | | |
Collapse
|
24
|
Liu Q, Wang S, Cai L. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage. J Diabetes Investig 2014; 5:623-634. [PMID: 25422760 PMCID: PMC4234223 DOI: 10.1111/jdi.12250] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 01/29/2023] Open
Abstract
Diabetic cardiomyopathy as an important threat to health occurs with or without coexistence of vascular diseases. The exact mechanisms underlying the disease remain incompletely clear. Although several pathological mechanisms responsible for diabetic cardiomyopathy have been proposed, oxidative stress is widely considered as one of the major causes for the pathogenesis of the disease. Hyperglycemia-, hyperlipidemia-, hypertension- and inflammation-induced oxidative stress are major risk factors for the development of microvascular pathogenesis in the diabetic myocardium, which results in abnormal gene expression, altered signal transduction and the activation of pathways leading to programmed myocardial cell deaths. In the present article, we aim to provide an extensive review of the role of oxidative stress and anti-oxidants in diabetic cardiomyopathy based on our own works and literature information available.
Collapse
Affiliation(s)
- Quan Liu
- Center of Cardiovascular Diseases at the First Hospital of the Jilin UniversityChangchun, China
| | - Shudong Wang
- Center of Cardiovascular Diseases at the First Hospital of the Jilin UniversityChangchun, China
- Kosair Children's Hospital Research Institute, the Department of Pediatrics, the University of LouisvilleLouisville, KY, USA
| | - Lu Cai
- Kosair Children's Hospital Research Institute, the Department of Pediatrics, the University of LouisvilleLouisville, KY, USA
- Departments of Radiation Oncology, Pharmacology and Toxicology, the University of LouisvilleLouisville, KY, USA
| |
Collapse
|
25
|
D'Souza A, Howarth FC, Yanni J, Dobrzynski H, Boyett MR, Adeghate E, Bidasee KR, Singh J. Chronic effects of mild hyperglycaemia on left ventricle transcriptional profile and structural remodelling in the spontaneously type 2 diabetic Goto-Kakizaki rat. Heart Fail Rev 2014; 19:65-74. [PMID: 23430124 DOI: 10.1007/s10741-013-9376-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Heart failure in chronic type 2 diabetes mellitus is partly attributable to adverse structural remodelling of the left ventricle (LV), but the contribution of hyperglycaemia (HG) per se in remodelling processes is debated. In this study, we examined the molecular signature of LV remodelling in 18-month-old spontaneously diabetic male Goto-Kakizaki (GK) rats that represent a long-term mildly diabetic phenotype, using histological, immunoblotting and quantitative gene expression approaches. Relative to age-matched Wistar controls, mildly diabetic GK rats presented with LV hypertrophy, increased expression of natriuretic peptides and phosphorylation of pro-hypertrophic Akt. Fibrosis proliferation in the GK LV paralleled increased transcriptional and biologically active pro-fibrogenic transforming growth factor-β1 (TGFβ1) in the LV with upregulated mRNA abundance for key extracellular matrix (ECM) components such as fibronectin, collagen type(s) 1 and 3α and regulators including matrix metalloproteinases 2 and 9, and their tissue inhibitor (TIMP) 4, connexin 43 and α5-integrin. GK rats also presented with altered mRNA expression for cardiac sarcoplasmic reticulum Ca(2+)ATPase, Na(+)/Ca(2+) exchanger and the L-type Ca(2+) channels which may contribute to the altered Ca(2+) transient kinetics previously observed in this model at 18 months of age (t test, p < 0.05 vs. age-matched Wistar control for all parameters). The results indicate that chronic mild HG can produce the molecular and structural correlates of a hypertrophic myopathy. Diffuse ECM proliferation in this model is possibly a product of HG-induced TGFβ1 upregulation and altered transcriptional profile of the ECM.
Collapse
Affiliation(s)
- Alicia D'Souza
- Cardiovascular Research Group, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Diabetic cardiomyopathy (DCM) is defined as cardiac disease independent of vascular complications during diabetes. The number of new cases of DCM is rising at epidemic rates in proportion to newly diagnosed cases of diabetes mellitus (DM) throughout the world. DCM is a heart failure syndrome found in diabetic patients that is characterized by left ventricular hypertrophy and reduced diastolic function, with or without concurrent systolic dysfunction, occurring in the absence of hypertension and coronary artery disease. DCM and other diabetic complications are caused in part by elevations in blood glucose and lipids, characteristic of DM. Although there are pathological consequences to hyperglycemia and hyperlipidemia, the combination of the two metabolic abnormalities potentiates the severity of diabetic complications. A natural competition exists between glucose and fatty acid metabolism in the heart that is regulated by allosteric and feedback control and transcriptional modulation of key limiting enzymes. Inhibition of these glycolytic enzymes not only controls flux of substrate through the glycolytic pathway, but also leads to the diversion of glycolytic intermediate substrate through pathological pathways, which mediate the onset of diabetic complications. The present review describes the limiting steps involved in the development of these pathological pathways and the factors involved in the regulation of these limiting steps. Additionally, therapeutic options with demonstrated or postulated effects on DCM are described.
Collapse
Affiliation(s)
- Michael Isfort
- The Ohio State University College of Medicine, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
27
|
Cox EJ, Marsh SA. A systematic review of fetal genes as biomarkers of cardiac hypertrophy in rodent models of diabetes. PLoS One 2014; 9:e92903. [PMID: 24663494 PMCID: PMC3963983 DOI: 10.1371/journal.pone.0092903] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/27/2014] [Indexed: 02/04/2023] Open
Abstract
Pathological cardiac hypertrophy activates a suite of genes called the fetal gene program (FGP). Pathological hypertrophy occurs in diabetic cardiomyopathy (DCM); therefore, the FGP is widely used as a biomarker of DCM in animal studies. However, it is unknown whether the FGP is a consistent marker of hypertrophy in rodent models of diabetes. Therefore, we analyzed this relationship in 94 systematically selected studies. Results showed that diabetes induced with cytotoxic glucose analogs such as streptozotocin was associated with decreased cardiac weight, but genetic or diet-induced models of diabetes were significantly more likely to show cardiac hypertrophy (P<0.05). Animal strain, sex, age, and duration of diabetes did not moderate this effect. There were no correlations between the heart weight:body weight index and mRNA or protein levels of the fetal genes α-myosin heavy chain (α-MHC) or β-MHC, sarco/endoplasmic reticulum Ca2+-ATPase, atrial natriuretic peptide (ANP), or brain natriuretic peptide. The only correlates of non-indexed heart weight were the protein levels of α-MHC (Spearman's ρ = 1, P<0.05) and ANP (ρ = −0.73, P<0.05). These results indicate that most commonly measured genes in the FGP are confounded by diabetogenic methods, and are not associated with cardiac hypertrophy in rodent models of diabetes.
Collapse
Affiliation(s)
- Emily J. Cox
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, United States of America
| | - Susan A. Marsh
- Department of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington, United States of America
- * E-mail:
| |
Collapse
|
28
|
Mali VR, Ning R, Chen J, Yang XP, Xu J, Palaniyandi SS. Impairment of aldehyde dehydrogenase-2 by 4-hydroxy-2-nonenal adduct formation and cardiomyocyte hypertrophy in mice fed a high-fat diet and injected with low-dose streptozotocin. Exp Biol Med (Maywood) 2014; 239:610-8. [PMID: 24651616 DOI: 10.1177/1535370213520109] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are generated in the myocardium in cardiac disease. 4HNE and other toxic aldehydes form adducts with proteins, leading to cell damage and organ dysfunction. Aldehyde dehydrogenases (ALDHs) metabolize toxic aldehydes such as 4HNE into nontoxic metabolites. Both ALDH levels and activity are reduced in cardiac disease. We examined whether reduced ALDH2 activity contributes to cardiomyocyte hypertrophy in mice fed a high-fat diet and injected with low-dose streptozotocin (STZ). These mice exhibited most of the characteristics of metabolic syndrome/type-2 diabetes mellitus (DM): increased blood glucose levels depicting hyperglycemia (415.2 ± 18.7 mg/dL vs. 265.2 ± 7.6 mg/dL; P < 0.05), glucose intolerance with normal plasma insulin levels, suggesting insulin resistance and obesity as evident from increased weight (44 ± 3.1 vs. 34.50 ± 1.32 g; P < 0.05) and body fat. Myocardial ALDH2 activity was 60% lower in these mice (0.1 ± 0.012 vs. 0.04 ± 0.015 µmol/min/mg protein; P < 0.05). Myocardial 4HNE levels were also elevated in the hyperglycemic hearts. Co-immunoprecipitation study showed that 4HNE formed adducts on myocardial ALDH2 protein in the mice exhibiting metabolic syndrome/type-2 DM, and they had obvious cardiac hypertrophy compared with controls as evident from increased heart weight (HW), HW to tibial length ratio, left ventricular (LV) mass and cardiomyocyte hypertrophy. Cardiomyocyte hypertrophy was correlated inversely with ALDH2 activity (R (2 )= 0.7; P < 0.05). Finally, cardiac dysfunction was observed in mice with metabolic syndrome/type-2 DM. Therefore, we conclude that reduced ALDH2 activity may contribute to cardiac hypertrophy and dysfunction in mice presenting with some of the characteristics of metabolic syndrome/type-2 DM when on a high-fat diet and low-dose STZ injection.
Collapse
Affiliation(s)
- Vishal R Mali
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
29
|
Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142:375-415. [PMID: 24462787 DOI: 10.1016/j.pharmthera.2014.01.003] [Citation(s) in RCA: 430] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality among the diabetic population. Both experimental and clinical evidence suggest that diabetic subjects are predisposed to a distinct cardiomyopathy, independent of concomitant macro- and microvascular disorders. 'Diabetic cardiomyopathy' is characterized by early impairments in diastolic function, accompanied by the development of cardiomyocyte hypertrophy, myocardial fibrosis and cardiomyocyte apoptosis. The pathophysiology underlying diabetes-induced cardiac damage is complex and multifactorial, with elevated oxidative stress as a key contributor. We now review the current evidence of molecular disturbances present in the diabetic heart, and their role in the development of diabetes-induced impairments in myocardial function and structure. Our focus incorporates both the contribution of increased reactive oxygen species production and reduced antioxidant defenses to diabetic cardiomyopathy, together with modulation of protein signaling pathways and the emerging role of protein O-GlcNAcylation and miRNA dysregulation in the progression of diabetic heart disease. Lastly, we discuss both conventional and novel therapeutic approaches for the treatment of left ventricular dysfunction in diabetic patients, from inhibition of the renin-angiotensin-aldosterone-system, through recent evidence favoring supplementation of endogenous antioxidants for the treatment of diabetic cardiomyopathy. Novel therapeutic strategies, such as gene therapy targeting the phosphoinositide 3-kinase PI3K(p110α) signaling pathway, and miRNA dysregulation, are also reviewed. Targeting redox stress and protective protein signaling pathways may represent a future strategy for combating the ever-increasing incidence of heart failure in the diabetic population.
Collapse
Affiliation(s)
- Karina Huynh
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | | | - Julie R McMullen
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia; Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
30
|
Liu ZW, Zhu HT, Chen KL, Dong X, Wei J, Qiu C, Xue JH. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 2013; 12:158. [PMID: 24180212 PMCID: PMC4176998 DOI: 10.1186/1475-2840-12-158] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022] Open
Abstract
Background Endoplasmic reticulum (ER) stress is considered one of the mechanisms contributing to reactive oxygen species (ROS)- mediated cell apoptosis. In diabetic cardiomyopathy (DCM), cell apoptosis is generally accepted as the etiological factor and closely related to cardiac ROS generation. ER stress is proposed the link between ROS and cell apoptosis; however, the signaling pathways and their roles in participating ER stress- induced apoptosis in DCM are still unclear. Methods In this study, we investigated the signaling transductions in ROS- dependent ER stress- induced cardiomocyte apoptosis in animal model of DCM. Moreover, in order to clarify the roles of IRE1 (inositol - requiring enzyme-1), PERK (protein kinase RNA (PKR)- like ER kinase) and ATF6 (activating transcription factor-6) in conducting apoptotic signal in ROS- dependent ER stress- induced cardiomocyte apoptosis, we further investigated apoptosis in high- glucose incubated cardiomyocytes with IRE1, ATF6 and PERK- knocked down respectively. Results we demonstrated that the ER stress sensors, referred as PERK, IRE1 and ATF6, were activated in ROS- mediated ER stress- induced cell apoptosis in rat model of DCM which was characterized by cardiac pump and electrical dysfunctions. The deletion of PERK in myocytes exhibited stronger protective effect against apoptosis induced by high- glucose incubation than deletion of ATF6 or IRE in the same myocytes. By subcellular fractionation, rather than ATF6 and IRE1, in primary cardiomyocytes, PERK was found a component of MAMs (mitochondria-associated endoplasmic reticulum membranes) which was the functional and physical contact site between ER and mitochondria. Conclusions ROS- stimulated activation of PERK signaling pathway takes the major responsibility rather than IRE1 or ATF6 signaling pathways in ROS- medicated ER stress- induced myocyte apoptosis in DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jia-Hong Xue
- Department of Cardiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
31
|
Li B, Xiao J, Li Y, Zhang J, Zeng M. Gene transfer of human neuregulin-1 attenuates ventricular remodeling in diabetic cardiomyopathy rats. Exp Ther Med 2013; 6:1105-1112. [PMID: 24223630 PMCID: PMC3820667 DOI: 10.3892/etm.2013.1273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/05/2013] [Indexed: 01/10/2023] Open
Abstract
Neuregulin-1 (NRG-1) is a cardioactive growth factor released from endothelial cells. However, the effect of NRG-1 on ventricular remodeling in diabetic cardiomyopathy (DCM) remains unclear. The aim of the present study was to investigate the pathophysiological role of NRG-1 in a rat model of DCM. Rat cardiac microvascular endothelial cells (CMECs) were transfected with human NRG-1 (hNRG-1) lentivirus. The hNRG-1 medium was utilized to culture rat cardiomyocytes. The cardiomyocytes were counted with a hemacytometer to determine the proliferation index and Annexin V/propidium iodide double staining was employed to examine the apoptotic rate. A rat model of DCM was induced by an intraperitoneal injection of streptozotocin. The hNRG-1 lentivirus was injected into the myocardium of the DCM model rats. Four weeks after the lentiviral injection, cardiac catheterization was performed to evaluate the cardiac function. Apoptotic cells were determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. Left ventricular sections were stained with Masson’s trichrome to investigate the myocardial collagen content. The expression levels of related genes and proteins were analyzed. The results indicated that hNRG-1 conditioned medium stimulated the proliferation and counteracted the apoptosis of cardiomyocytes in vitro. In the rats with DCM, gene transfer of hNRG-1 to the myocardium improved heart function, as indicated by invasive hemodynamic measurements. In addition, hNRG-1 reduced the number of apoptotic cells, decreased the expression of bax and increased the expression of bcl-2 in the myocardium of the DCM model rats. Myocardial fibrosis and type I and III pro-collagen mRNA levels in the myocardium were significantly reduced by hNRG-1. hNRG-1 also increased the expression of phospho-Akt and phospho-eNOS in the myocardium. In conclusion, the gene transfer of hNRG-1 ameliorates cardiac dysfunction in diabetes. Although further studies are required, NRG-1 appears to protect cardiomyocytes against apoptosis and to reduce the extent of myocardial interstitial fibrosis.
Collapse
Affiliation(s)
- Bingong Li
- Department of Cardiology, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | | | | | | | | |
Collapse
|
32
|
Brouwers B, Pruniau VPEG, Cauwelier EJG, Schuit F, Lerut E, Ectors N, Declercq J, Creemers JWM. Phlorizin pretreatment reduces acute renal toxicity in a mouse model for diabetic nephropathy. J Biol Chem 2013; 288:27200-27207. [PMID: 23940028 DOI: 10.1074/jbc.m113.469486] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Streptozotocin (STZ) is widely used as diabetogenic agent in animal models for diabetic nephropathy (DN). However, it is also directly cytotoxic to kidneys, making it difficult to distinguish between DN-related and STZ-induced nephropathy. Therefore, an improved protocol to generate mice for DN studies, with a quick and robust achievement of the diabetic state, without direct kidney toxicity is required. To investigate the mechanism leading to STZ-induced nephropathy, kidney damage was induced with a high dose of STZ. This resulted in delayed gastric emptying, at least partially caused by impaired desacyl ghrelin clearance. STZ uptake in the kidneys is to a large extent mediated by the sodium/glucose cotransporters (Sglts) because the Sglt inhibitor phlorizin could reduce STZ uptake in the kidneys. Consequently, the direct toxic effects in the kidney and the gastric dilatation were resolved without interfering with the β-cell toxicity. Furthermore, pancreatic STZ uptake was increased, hereby decreasing the threshold for β-cell toxicity, allowing for single low non-nephrotoxic STZ doses (70 mg/kg). In conclusion, this study provides novel insights into the mechanism of STZ toxicity in kidneys and suggests a more efficient regime to induce DN with little or no toxic side effects.
Collapse
Affiliation(s)
- Bas Brouwers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics
| | | | | | - Frans Schuit
- Gene Expression Unit, Department of Molecular Cell Biology, KU Leuven, 3000 Leuven
| | - Evelyne Lerut
- Department of Pathology, University Hospital Gasthuisberg, 3000 Leuven, Belgium
| | - Nadine Ectors
- Department of Pathology, University Hospital Gasthuisberg, 3000 Leuven, Belgium
| | - Jeroen Declercq
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics.
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics
| |
Collapse
|
33
|
Abstract
SIGNIFICANCE Mitochondria are the cellular energy-producing organelles and are at the crossroad of determining cell life and death. As such, the function of mitochondria has been intensely studied in metabolic disorders, including diabetes and associated maladies commonly grouped under all-inclusive pathological condition of metabolic syndrome. More recently, the altered metabolic profiles and function of mitochondria in these ailments have been correlated with their aberrant morphologies. This review describes an overview of mitochondrial fission and fusion machineries, and discusses implications of mitochondrial morphology and function in these metabolic maladies. RECENT ADVANCES Mitochondria undergo frequent morphological changes, altering the mitochondrial network organization in response to environmental cues, termed mitochondrial dynamics. Mitochondrial fission and fusion mediate morphological plasticity of mitochondria and are controlled by membrane-remodeling mechanochemical enzymes and accessory proteins. Growing evidence suggests that mitochondrial dynamics play an important role in diabetes establishment and progression as well as associated ailments, including, but not limited to, metabolism-secretion coupling in the pancreas, nonalcoholic fatty liver disease progression, and diabetic cardiomyopathy. CRITICAL ISSUES While mitochondrial dynamics are intimately associated with mitochondrial bioenergetics, their cause-and-effect correlation remains undefined in metabolic diseases. FUTURE DIRECTIONS The involvement of mitochondrial dynamics in metabolic diseases is in its relatively early stages. Elucidating the role of mitochondrial dynamics in pathological metabolic conditions will aid in defining the intricate form-function correlation of mitochondria in metabolic pathologies and should provide not only important clues to metabolic disease progression, but also new therapeutic targets.
Collapse
Affiliation(s)
- Chad A Galloway
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
34
|
Koka S, Das A, Salloum FN, Kukreja RC. Phosphodiesterase-5 inhibitor tadalafil attenuates oxidative stress and protects against myocardial ischemia/reperfusion injury in type 2 diabetic mice. Free Radic Biol Med 2013; 60:80-8. [PMID: 23385031 DOI: 10.1016/j.freeradbiomed.2013.01.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/04/2013] [Accepted: 01/29/2013] [Indexed: 12/21/2022]
Abstract
Diabetic patients exhibit increased risk for the development of cardiovascular diseases primarily because of impaired nitric oxide (NO) bioavailability. The phosphodiesterase-5 (PDE-5) inhibitor sildenafil restores NO signaling and protects against ischemia/reperfusion (I/R) injury. In this study, we determined the effect of the long-acting PDE-5 inhibitor tadalafil on diabetes-associated complications and its role in attenuating oxidative stress after I/R injury in type 2 diabetic db/db mice. Adult male db/db mice (n=40/group) were randomized to receive dimethyl sulfoxide (10% DMSO, 0.2ml, ip) or tadalafil (1mg/kg in 10% DMSO, ip) for 28 days. After 28 days treatment, the hearts were isolated and subjected to 30min global ischemia followed by 60min reperfusion in the Langendorff mode. Infarct size was measured using computer morphometry of tetrazolium-stained sections. Cardiomyocytes were isolated from a subset of hearts and subjected to 40min simulated ischemia followed by 1h of reoxygenation (SI/RO). Dichlorodihydrofluorescein diacetate and JC-1 staining was used to measure reactive oxygen species (ROS) generation and mitochondrial membrane potential (Δψm), respectively. Another subset of hearts was used for the estimation of lipid peroxidation, glutathione, and the expression of myocardial pRac1, Rac1, gp91(phox), p47(phox), and p67(phox) by Western blot. Tadalafil treatment improved the metabolic status and reduced infarct size compared to the untreated db/db mice (21.2±1.8% vs 45.8±2.8%; p<0.01). The db/db mice showed enhanced oxidative stress in cardiomyocytes as indicated by a significant increase in ROS production. Cardiac NAD(P)H oxidase activity, lipid peroxidation, and oxidized glutathione were also increased in db/db mice compared to nondiabetic control animals. Tadalafil treatment in db/db mice suppressed oxidative stress, attenuated myocardial expression of pRac1 and gp91(phox), and also preserved the loss of Δψm in cardiomyocytes after SI/RO. In conclusion, these results demonstrate that chronic treatment with tadalafil attenuates oxidative stress and improves mitochondrial integrity while providing powerful cardioprotective effects in type 2 diabetes.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Carbolines/administration & dosage
- Cardiotonic Agents/administration & dosage
- Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Humans
- Mice
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/pathology
- Myocardial Reperfusion Injury/drug therapy
- Myocardial Reperfusion Injury/pathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Nitric Oxide/metabolism
- Oxidative Stress/drug effects
- Oxidative Stress/genetics
- Phosphodiesterase 5 Inhibitors/administration & dosage
- Reactive Oxygen Species/metabolism
- Tadalafil
Collapse
Affiliation(s)
- Saisudha Koka
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0204, USA
| | | | | | | |
Collapse
|
35
|
Miao X, Wang Y, Sun J, Sun W, Tan Y, Cai L, Zheng Y, Su G, Liu Q, Wang Y. Zinc protects against diabetes-induced pathogenic changes in the aorta: roles of metallothionein and nuclear factor (erythroid-derived 2)-like 2. Cardiovasc Diabetol 2013; 12:54. [PMID: 23536959 PMCID: PMC3621739 DOI: 10.1186/1475-2840-12-54] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/02/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cardiovascular diseases remain a leading cause of the mortality world-wide, which is related to several risks, including the life style change and the increased diabetes prevalence. The present study was to explore the preventive effect of zinc on the pathogenic changes in the aorta. METHODS A genetic type 1 diabetic OVE26 mouse model was used with/without zinc supplementation for 3 months. To determine gender difference either for pathogenic changes in the aorta of diabetic mice or for zinc protective effects on diabetes-induced pathogenic changes, both males and females were investigated in parallel by histopathological and immunohistochemical examinations, in combination of real-time PCR assay. RESULTS Diabetes induced significant increases in aortic oxidative damage, inflammation, and remodeling (increased fibrosis and wall thickness) without significant difference between genders. Zinc treatment of these diabetic mice for three months completely prevented the above pathogenic changes in the aorta, and also significantly up-regulated the expression and function of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a pivotal regulator of anti-oxidative mechanism, and the expression of metallothionein (MT), a potent antioxidant. There was gender difference for the protective effect of zinc against diabetes-induced pathogenic changes and the up-regulated levels of Nrf2 and MT in the aorta. CONCLUSIONS These results suggest that zinc supplementation provides a significant protection against diabetes-induced pathogenic changes in the aorta without gender difference in the type 1 diabetic mouse model. The aortic protection by zinc against diabetes-induced pathogenic changes is associated with the up-regulation of both MT and Nrf2 expression.
Collapse
Affiliation(s)
- Xiao Miao
- Department of Ophthalmology, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
- Kosair Children Hospital Research Institute at the Department of Pediatrics, University of Louisville, Louisville, 40202, USA
| | - Yonggang Wang
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Kosair Children Hospital Research Institute at the Department of Pediatrics, University of Louisville, Louisville, 40202, USA
| | - Jian Sun
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Weixia Sun
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Kosair Children Hospital Research Institute at the Department of Pediatrics, University of Louisville, Louisville, 40202, USA
| | - Yi Tan
- Kosair Children Hospital Research Institute at the Department of Pediatrics, University of Louisville, Louisville, 40202, USA
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, 325035, China
| | - Lu Cai
- Kosair Children Hospital Research Institute at the Department of Pediatrics, University of Louisville, Louisville, 40202, USA
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, 325035, China
- Departments of Radiation Oncology and Pharmacology and Toxicology, University of Louisville, Louisville, 40202, USA
| | - Yang Zheng
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Guanfang Su
- Department of Ophthalmology, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Quan Liu
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yuehui Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| |
Collapse
|
36
|
Miao X, Cui W, Sun W, Xin Y, Wang B, Tan Y, Cai L, Miao L, Fu Y, Su G, Wang Y. Therapeutic effect of MG132 on the aortic oxidative damage and inflammatory response in OVE26 type 1 diabetic mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:879516. [PMID: 23589759 PMCID: PMC3622385 DOI: 10.1155/2013/879516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/28/2013] [Indexed: 01/01/2023]
Abstract
The present study tested whether MG132 increases vascular nuclear factor E2-related factor-2 (Nrf2) expression and transcription to provide a therapeutic effect on diabetes-induced pathogenic changes in the aorta. To this end, three-month-old OVE26 diabetic and age-matched control mice were intraperitoneally injected with MG-132, 10 μ g/kg daily for 3 months. OVE26 transgenic type 1 diabetic mice develop hyperglycemia at 2-3 weeks of age and exhibit albuminuria at 3 months of age with mild increases in TNF- α expression and 3-NT accumulation in the aorta. Diabetes-induced significant increases in the wall thickness and structural derangement of aorta were found in OVE26 mice with significant increases in aortic oxidative and nitrosative damage, inflammation, and remodeling at 6 months of diabetes, but not at 3 months of diabetes. However, these pathological changes seen at the 6 months of diabetes were abolished in OVE26 mice treated with MG-132 for 3 months that were also associated with a significant increase in Nrf2 expression in the aorta as well as transcription of downstream genes. These results suggest that chronic treatment with low-dose MG132 can afford an effective therapy for diabetes-induced pathogenic changes in the aorta, which is associated with the increased Nrf2 expression and transcription.
Collapse
Affiliation(s)
- Xiao Miao
- The Second Hospital of Jilin University, Changchun 130041, China
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Wenpeng Cui
- The Second Hospital of Jilin University, Changchun 130041, China
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Weixia Sun
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- The First Hospital of Jilin University, Changchun 130021, China
| | - Ying Xin
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Normal Bethune Medical College of Jilin University, Changchun 130021, China
| | - Bo Wang
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pathology, Inner Mongolia Forestry General Hospital, Yakeshi, Inner Mongolia 022150, China
| | - Yi Tan
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Chinese American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou 325000, China
| | - Lu Cai
- KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Chinese American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou 325000, China
- Departments of Radiation Oncology and Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Lining Miao
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Yaowen Fu
- The First Hospital of Jilin University, Changchun 130021, China
| | - Guanfang Su
- The Second Hospital of Jilin University, Changchun 130041, China
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Yuehui Wang
- The Second Hospital of Jilin University, Changchun 130041, China
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|
37
|
Wen HL, Liang ZS, Zhang R, Yang K. Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy. Cardiovasc Diabetol 2013; 12:50. [PMID: 23530831 PMCID: PMC3617021 DOI: 10.1186/1475-2840-12-50] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/16/2013] [Indexed: 11/18/2022] Open
Abstract
Aims Given the importance of inflammation in the onset and progression of diabetic cardiomyopathy, we investigated the potential protective effects of triptolide, an anti-inflammatory agent, in streptozotocin-induced diabetic rat model and in H9c2 rat cardiac cells exposed to high glucose. Methods and results Diabetic rats were treated with triptolide (100, 200, or 400 μg/kg/day respectively) for 6 weeks. At the end of this study, after cardiac function measurements were performed, rats were sacrificed and their hearts were harvested for further histologic and molecular biologic analysis. Enhanced activity and expression of nuclear factor-kappaB (NF-κB) p65 in diabetic hearts were associated with increased inflammatory response, as demonstrated by increased pro-inflammatory cytokines, cell adhesion molecules and invading inflammatory cells, as well as increased fibrosis, in line with impaired left ventricular function. Triptolide attenuated these morpho-functional alterations. Furthermore, triptolide (20 ng/ml) also attenuated high glucose-induced inflammation in H9c2 rat cardiac cells. Conclusion Our data demonstrate that anti-inflammatory effects of triptolide involving the NF-κB signaling pathway can improve left ventricular function under diabetic conditions, suggesting triptolide treatment might be beneficial in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- He-Ling Wen
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P.R.China
| | | | | | | |
Collapse
|
38
|
|
39
|
Zhong X, Wang L, Wang Y, Dong S, Leng X, Jia J, Zhao Y, Li H, Zhang X, Xu C, Yang G, Wu L, Wang R, Lu F, Zhang W. Exogenous hydrogen sulfide attenuates diabetic myocardial injury through cardiac mitochondrial protection. Mol Cell Biochem 2012; 371:187-98. [PMID: 23001844 DOI: 10.1007/s11010-012-1435-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/04/2012] [Indexed: 12/28/2022]
Abstract
In the study, we investigated how exogenous H(2)S (hydrogen sulfide) influenced streptozotocin (STZ)-induced diabetic myocardial injury through cardiac mitochondrial protection and nitric oxide (NO) synthesis in intact rat hearts and primary neonatal rat cardiomyocytes. Diabetes was induced by STZ (50 mg/kg) and the daily administration of 100 μM NaHS (sodium hydrosulfide, an H(2)S donor) in the diabetes + NaHS treatment group. At the end of 4, 8, and 12 weeks, the morphological alterations and functions of the hearts were observed using transmission electron microscopy and echocardiography system. The percentage of apoptotic cardiomyocytes, the mitochondrial membrane potential, the production of reactive oxygen species (ROS) and the level of NO were measured. The expressions of cystathionine-γ-lyase (CSE), caspase-3 and -9, the mitochondrial NOX4 and cytochrome c were analyzed by western blotting. The results showed the cardiac function injured, morphological changes and the apoptotic rate increased in the diabetic rat hearts. In the primary neonatal rat cardiomyocytes of high glucose group, ROS production was increased markedly, whereas the expression of CSE and the level of NO was decreased. However, treatment with NaHS significantly reversed the diabetic rat hearts function, the morphological changes and decreased the levels of ROS and NO in the primary neonatal rat cardiomyocytes administrated with high glucose group. Furthermore, NaHS down-regulated the expression of mitochondrial NOX4 and caspase-3 and -9 and inhibited the release of cytochrome c from mitochondria in the primary neonatal rat cardiomyocytes. In conclusion, H(2)S is involved in the attenuation of diabetic myocardial injury through the protection of cardiac mitochondria.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The study of diabetic cardiomyopathy is an area of significant interest given the strong association between diabetes and the risk of heart failure. Many unanswered questions remain regarding the clinical definition and pathogenesis of this metabolic cardiomyopathy. This article reviews the current understanding of diabetic cardiomyopathy with a particular emphasis on the unresolved issues that have limited translation of scientific discovery to patient bedside.
Collapse
Affiliation(s)
- Joel D Schilling
- Diabetic Cardiovascular Disease Center, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|
41
|
Sloan RC, Moukdar F, Frasier CR, Patel HD, Bostian PA, Lust RM, Brown DA. Mitochondrial permeability transition in the diabetic heart: Contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury. J Mol Cell Cardiol 2012; 52:1009-18. [DOI: 10.1016/j.yjmcc.2012.02.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 02/13/2012] [Accepted: 02/23/2012] [Indexed: 12/23/2022]
|
42
|
Harmer A, Abi-Gerges N, Morton M, Pullen G, Valentin J, Pollard C. Validation of an in vitro contractility assay using canine ventricular myocytes. Toxicol Appl Pharmacol 2012; 260:162-72. [DOI: 10.1016/j.taap.2012.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/06/2012] [Accepted: 02/13/2012] [Indexed: 12/21/2022]
|
43
|
Mar GY, Ku PM, Chen LJ, Cheng KC, Li YX, Cheng JT. Increase in cardiac M2-muscarinic receptor expression is regulated by GATA binding protein 4 (GATA-4) in streptozotocin-induced diabetic rats. Int J Cardiol 2012; 167:436-41. [PMID: 22293779 DOI: 10.1016/j.ijcard.2012.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 12/30/2011] [Accepted: 01/06/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND An increase in cardiac M2-muscarinic receptor (M2-mAChR) expression in diabetic rats has been observed, but the molecular mechanism of this increase remains unclear. The transcriptional activity of GATA binding protein 4 (GATA-4) has been documented to regulate the expression of M2-mAChR genes. In this study, we were interested in identifying the role of GATA-4 in the increase in M2-mAChR in diabetic rats and a primary culture of cardiomyocytes. METHODS Streptozotocin-induced diabetic rats (STZ-rats) and high-glucose (D-glucose 30 mM, 24h)-treated primary cultures of cardiomyocytes from neonatal rats were used to investigate the role of GATA-4 in the change in M2-mAChR. The protein expression was determined by Western blot analysis. Phlorizin (Na(+)-glucose co-transport inhibitor), insulin, tiron (radical scavenger), PD98059 (ERK inhibitor) and SB203580 (p38 inhibitor) were used. We also silenced GATA-4 by RNAi to investigate the changes in M2-mAChR expression. RESULTS The cardiac output was reduced in STZ-rats with a higher expression of M2-mAChR or phosphorylated GATA-4 in the heart. These changes were reversed after correction of the blood sugar level. In cardiomyocytes, high glucose treatment also increased M2-mAChR expression and GATA-4 phosphorylation. These changes were reversed by tiron (ROS scavenger) or PD98059 (MEK/ERK inhibitor). However, an increase in M2-mAChR expression was not observed when GATA-4 was silenced by small interfering RNA (siRNA) in cardiomyocytes. CONCLUSIONS We suggest that hyperglycemia can cause a higher expression of M2-mAChR in cardiomyocytes mainly through ROS to enhance MEK/ERK for phosphorylation of GATA-4.
Collapse
Affiliation(s)
- Guang-Yuan Mar
- Department of Cardiology, Kaohsiung Veterans General Hospital, Kaohsiung City 81301, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
Ku PM, Chen LJ, Liang JR, Cheng KC, Li YX, Cheng JT. Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility. Cardiovasc Diabetol 2011; 10:57. [PMID: 21702924 PMCID: PMC3141394 DOI: 10.1186/1475-2840-10-57] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/24/2011] [Indexed: 01/10/2023] Open
Abstract
Background Diabetic cardiomyopathy, a diabetes-specific complication, refers to a disorder that eventually leads to left ventricular hypertrophy in addition to diastolic and systolic dysfunction. In recent studies, hyperglycemia-induced reactive oxygen species (ROS) in cardiomyocytes have been linked to diabetic cardiomyopathy. GATA binding protein 4 (GATA-4) regulates the expression of many cardio-structural genes including cardiac troponin-I (cTnI). Methods Streptozotocin-induced diabetic rats and H9c2 embryonic rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr) were used to examine the effect of hyperglycemia on GATA-4 accumulation in the nucleus. cTnI expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of cTnI and GATA-4 by Western blot analysis. Results Cardiac output was lowered in STZ-induced diabetic rats. In addition, higher expressions of cardiac troponin I (cTnI) and phosphorylated GATA-4 were identified in these rats by Western blotting. The changes were reversed by treatment with insulin or phlorizin after correction of the blood sugar level. In H9c2 cells, ROS production owing to the high glucose concentration increased the expression of cTnI and GATA-4 phosphorylation. However, hyperglycemia failed to increase the expression of cTnI when GATA-4 was silenced by small interfering RNA (siRNA) in H9c2 cells. Otherwise, activation of ERK is known to be a signal for phosphorylation of serine105 in GATA-4 to increase the DNA binding ability of this transcription factor. Moreover, GSK3β could directly interact with GATA-4 to cause GATA-4 to be exported from the nucleus. GATA-4 nuclear translocation and GSK3β ser9 phosphorylation were both elevated by a high glucose concentration in H9c2 cells. These changes were reversed by tiron (ROS scavenger), PD98059 (MEK/ERK inhibitor), or siRNA of GATA-4. Cell contractility measurement also indicated that the high glucose concentration decreased the contractility of H9c2 cells, and this was reduced by siRNA of GATA-4. Conclusions Hyperglycemia can cause systolic dysfunction and a higher expression of cTnI in cardiomyocytes through ROS, enhancing MEK/ERK-induced GATA-4 phosphorylation and accumulation in the cell nucleus.
Collapse
Affiliation(s)
- Po-Ming Ku
- Department of Medical Research, Chi-Mei Medical Center, No, 901 Chon-Hwa Road, Yong Kang, Tainan City, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
Strunz CMC, Matsuda M, Salemi VMC, Nogueira A, Mansur AP, Cestari IN, Marquezini MV. Changes in cardiac heparan sulfate proteoglycan expression and streptozotocin-induced diastolic dysfunction in rats. Cardiovasc Diabetol 2011; 10:35. [PMID: 21518435 PMCID: PMC3100243 DOI: 10.1186/1475-2840-10-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/25/2011] [Indexed: 02/02/2023] Open
Abstract
Background Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ)-induced diabetes. Methods Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the following groups: control (sham injection), after 24 hours, 10 days, or 30 days of STZ administration. Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day groups to correlate the observed mRNA changes to the protein expression. Results In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic dysfunction with alterations in the peak velocity of early (E) diastolic filling and isovolumic relaxation time (IVRT) indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower than that in the control group. The same results were obtained from immunohistochemistry analysis. Conclusion Our data suggest that membrane proteoglycans participate in the sequence of events triggered by diabetes and inflicted on cardiac and skeletal muscles.
Collapse
Affiliation(s)
- Célia M C Strunz
- Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Diabetes mellitus increases the risk of developing cardiovascular diseases such as coronary artery disease and heart failure. Studies have shown that the heart failure risk is increased in diabetic patients even after adjusting for coronary artery disease and hypertension. Although the cause of this increased heart failure risk is multifactorial, increasing evidence suggests that derangements in cardiac energy metabolism play an important role. In particular, abnormalities in cardiomyocyte mitochondrial energetics appear to contribute substantially to the development of cardiac dysfunction in diabetes. This review will summarize these abnormalities in mitochondrial function and discuss potential underlying mechanisms.
Collapse
Affiliation(s)
- Heiko Bugger
- Department of Cardiology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
47
|
Rücker B, Abreu-Vieira G, Bischoff LB, Harthmann AD, Sarkis JJF, Wink MR, Casali EA. The nucleotide hydrolysis is altered in blood serum of streptozotocin-induced diabetic rats. Arch Physiol Biochem 2010; 116:79-87. [PMID: 20420481 DOI: 10.3109/13813451003777067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ectonucleotidases and the nucleotide metabolism have been implicated as important regulators of various tissue functions in diabetes disease. Here we evaluated the ectonucleotidase activities and the profile of extracellular ATP metabolism in blood serum of streptozotocin (STZ)-induced diabetic rats. We observed a raise in ATP, ADP, AMP, and 5'-TMP hydrolysis in blood serum after 30 days of diabetes induction, when compared with the citrate group. However, in serum of rats treated 6 days with insulin, the hydrolysis returned to the control levels. Extracellular ATP metabolism estimated by HPLC analysis showed a rapid hydrolysis of extracellular ATP by diabetic animals, leading to the formation of high levels of adenosine when compared with citrate and insulin groups. Since in diabetes the vascular disease is frequently present, the alterations observed are important, because these enzymes control the nucleotides/nucleosides ratio in the circulation and thus the events related to haemostasis.
Collapse
Affiliation(s)
- Bárbara Rücker
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
Li YJ, Wang PH, Chen C, Zou MH, Wang DW. Improvement of mechanical heart function by trimetazidine in db/db mice. Acta Pharmacol Sin 2010; 31:560-9. [PMID: 20383170 PMCID: PMC2953963 DOI: 10.1038/aps.2010.31] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 02/24/2010] [Indexed: 12/14/2022]
Abstract
AIM To investigate the influence of trimetazidine, which is known to be an antioxidant and modulator of metabolism, on cardiac function and the development of diabetic cardiomyopathy in db/db mouse. METHODS Trimetazidine was administered to db/db mice for eight weeks. Cardiac function was measured by inserting a Millar catheter into the left ventricle, and oxidative stress and AMP-activated protein kinase (AMPK) activity in the myocardium were evaluated. RESULTS Untreated db/db mice exhibited a significant decrease in cardiac function compared to normal C57 mice. Oxidative stress and lipid deposition were markedly increased in the myocardium, concomitant with inactivation of AMPK and increased expression of peroxisome proliferator-activated receptor coactivator-1 alpha (PGC-1 alpha). Trimetazidine significantly improved systolic and diastolic function in hearts of db/db mice and led to reduced production of reactive oxygen species and deposition of fatty acid in cardiomyocytes. Trimetazidine also caused AMPK activation and reduced PGC-1 alpha expression in the hearts of db/db mice. CONCLUSION The data suggest that trimetazidine significantly improves cardiac function in db/db mice by attenuating lipotoxicity and improving the oxidation status of the heart. Activation of AMPK and decreased expression of PGC-1 alpha were involved in this process. Furthermore, our study suggests that trimetazidine suppresses the development of diabetic cardiomyopathy, which warrants further clinical investigation.
Collapse
Affiliation(s)
- Yuan-jing Li
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei-hua Wang
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming-hui Zou
- Department of Medicine and Endocrinology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dao-wen Wang
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
49
|
Alloxan reduces amplitude of ventricular myocyte shortening and intracellular Ca2+ without altering L-type Ca2+ current, sarcoplasmic reticulum Ca2+ content or myofilament sensitivity to Ca2+ in Wistar rats. Mol Cell Biochem 2010; 340:115-23. [PMID: 20174963 DOI: 10.1007/s11010-010-0408-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
Alloxan is widely used to induce diabetes mellitus in experimental animals. Recent studies have provided evidence that alloxan has direct actions on cardiac muscle contraction. The aim of this study was to further investigate the mechanisms underlying the effects of alloxan on ventricular myocyte shortening and intracellular Ca(2+) transport. Amplitude of myocyte shortening was reduced in a dose-dependent manner as the concentration of alloxan was increased in the range 10(-7)-10(-4) M. Amplitude of shortening was reduced (56.8 +/- 6.6%, n = 27) by 10(-6) M alloxan and was partially reversed during a 10 min washout. Amplitude of the Ca(2+) transient was also reduced (79.7 +/- 2.9%, n = 29) by 10(-6) M alloxan. Caffeine-evoked sarcoplasmic reticulum Ca(2+) release, fractional release of Ca(2+), assessed by comparing the amplitude of electrically evoked with that of caffeine-evoked Ca(2+) transients, and fura-2-cell length trajectory during the late stages of relaxation of myocyte twitch contraction were not significantly altered by alloxan. The amplitude of L-type Ca(2+) current was not altered by alloxan. Alterations in sarcoplasmic reticulum Ca(2+) transport, myofilament sensitivity to Ca(2+), and L-type Ca(2+) current do not appear to underlie the negative inotropic effects of alloxan.
Collapse
|
50
|
Qi MY, Liu HR, Dai DZ, Li N, Dai Y. Total triterpene acids, active ingredients from Fructus Corni, attenuate diabetic cardiomyopathy by normalizing ET pathway and expression of FKBP12.6 and SERCA2a in streptozotocin-rats. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.12.0016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Total triterpene acids (TTAs) isolated from Cornus officinalis Sieb., one of the herbs contained in Liuwei Dihuang decoction, were aimed at alleviating diabetic cardiomyopathy. We hypothesized that the benefits of TTAs may result from suppressing the endothelin-reactive oxidative species (ET-ROS) pathway in the myocardium. Diabetes was produced by a single injection of streptozotocin (STZ, 60 mg kg−1, i.p.) in rats. Assessment of cardiac function, calcium handling proteins, endothelin-1 (ET-1) and redox system was conducted 8 weeks after STZ injection. Medication with TTAs (50 mg kg−1, i.g.) was installed in the last 4 weeks. The compromised cardiac function was characterized by depressed contractility (LVSP and LV+dp/dtmax) and relaxation (LVEDP and -LVdp/dtmin) in association with hyperglycaemia (30.2 ± 2.6 mmol L−1) in STZ-injected rats. Down-regulated expression of FKBP12.6 (calstabin 2), sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) and phospholamban (PLB) were also found. These changes occurred in connection with an increased ET-1, up-regulated mRNA of propreET-1 and endothelin converting enzyme (ECE), and a state of oxidant stress was found by increased malondialdehyde (MDA), decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) activity, and an enhanced activity and expression of inducible nitric oxide synthase (iNOS) in the diabetic myocardium. After 4 weeks of treatment with TTAs, these changes were alleviated dramatically despite a mild reduction in hyperglycaemia (26.9 ± 3.4 mmol L−1). In conclusion, TTAs, as active ingredients of Liuwei Dihuang decoction, alleviated diabetic cardiomyopathy by normalizing the abnormality of FKBP12.6 and SERCA2a and ET-ROS pathway in the myocardium rather than by hypoglycaemic activity.
Collapse
Affiliation(s)
- Min-You Qi
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hao-Ran Liu
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
- Department of Pharmacy, College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, Hu'nan, 410082, China
| | - De-Zai Dai
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Na Li
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yin Dai
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|