1
|
Vaithilingam V, Yim MMW, Foster JL, Stait-Gardner T, Oberholzer J, Tuch BE. Noninvasive Tracking of Encapsulated Insulin Producing Cells Labelled with Magnetic Microspheres by Magnetic Resonance Imaging. J Diabetes Res 2016; 2016:6165893. [PMID: 27631014 PMCID: PMC5007365 DOI: 10.1155/2016/6165893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
Microencapsulated islets are usually injected free-floating into the peritoneal cavity, so the position of the grafts remains elusive after transplantation. This study aims to assess magnetic resonance imaging (MRI) as a noninvasive means to track microencapsulated insulin producing cells following transplantation. Encapsulated insulin producing cells (MIN6 and human islets) were labelled with magnetic microspheres (MM), assessed for viability and insulin secretion, and imaged in vitro using a clinical grade 3 T MRI and in vivo using both clinical grade 3 T and research grade 11.7 T MRI. Fluorescent imaging demonstrated the uptake of MM by both MIN6 and human islets with no changes in cell morphology and viability. MM labelling did not affect the glucose responsiveness of encapsulated MIN6 and islets in vitro. In vivo encapsulated MM-labelled MIN6 normalized sugar levels when transplanted into diabetic mice. In vitro MRI demonstrated that single microcapsules as well as clusters of encapsulated MM-labelled cells could be visualised clearly in agarose gel phantoms. In vivo encapsulated MM-labelled MIN6 could be visualised more clearly within the peritoneal cavity as discrete hypointensities using the high power 11.7 T but not the clinical grade 3 T MRI. This study demonstrates a method to noninvasively track encapsulated insulin producing cells by MM labelling and MRI.
Collapse
Affiliation(s)
- Vijayaganapathy Vaithilingam
- Commonwealth Scientific and Industrial Research Organization, Future Manufacturing Flagship, North Ryde, NSW 2113, Australia
- Diabetes Transplant Unit, Prince of Wales Hospital, Randwick, NSW 2031, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia
| | - Mandy M. W. Yim
- Diabetes Transplant Unit, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Jayne L. Foster
- Diabetes Transplant Unit, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Timothy Stait-Gardner
- Nanoscale Organisation and Dynamics Group, School of Science and Health, University of Western Sydney, Campbelltown, NSW 2560, Australia
| | - Jose Oberholzer
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bernard E. Tuch
- Commonwealth Scientific and Industrial Research Organization, Future Manufacturing Flagship, North Ryde, NSW 2113, Australia
- Diabetes Transplant Unit, Prince of Wales Hospital, Randwick, NSW 2031, Australia
- School of Biomedical Science, Discipline Physiology, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Kim HS, Tian L, Lin S, Cha JH, Jung HS, Park KS, Moon WK. Magnetic labeling of pancreaticβ-cells modulates the glucose- and insulin-induced phosphorylation of ERK1/2 and AKT. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 8:20-6. [DOI: 10.1002/cmmi.1490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hoe Suk Kim
- Department of Radiology; Seoul National University Hospital; 101 Daehangno, Jongno-gu Seoul 110-744 Korea
- Institute of Radiation Medicine, Medical Research Center; Seoul National University; 101 Daehangno, Jongno-gu Seoul 110-744 Korea
| | - Lianji Tian
- Department of Radiology; Seoul National University Hospital; 101 Daehangno, Jongno-gu Seoul 110-744 Korea
- Department of Biomedical Science, College of Medicine; Seoul National University; Seoul, 101 Daehangno, Jongno-gu Seoul 110-744 Korea
| | - Shunmei Lin
- Department of Radiology; Seoul National University Hospital; 101 Daehangno, Jongno-gu Seoul 110-744 Korea
| | - Joo Hee Cha
- Department of Radiology; Seoul National University Hospital; 101 Daehangno, Jongno-gu Seoul 110-744 Korea
| | - Hye Seung Jung
- Department of Internal Medicine; Seoul National University Hospital; 101 Daehangno, Jongno-gu Seoul 110-744 Korea
| | - Kyong Soo Park
- Department of Internal Medicine; Seoul National University Hospital; 101 Daehangno, Jongno-gu Seoul 110-744 Korea
| | - Woo Kyung Moon
- Department of Radiology; Seoul National University Hospital; 101 Daehangno, Jongno-gu Seoul 110-744 Korea
- Institute of Radiation Medicine, Medical Research Center; Seoul National University; 101 Daehangno, Jongno-gu Seoul 110-744 Korea
- Department of Biomedical Science, College of Medicine; Seoul National University; Seoul, 101 Daehangno, Jongno-gu Seoul 110-744 Korea
| |
Collapse
|
3
|
Jung MJ, Lee SS, Hwang YH, Jung HS, Hwang JW, Kim MJ, Yoon S, Lee DY. MRI of transplanted surface-labeled pancreatic islets with heparinized superparamagnetic iron oxide nanoparticles. Biomaterials 2011; 32:9391-400. [DOI: 10.1016/j.biomaterials.2011.08.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
|
4
|
Li Calzi S, Kent DL, Chang KH, Padgett KR, Afzal A, Chandra SB, Caballero S, English D, Garlington W, Hiscott PS, Sheridan CM, Grant MB, Forder JR. Labeling of stem cells with monocrystalline iron oxide for tracking and localization by magnetic resonance imaging. Microvasc Res 2009; 78:132-9. [PMID: 19345699 DOI: 10.1016/j.mvr.2009.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 01/03/2023]
Abstract
Precise localization of exogenously delivered stem cells is critical to our understanding of their reparative response. Our current inability to determine the exact location of small numbers of cells may hinder optimal development of these cells for clinical use. We describe a method using magnetic resonance imaging to track and localize small numbers of stem cells following transplantation. Endothelial progenitor cells (EPC) were labeled with monocrystalline iron oxide nanoparticles (MIONs) which neither adversely altered their viability nor their ability to migrate in vitro and allowed successful detection of limited numbers of these cells in muscle. MION-labeled stem cells were also injected into the vitreous cavity of mice undergoing the model of choroidal neovascularization, laser rupture of Bruch's membrane. Migration of the MION-labeled cells from the injection site towards the laser burns was visualized by MRI. In conclusion, MION labeling of EPC provides a non-invasive means to define the location of small numbers of these cells. Localization of these cells following injection is critical to their optimization for therapy.
Collapse
Affiliation(s)
- Sergio Li Calzi
- Program in Stem Cell Biology, Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Constantinidis I, Grant SC, Simpson NE, Oca-Cossio JA, Sweeney CA, Mao H, Blackband SJ, Sambanis A. Use of magnetic nanoparticles to monitor alginate-encapsulated betaTC-tet cells. Magn Reson Med 2009; 61:282-90. [PMID: 19165877 DOI: 10.1002/mrm.21833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Noninvasive monitoring of tissue-engineered constructs is an important component in optimizing construct design and assessing therapeutic efficacy. In recent years, cellular and molecular imaging initiatives have spurred the use of iron oxide-based contrast agents in the field of NMR imaging. Although their use in medical research has been widespread, their application in tissue engineering has been limited. In this study, the utility of monocrystalline iron oxide nanoparticles (MIONs) as an NMR contrast agent was evaluated for betaTC-tet cells encapsulated within alginate/poly-L-lysine/alginate (APA) microbeads. The constructs were labeled with MIONs in two different ways: 1) MION-labeled betaTC-tet cells were encapsulated in APA beads (i.e., intracellular compartment), and 2) MION particles were suspended in the alginate solution prior to encapsulation so that the alginate matrix was labeled with MIONs instead of the cells (i.e., extracellular compartment). The data show that although the location of cells can be identified within APA beads, cell growth or rearrangement within these constructs cannot be effectively monitored, regardless of the location of MION compartmentalization. The advantages and disadvantages of these techniques and their potential use in tissue engineering are discussed.
Collapse
Affiliation(s)
- Ioannis Constantinidis
- Department of Medicine, Division of Endocrinology, University of Florida College of Medicine, Gainesville, Florida 32610-0226, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Sensitive and automated detection of iron-oxide-labeled cells using phase image cross-correlation analysis. Magn Reson Imaging 2008; 26:618-28. [PMID: 18450402 DOI: 10.1016/j.mri.2008.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 11/16/2007] [Accepted: 01/06/2008] [Indexed: 11/22/2022]
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles are increasingly being used to noninvasively track cells, target specific molecules and monitor gene expression in vivo. Contrast changes that are subtle relative to intrinsic sources of contrast present a significant detection challenge. Here, we describe a postprocessing algorithm, called Phase map cross-correlation Detection and Quantification (PDQ), with the purpose of automating identification and quantification of localized accumulations of SPIO agents. The method is designed to sacrifice little flexibility - it works on previously acquired data and allows the use of conventional high-SNR pulse sequences with no extra scan time. We first investigated the theoretical detection limits of PDQ using a simulated dipole field. This method was then applied to three-dimensional (3D) MRI data sets of agarose gel containing isolated dipoles and ex vivo transplanted allogenic rat hearts infiltrated by numerous iron-oxide-labeled macrophages as a result of organ rejection. A simulated dipole field showed this method to be robust in very low signal-to-noise ratio images. Analysis of agarose gel and allogenic rat heart shows that this method can automatically identify and count dipoles while visualizing their biodistribution in 3D renderings. In the heart, this information was used to calculate a quantitative index that may indicate its degree of cellular infiltration.
Collapse
|
7
|
Barnett BP, Arepally A, Karmarkar PV, Qian D, Gilson WD, Walczak P, Howland V, Lawler L, Lauzon C, Stuber M, Kraitchman DL, Bulte JWM. Magnetic resonance–guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med 2007; 13:986-91. [PMID: 17660829 DOI: 10.1038/nm1581] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 03/21/2007] [Indexed: 11/09/2022]
Abstract
In type I diabetes mellitus, islet transplantation provides a moment-to-moment fine regulation of insulin. Success rates vary widely, however, necessitating suitable methods to monitor islet delivery, engraftment and survival. Here magnetic resonance-trackable magnetocapsules have been used simultaneously to immunoprotect pancreatic beta-cells and to monitor, non-invasively in real-time, hepatic delivery and engraftment by magnetic resonance imaging (MRI). Magnetocapsules were detected as single capsules with an altered magnetic resonance appearance on capsule rupture. Magnetocapsules were functional in vivo because mouse beta-cells restored normal glycemia in streptozotocin-induced diabetic mice and human islets induced sustained C-peptide levels in swine. In this large-animal model, magnetocapsules could be precisely targeted for infusion by using magnetic resonance fluoroscopy, whereas MRI facilitated monitoring of liver engraftment over time. These findings are directly applicable to ongoing improvements in islet cell transplantation for human diabetes, particularly because our magnetocapsules comprise clinically applicable materials.
Collapse
Affiliation(s)
- Brad P Barnett
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutes, Blalock 644, 600 North Wolfe Street, Baltimore, Maryland 21212, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Müller K, Skepper JN, Posfai M, Trivedi R, Howarth S, Corot C, Lancelot E, Thompson PW, Brown AP, Gillard JH. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials 2006; 28:1629-42. [PMID: 17178155 DOI: 10.1016/j.biomaterials.2006.12.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 12/01/2006] [Indexed: 11/26/2022]
Abstract
Ferumoxtran-10, a dextran-coated ultrasmall superparamagnetic iron oxide particle, has the potential to reveal macrophages in vivo using magnetic resonance imaging potentially acting as a marker of inflammatory status. Pending clinical trials, we examined the interactions of Ferumoxtran-10 with human monocyte-macrophages (HMMs) in vitro to assess its safety and lack of pro-inflammatory activity. After 72 h, Ferumoxtran-10 was not toxic at 1 mg/ml and may be only mildly toxic at 10 mg/ml. Viability in cells with a high intracellular Ferumoxtran-10 load was not affected over 14 days. Ferumoxtran-10 did not interfere with baseline or stimulated cytokine (interleukin-12, interleukin-6, tumour necrosis factor-alpha or interleukin-1beta) or superoxide anion production or with Fc-receptor-mediated phagocytosis. Similarly, Ferumoxtran-10 did not induce cytokine production and was not chemotactic. High-resolution electron microscopy and selected-area electron diffraction confirmed the core of Ferumoxtran-10 is composed of crystalline magnetite. Bright field transmission electron microscopy of thin sections demonstrated that Ferumoxtran-10 was retained in lysosomes of HMM for several days. Ferumoxtran-10 is not toxic to HMMs in vitro, does not activate them to produce pro-inflammatory cytokines or superoxide anions, is not chemotactic and does not interfere with Fc-receptor-mediated phagocytosis. Furthermore, extremely high intracellular Ferumoxtran-10 concentrations had only slight or no effects on these key activities.
Collapse
Affiliation(s)
- Karin Müller
- Multi-Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim SJ, Doudet DJ, Studenov AR, Nian C, Ruth TJ, Gambhir SS, McIntosh CHS. Quantitative micro positron emission tomography (PET) imaging for the in vivo determination of pancreatic islet graft survival. Nat Med 2006; 12:1423-8. [PMID: 17143277 DOI: 10.1038/nm1458] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 06/27/2006] [Indexed: 11/09/2022]
Abstract
Islet transplantation is an attractive approach for treating type-1 diabetes, but there is a massive loss of transplanted islets. It is currently only possible to estimate islet mass indirectly, through measurement of circulating C-peptide and insulin levels. This type of estimation, however, is not sufficiently sensitive or reproducible for follow-up of individuals who have undergone islet transplantation. Here we show that islet graft survival could be assessed for 1 month in diabetic NOD mice using 9-(4-[(18)F]-fluoro-3-hydroxymethylbutyl)guanine ([(18)F]FHBG)-positron emission tomography (PET) technology, the PET signal reflecting insulin secretory capacity of transplanted islets. Expression of the gene encoding viral interleukin-10 (vIL-10), was measurable in real time with PET scanning. Additionally, we addressed the clinical potential of this approach by visualizing transplanted islets in the liver, the preferred clinical transplantation site. We conclude that quantitative in vivo PET imaging is a valid method for facilitating the development of protocols for prolonging islet survival, with the potential for tracking human transplants.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Cellular & Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|