1
|
Cloete I, Corrêa-Velloso JC, Bartlett PJ, Kirk V, Thomas AP, Sneyd J. A Tale of two receptors. J Theor Biol 2021; 518:110629. [PMID: 33607144 DOI: 10.1016/j.jtbi.2021.110629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Calcium (Ca2+) oscillations in hepatocytes have a wide dynamic range. In particular, recent experimental evidence shows that agonist stimulation of the P2Y family of receptors leads to qualitatively diverse Ca2+ oscillations. We present a new model of Ca2+ oscillations in hepatocytes based on these experiments to investigate the mechanisms controlling P2Y-activated Ca2+ oscillations. The model accounts for Ca2+ regulation of the IP3 receptor (IP3R), the positive feedback from Ca2+ on phospholipase C (PLC) and the P2Y receptor phosphorylation by protein kinase C (PKC). Furthermore, PKC is shown to control multiple cellular substrates. Utilising the model, we suggest the activity and intensity of PLC and PKC necessary to explain the qualitatively diverse Ca2+ oscillations in response to P2Y receptor activation.
Collapse
Affiliation(s)
- Ielyaas Cloete
- Department of Mathematics, University of Auckland, Auckland 1142, New Zealand
| | - Juliana C Corrêa-Velloso
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Vivien Kirk
- Department of Mathematics, University of Auckland, Auckland 1142, New Zealand
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - James Sneyd
- Department of Mathematics, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
2
|
Liu G, Fu D, Tian H, Dai A. The mechanism of ions in pulmonary hypertension. Pulm Circ 2021; 11:2045894020987948. [PMID: 33614016 PMCID: PMC7869166 DOI: 10.1177/2045894020987948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension(PH)is a kind of hemodynamic and pathophysiological state, in which the pulmonary artery pressure (PAP) rises above a certain threshold. The main pathological manifestation is pulmonary vasoconstriction and remodelling progressively. More and more studies have found that ions play a major role in the pathogenesis of PH. Many vasoactive substances, inflammatory mediators, transcription-inducing factors, apoptosis mediators, redox substances and translation modifiers can control the concentration of ions inside and outside the cell by regulating the activity of ion channels, which can regulate vascular contraction, cell proliferation, migration, apoptosis, inflammation and other functions. We all know that there are no effective drugs to treat PH. Ions are involved in the occurrence and development of PH, so it is necessary to clarify the mechanism of ions in PH as a therapeutic target for PH. The main ions involved in PH are calcium ion (Ca2+), potassium ion (K+), sodium ion (Na+) and chloride ion (Cl-). Here, we mainly discuss the distribution of these ions and their channels in pulmonary arteries and their role in the pathogenesis of PH.
Collapse
Affiliation(s)
- Guogu Liu
- Department of Graduate School, University of South China,
Hengyang, China
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Daiyan Fu
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Heshen Tian
- Department of Graduate School, University of South China,
Hengyang, China
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Aiguo Dai
- Department of Respiratory Diseases, Hunan University of Chinese
Medicine, Changsha, China
| |
Collapse
|
3
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
4
|
Shimobayashi E, Kapfhammer JP. Calcium Signaling, PKC Gamma, IP3R1 and CAR8 Link Spinocerebellar Ataxias and Purkinje Cell Dendritic Development. Curr Neuropharmacol 2018; 16:151-159. [PMID: 28554312 PMCID: PMC5883377 DOI: 10.2174/1570159x15666170529104000] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 01/05/2023] Open
Abstract
Background Spinocerebellar ataxias (SCAs) are a group of cerebellar diseases characterized by progressive ataxia and cerebellar atrophy. Several forms of SCAs are caused by missense mutations or deletions in genes related to calcium signaling in Purkinje cells. Among them, spinocerebellar ataxia type 14 (SCA14) is caused by missense mutations in PRKCG gene which encodes protein kinase C gamma (PKCγ). It is remarkable that in several cases in which SCA is caused by point mutations in an individual gene, the affected genes are involved in the PKCγ signaling pathway and calcium signaling which is not only crucial for proper Purkinje cell function but is also involved in the control of Purkinje cell dendritic development. In this review, we will focus on the PKCγ signaling related genes and calcium signaling related genes then discuss their role for both Purkinje cell dendritic development and cerebellar ataxia. Methods Research related to SCAs and Purkinje cell dendritic development is reviewed. Results PKCγ dysregulation causes abnormal Purkinje cell dendritic development and SCA14. Carbonic anhydrase related protein 8 (Car8) encoding CAR8 and Itpr1 encoding IP3R1were identified as upregulated genes in one of SCA14 mouse model. IP3R1, CAR8 and PKCγ proteins are strongly and specifically expressed in Purkinje cells. The common function among them is that they are involved in the regulation of calcium homeostasis in Purkinje cells and their dysfunction causes ataxia in mouse and human. Furthermore, disruption of intracellular calcium homeostasis caused by mutations in some calcium channels in Purkinje cells links to abnormal Purkinje cell dendritic development and the pathogenesis of several SCAs. Conclusion Once PKCγ signaling related genes and calcium signaling related genes are disturbed, the normal dendritic development of Purkinje cells is impaired as well as the integration of signals from other neurons, resulting in abnormal development, cerebellar dysfunction and eventually Purkinje cell loss.
Collapse
Affiliation(s)
- Etsuko Shimobayashi
- Anatomical Institute, Department of Biomedicine Basel, University of Basel, Pestalozzistrasse 20, CH-4056 Basel, Switzerland
| | - Josef P Kapfhammer
- Anatomical Institute, Department of Biomedicine Basel, University of Basel, Pestalozzistrasse 20, CH-4056 Basel, Switzerland
| |
Collapse
|
5
|
Yadav VR, Song T, Mei L, Joseph L, Zheng YM, Wang YX. PLCγ1-PKCε-IP 3R1 signaling plays an important role in hypoxia-induced calcium response in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2018; 314:L724-L735. [PMID: 29388468 DOI: 10.1152/ajplung.00243.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia-induced pulmonary vasoconstriction (HPV) is attributed to an increase in intracellular Ca2+ concentration ([Ca2+]i) in pulmonary artery smooth muscle cells (PASMCs). We have reported that phospholipase C-γ1 (PLCγ1) plays a significant role in the hypoxia-induced increase in [Ca2+]i in PASMCs and attendant HPV. In this study, we intended to determine molecular mechanisms for hypoxic Ca2+ and contractile responses in PASMCs. Our data reveal that hypoxic vasoconstriction occurs in pulmonary arteries, but not in mesenteric arteries. Hypoxia caused a large increase in [Ca2+]i in PASMCs, which is diminished by the PLC inhibitor U73122 and not by its inactive analog U73433 . Hypoxia augments PLCγ1-dependent inositol 1,4,5-trisphosphate (IP3) generation. Exogenous ROS, hydrogen peroxide (H2O2), increases PLCγ1 phosphorylation at tyrosine-783 and IP3 production. IP3 receptor-1 (IP3R1) knock-down remarkably diminishes hypoxia- or H2O2-induced increase in [Ca2+]i. Hypoxia or H2O2 increases the activity of IP3Rs, which is significantly reduced in protein kinase C-ε (PKCε) knockout PASMCs. A higher PLCγ1 expression, activity, and basal [Ca2+]i are found in PASMCs, but not in mesenteric artery smooth muscle cells from mice exposed to chronic hypoxia (CH) for 21 days. CH enhances H2O2- and ATP-induced increase in [Ca2+]i in PASMCs and PLC-dependent, norepinephrine-evoked pulmonary vasoconstriction. In conclusion, acute hypoxia uniquely causes ROS-dependent PLCγ1 activation, IP3 production, PKCε activation, IP3R1 opening, Ca2+ release, and contraction in mouse PASMCs; CH enhances PASM PLCγ1 expression, activity, and function, playing an essential role in pulmonary hypertension in mice.
Collapse
Affiliation(s)
- Vishal R Yadav
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Tengyao Song
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Lin Mei
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Leroy Joseph
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| |
Collapse
|
6
|
Martin JH, Bromfield EG, Aitken RJ, Nixon B. Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 2017; 74:469-485. [PMID: 27604868 PMCID: PMC11107538 DOI: 10.1007/s00018-016-2356-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
Notwithstanding the enormous reproductive potential encapsulated within a mature mammalian oocyte, these cells present only a limited window for fertilization before defaulting to an apoptotic cascade known as post-ovulatory oocyte aging. The only cell with the capacity to rescue this potential is the fertilizing spermatozoon. Indeed, the union of these cells sets in train a remarkable series of events that endows the oocyte with the capacity to divide and differentiate into the trillions of cells that comprise a new individual. Traditional paradigms hold that, beyond the initial stimulation of fluctuating calcium (Ca2+) required for oocyte activation, the fertilizing spermatozoon plays limited additional roles in the early embryo. While this model has now been drawn into question in view of the recent discovery that spermatozoa deliver developmentally important classes of small noncoding RNAs and other epigenetic modulators to oocytes during fertilization, it is nevertheless apparent that the primary responsibility for oocyte activation rests with a modest store of maternally derived proteins and mRNA accumulated during oogenesis. It is, therefore, not surprising that widespread post-translational modifications, in particular phosphorylation, hold a central role in endowing these proteins with sufficient functional diversity to initiate embryonic development. Indeed, proteins targeted for such modifications have been linked to oocyte activation, recruitment of maternal mRNAs, DNA repair and resumption of the cell cycle. This review, therefore, seeks to explore the intimate relationship between Ca2+ release and the suite of molecular modifications that sweep through the oocyte to ensure the successful union of the parental germlines and ensure embryogenic fidelity.
Collapse
Affiliation(s)
- Jacinta H Martin
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | - Elizabeth G Bromfield
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - R John Aitken
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Zhang N, Yoon SY, Parys JB, Fissore RA. Effect of M-phase kinase phosphorylations on type 1 inositol 1,4,5-trisphosphate receptor-mediated Ca2+ responses in mouse eggs. Cell Calcium 2015; 58:476-88. [PMID: 26259730 DOI: 10.1016/j.ceca.2015.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/26/2022]
Abstract
The type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) mediates increases in the intracellular concentration of Ca(2+) ([Ca(2+)]i) during fertilization in mammalian eggs. The activity of IP3R1 is enhanced during oocyte maturation, and phosphorylations by M-phase kinases are thought to positively regulate the activity of IP3R1. Accordingly, we and others have found that IP3R1 is phosphorylated at S(421), T(799) (by Cdk1) and at S(436) (by ERK). Nevertheless, the effects of these phosphorylations on the function of the receptor and their impact on [Ca(2+)]i oscillations in eggs have not been clearly examined. To address this, we expressed in mouse oocytes an IP3R1 variant with the three indicated phosphorylation sites replaced by acidic residues, IIIE-IP3R1, such that it would act like a constitutively phosphorylated IP3R1, and examined [Ca(2+)]i parameters in response to stimuli. We found that overexpression of wild type (wt-IP3R1) or IIIE-IP3R1 in oocytes containing endogenous receptors caused dominant negative-like effects on Ca(2+) release and oscillations. Therefore, we first selectively removed the endogenous IP3R1, and subsequently expressed the exogenous receptors. We found that in response to injection of PLCζ cRNA, eggs without endogenous IP3R1 failed to mount persistent Ca(2+) oscillations, although expression of wt-IP3R1 restored their [Ca(2+)]i oscillatory activity. We also observed that the Ca(2+) oscillatory ability and the sensitivity to IP3 in eggs expressing IIIE-IP3R1 were greater than in those expressing wt-IP3R1. Lastly, we found that exogenous IP3R1s are resistant to downregulation and support longer oscillations and of higher amplitude. Altogether, our results show that phosphorylations by Cdk1 and MAPK enhance the activity of IP3R1, which is consistent with its maximal activity observed at the time of fertilization and the role of Ca(2+) release in egg activation.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sook Young Yoon
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul 135-081, Republic of Korea
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
8
|
Vervloessem T, Yule DI, Bultynck G, Parys JB. The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca²⁺-release channel. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1992-2005. [PMID: 25499268 DOI: 10.1016/j.bbamcr.2014.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) type 2 (IP3R2) is an intracellular Ca²⁺-release channel located on the endoplasmic reticulum (ER). IP3R2 is characterized by a high sensitivity to both IP3 and ATP and is biphasically regulated by Ca²⁺. Furthermore, IP3R2 is modulated by various protein kinases. In addition to its regulation by protein kinase A, IP3R2 forms a complex with adenylate cyclase 6 and is directly regulated by cAMP. Finally, in the ER, IP3R2 is less mobile than the other IP3R isoforms, while its functional properties appear dominant in heterotetramers. These properties make the IP3R2 a Ca²⁺ channel with exquisite properties for setting up intracellular Ca²⁺ signals with unique characteristics. IP3R2 plays a crucial role in the function of secretory cell types (e.g. pancreatic acinar cells, hepatocytes, salivary gland, eccrine sweat gland). In cardiac myocytes, the role of IP3R2 appears more complex, because, together with IP3R1, it is needed for normal cardiogenesis, while its aberrant activity is implicated in cardiac hypertrophy and arrhythmias. Most importantly, its high sensitivity to IP3 makes IP3R2 a target for anti-apoptotic proteins (e.g. Bcl-2) in B-cell cancers. Disrupting IP3R/Bcl-2 interaction therefore leads in those cells to increased Ca²⁺ release and apoptosis. Intriguingly, IP3R2 is not only implicated in apoptosis but also in the induction of senescence, another tumour-suppressive mechanism. These results were the first to unravel the physiological and pathophysiological role of IP3R2 and we anticipate that further progress will soon be made in understanding the function of IP3R2 in various tissues and organs.
Collapse
Affiliation(s)
- Tamara Vervloessem
- KU Leuven, Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - David I Yule
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY, USA
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven, Belgium.
| |
Collapse
|
9
|
Differential targeting of cPKC and nPKC decodes and regulates Ca2+ and lipid signalling. Biochem Soc Trans 2014; 42:1538-42. [DOI: 10.1042/bst20140239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein kinases C (PKCs) are ubiquitously expressed and play critical roles in a plethora of physiological and pathophysiological processes. Owing to PKCs’ highly conserved phosphorylation consensus sequence, it has been difficult to distinguish the role of individual PKC isoforms. Recently, the identification of novel membrane targeting via subcellularly targeted diacylglycerol production found for novel PKCs (nPKCs), together with a characterization of their putative functions, has shed new light on the specific roles of individual PKCs in cellular processes.
Collapse
|
10
|
Bonneau B, Popgeorgiev N, Prudent J, Gillet G. Cytoskeleton dynamics in early zebrafish development: A matter of phosphorylation? BIOARCHITECTURE 2014; 1:216-220. [PMID: 22754611 PMCID: PMC3384572 DOI: 10.4161/bioa.18116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early morphogenic movements are an important feature of embryonic development in vertebrates. During zebrafish gastrulation, epiboly progression is driven by the coordinated remodeling of the YSL microtubule network and F-actin cables. We recently described the implication of Nrz, an anti-apoptotic Bcl-2 homolog, in the control of the YSL cytoskeleton dynamics. Nrz knock-down induces premature actin-myosin ring formation leading to margin constriction, epiboly arrest and embryo lethality. At the molecular level, the Nrz protein controls the actin-myosin dynamics through IP3R-dependent calcium levels variation. Here, we discuss these novel findings and propose a model in which reversible phosphorylation of the Nrz/IP3R complex modulates the permeability of the IP3R calcium channel and thus may explain the Nrz-dependent control of IP3R opening required for proper epiboly completion.
Collapse
Affiliation(s)
- Benjamin Bonneau
- Université Lyon I; Centre de Recherche en Cancérologie de Lyon; Centre Léon Bérard; Lyon, France
| | | | | | | |
Collapse
|
11
|
Lee SJ. Dynamic regulation of the microtubule and actin cytoskeleton in zebrafish epiboly. Biochem Biophys Res Commun 2014; 452:1-7. [PMID: 25117442 DOI: 10.1016/j.bbrc.2014.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 11/17/2022]
Abstract
Gastrulation is a key developmental stage with striking changes in morphology. Coordinated cell movements occur to bring cells to their correct positions in a timely manner. Cell movements and morphological changes are accomplished by precisely controlling dynamic changes in cytoskeletal proteins, microtubules, and actin filaments. Among those cellular movements, epiboly produces the first distinct morphological changes in teleosts. In this review, I describe epiboly and its mechanics, and the dynamic changes in microtubule networks and actin structures, mainly in zebrafish embryos. The factors regulating those cytoskeletal changes will also be discussed.
Collapse
Affiliation(s)
- Shyh-Jye Lee
- Department of Life Science, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for System Biology, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
12
|
Targeted activation of conventional and novel protein kinases C through differential translocation patterns. Mol Cell Biol 2014; 34:2370-81. [PMID: 24732802 DOI: 10.1128/mcb.00040-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of the two ubiquitous families of protein kinases, protein kinase A (PKA) and protein kinase C (PKC), is thought to be independently coupled to stimulation of Gαs and Gαq, respectively. Live-cell confocal imaging of protein kinase C fluorescent protein fusion constructs revealed that simultaneous activation of Gαs and Gαq resulted in a differential translocation of the conventional PKCα to the plasma membrane while the novel PKCδ was recruited to the membrane of the endoplasmic reticulum (ER). We demonstrate that the PKCδ translocation was driven by a novel Gαs-cyclic AMP-EPAC-RAP-PLCε pathway resulting in specific diacylglycerol production at the membrane of the ER. Membrane-specific phosphorylation sensors revealed that directed translocation resulted in phosphorylation activity confined to the target membrane. Specific stimulation of PKCδ caused phosphorylation of the inositol-1,4,5-trisphosphate receptor and dampening of global Ca(2+) signaling revealed by graded flash photolysis of caged inositol-1,4,5-trisphosphate. Our data demonstrate a novel signaling pathway enabling differential decoding of incoming stimuli into PKC isoform-specific membrane targeting, significantly enhancing the versatility of cyclic AMP signaling, thus demonstrating the possible interconnection between the PKA and PKC pathways traditionally treated independently. We thus provide novel and elementary understanding and insights into intracellular signaling events.
Collapse
|
13
|
|
14
|
Béliveau È, Lapointe F, Guillemette G. The activation state of the inositol 1,4,5-trisphosphate receptor regulates the velocity of intracellular Ca2+ waves in bovine aortic endothelial cells. J Cell Biochem 2012; 112:3722-31. [PMID: 21815194 DOI: 10.1002/jcb.23301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ca(2+) is a highly versatile second messenger that plays a key role in the regulation of many cell processes. This versatility resides in the fact that different signals can be encoded spatio-temporally by varying the frequency and amplitude of the Ca(2+) response. A typical example of an organized Ca(2+) signal is a Ca(2+) wave initiated in a given area of a cell that propagates throughout the entire cell or within a specific subcellular region. In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP(3) R) is responsible for the release of Ca(2+) from the endoplasmic reticulum. IP(3) R activity can be directly modulated in many ways, including by interacting molecules, proteins, and kinases such as PKA, PKC, and mTOR. In the present study, we used a videomicroscopic approach to measure the velocity of Ca(2+) waves in bovine aortic endothelial cells under various conditions that affect IP(3) R function. The velocity of the Ca(2+) waves increased with the intensity of the stimulus while extracellular Ca(2+) had no significant impact on wave velocity. Forskolin increased the velocity of IP(3) R-dependent Ca(2+) waves whereas PMA and rapamycin decreased the velocity. We used scatter plots and Pearson's correlation test to visualize and quantify the relationship between the Ca(2+) peak amplitude and the velocity of Ca(2+) waves. The velocity of IP(3) R-dependent Ca(2+) waves poorly correlated with the amplitude of the Ca(2+) response elicited by agonists in all the conditions evaluated, indicating that the velocity depended on the activation state of IP(3) R, which can be modulated in many ways.
Collapse
Affiliation(s)
- Èric Béliveau
- Faculty of Medicine and Health Sciences, Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | | |
Collapse
|
15
|
Bononi A, Missiroli S, Poletti F, Suski JM, Agnoletto C, Bonora M, De Marchi E, Giorgi C, Marchi S, Patergnani S, Rimessi A, Wieckowski MR, Pinton P. Mitochondria-Associated Membranes (MAMs) as Hotspot Ca2+ Signaling Units. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:411-37. [DOI: 10.1007/978-94-007-2888-2_17] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Inositol 1,4,5-trisphosphate receptor subtype-specific regulation of calcium oscillations. Neurochem Res 2011; 36:1175-85. [PMID: 21479917 PMCID: PMC3111726 DOI: 10.1007/s11064-011-0457-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2011] [Indexed: 11/18/2022]
Abstract
Oscillatory fluctuations in the cytosolic concentration of free calcium ions (Ca2+) are considered a ubiquitous mechanism for controlling multiple cellular processes. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) are intracellular Ca2+ release channels that mediate Ca2+ release from endoplasmic reticulum (ER) Ca2+ stores. The three IP3R subtypes described so far exhibit differential structural, biophysical, and biochemical properties. Subtype specific regulation of IP3R by the endogenous modulators IP3, Ca2+, protein kinases and associated proteins have been thoroughly examined. In this article we will review the contribution of each IP3R subtype in shaping cytosolic Ca2+ oscillations.
Collapse
|
17
|
Betzenhauser MJ, Yule DI. Regulation of inositol 1,4,5-trisphosphate receptors by phosphorylation and adenine nucleotides. CURRENT TOPICS IN MEMBRANES 2010; 66:273-98. [PMID: 22353484 DOI: 10.1016/s1063-5823(10)66012-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Matthew J Betzenhauser
- Department of Physiology and Cellular Biophysics, Columbia University Medical School, New York City, New York, USA
| | | |
Collapse
|
18
|
Duncan RS, Goad DL, Grillo MA, Kaja S, Payne AJ, Koulen P. Control of intracellular calcium signaling as a neuroprotective strategy. Molecules 2010; 15:1168-95. [PMID: 20335972 PMCID: PMC2847496 DOI: 10.3390/molecules15031168] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/05/2010] [Accepted: 03/02/2010] [Indexed: 12/13/2022] Open
Abstract
Both acute and chronic degenerative diseases of the nervous system reduce the viability and function of neurons through changes in intracellular calcium signaling. In particular, pathological increases in the intracellular calcium concentration promote such pathogenesis. Disease involvement of numerous regulators of intracellular calcium signaling located on the plasma membrane and intracellular organelles has been documented. Diverse groups of chemical compounds targeting ion channels, G-protein coupled receptors, pumps and enzymes have been identified as potential neuroprotectants. The present review summarizes the discovery, mechanisms and biological activity of neuroprotective molecules targeting proteins that control intracellular calcium signaling to preserve or restore structure and function of the nervous system. Disease relevance, clinical applications and new technologies for the identification of such molecules are being discussed.
Collapse
Affiliation(s)
- R Scott Duncan
- Vision Research Center and Department of Ophthalmology, School of Medicine, University of Missouri, 2411 Holmes Street, Kansas City, MO 64108, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Xiong LW, Kleerekoper QK, Wang X, Putkey JA. Intra- and interdomain effects due to mutation of calcium-binding sites in calmodulin. J Biol Chem 2010; 285:8094-103. [PMID: 20048169 DOI: 10.1074/jbc.m109.065243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IQ-motif protein PEP-19, binds to the C-domain of calmodulin (CaM) with significantly different k(on) and k(off) rates in the presence and absence of Ca(2+), which could play a role in defining the levels of free CaM during Ca(2+) transients. The initial goal of the current study was to determine whether Ca(2+) binding to sites III or IV in the C-domain of CaM was responsible for affecting the kinetics of binding PEP-19. EF-hand Ca(2+)-binding sites were selectively inactivated by the common strategy of changing Asp to Ala at the X-coordination position. Although Ca(2+) binding to both sites III and IV appeared necessary for native-like interactions with PEP-19, the data also indicated that the mutations caused undesirable structural alterations as evidenced by significant changes in amide chemical shifts for apoCaM. Mutations in the C-domain also affected chemical shifts in the unmodified N-domain, and altered the Ca(2+) binding properties of the N-domain. Conversion of Asp(93) to Ala caused the greatest structural perturbations, possibly due to the loss of stabilizing hydrogen bonds between the side chain of Asp(93) and backbone amides in apo loop III. Thus, although these mutations inhibit binding of Ca(2+), the mutated CaM may not be able to support potentially important native-like activity of the apoprotein. This should be taken into account when designing CaM mutants for expression in cell culture.
Collapse
Affiliation(s)
- Liang-Wen Xiong
- Department of Biochemistry and Molecular Biology and the Structural Biology Center, University of Texas, Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
20
|
Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P. Ca(2+) transfer from the ER to mitochondria: when, how and why. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1342-51. [PMID: 19341702 PMCID: PMC2730423 DOI: 10.1016/j.bbabio.2009.03.015] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/21/2009] [Accepted: 03/24/2009] [Indexed: 10/25/2022]
Abstract
The heterogenous subcellular distribution of a wide array of channels, pumps and exchangers allows extracellular stimuli to induce increases in cytoplasmic Ca(2+) concentration ([Ca(2+)]c) with highly defined spatial and temporal patterns, that in turn induce specific cellular responses (e.g. contraction, secretion, proliferation or cell death). In this extreme complexity, the role of mitochondria was considered marginal, till the direct measurement with targeted indicators allowed to appreciate that rapid and large increases of the [Ca(2+)] in the mitochondrial matrix ([Ca(2+)]m) invariably follow the cytosolic rises. Given the low affinity of the mitochondrial Ca(2+) transporters, the close proximity to the endoplasmic reticulum (ER) Ca(2+)-releasing channels was shown to be responsible for the prompt responsiveness of mitochondria. In this review, we will summarize the current knowledge of: i) the mitochondrial and ER Ca(2+) channels mediating the ion transfer, ii) the structural and molecular foundations of the signaling contacts between the two organelles, iii) the functional consequences of the [Ca(2+)]m increases, and iv) the effects of oncogene-mediated signals on mitochondrial Ca(2+) homeostasis. Despite the rapid progress carried out in the latest years, a deeper molecular understanding is still needed to unlock the secrets of Ca(2+) signaling machinery.
Collapse
Affiliation(s)
- Rosario Rizzuto
- Dept. Biomedical Sciences, University of Padua, Via Colombo 3, Padua 35121, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vanderheyden V, Wakai T, Bultynck G, De Smedt H, Parys JB, Fissore RA. Regulation of inositol 1,4,5-trisphosphate receptor type 1 function during oocyte maturation by MPM-2 phosphorylation. Cell Calcium 2009; 46:56-64. [PMID: 19482353 PMCID: PMC2774721 DOI: 10.1016/j.ceca.2009.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 11/30/2022]
Abstract
Egg activation and further embryo development require a sperm-induced intracellular Ca(2+) signal at the time of fertilization. Prior to fertilization, the egg's Ca(2+) machinery is therefore optimized. To this end, during oocyte maturation, the sensitivity, i.e. the Ca(2+) releasing ability, of the inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1), which is responsible for most of this Ca(2+) release, markedly increases. In this study, the recently discovered specific Polo-like kinase (Plk) inhibitor BI2536 was used to investigate the role of Plk1 in this process. BI2536 inactivates Plk1 in oocytes at the early stages of maturation and significantly decreases IP(3)R1 phosphorylation at an MPM-2 epitope at this stage. Moreover, this decrease in Plk1-dependent MPM-2 phosphorylation significantly lowers IP(3)R1 sensitivity. Finally, using in vitro phosphorylation techniques we identified T(2656) as a major Plk1 site on IP(3)R1. We therefore propose that the initial increase in IP(3)R1 sensitivity during oocyte maturation is underpinned by IP(3)R1 phosphorylation at an MPM-2 epitope(s).
Collapse
Affiliation(s)
- Veerle Vanderheyden
- Laboratory of Molecular and Cellular Signalling, Department of Molecular Cell Biology, K.U. Leuven, Campus Gasthuisberg, O&N1 Bus 802, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
VANDERHEYDEN V, DEVOGELAERE B, MISSIAEN L, DE SMEDT H, BULTYNCK G, PARYS JB. Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:959-70. [PMID: 19133301 PMCID: PMC2693466 DOI: 10.1016/j.bbamcr.2008.12.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/27/2008] [Accepted: 12/03/2008] [Indexed: 12/12/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a universal intracellular Ca2+-release channel. It is activated after cell stimulation and plays a crucial role in the initiation and propagation of the complex spatio-temporal Ca2+ signals that control cellular processes as different as fertilization, cell division, cell migration, differentiation, metabolism, muscle contraction, secretion, neuronal processing, and ultimately cell death. To achieve these various functions, often in a single cell, exquisite control of the Ca2+ release is needed. This review aims to highlight how protein kinases and protein phosphatases can interact with the IP3R or with associated proteins and so provide a large potential for fine tuning the Ca2+-release activity and for creating efficient Ca2+ signals in subcellular microdomains.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Signaling/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Cyclin-Dependent Kinases/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Phosphorylation
- Protein Kinase C/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/metabolism
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
| | | | - Ludwig MISSIAEN
- Laboratory of Molecular and Cellular Signalling, Dept. Molecular and Cellular Biology, Campus Gasthuisberg O/N1 - K.U. Leuven, Herestraat 49 - Bus 802, B-3000 Leuven (Belgium)
| | - Humbert DE SMEDT
- Laboratory of Molecular and Cellular Signalling, Dept. Molecular and Cellular Biology, Campus Gasthuisberg O/N1 - K.U. Leuven, Herestraat 49 - Bus 802, B-3000 Leuven (Belgium)
| | - Geert BULTYNCK
- Laboratory of Molecular and Cellular Signalling, Dept. Molecular and Cellular Biology, Campus Gasthuisberg O/N1 - K.U. Leuven, Herestraat 49 - Bus 802, B-3000 Leuven (Belgium)
| | - Jan B. PARYS
- Laboratory of Molecular and Cellular Signalling, Dept. Molecular and Cellular Biology, Campus Gasthuisberg O/N1 - K.U. Leuven, Herestraat 49 - Bus 802, B-3000 Leuven (Belgium)
| |
Collapse
|
23
|
Regulation of diacylglycerol production and protein kinase C stimulation during sperm- and PLCzeta-mediated mouse egg activation. Biol Cell 2008; 100:633-43. [PMID: 18471090 PMCID: PMC2615188 DOI: 10.1042/bc20080033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION At fertilization in mammalian eggs, the sperm induces a series of Ca(2+) oscillations via the production of inositol 1,4,5-trisphosphate. Increased inositol 1,4,5-trisphosphate production appears to be triggered by a sperm-derived PLCzeta (phospholipase C-zeta) that enters the egg after gamete fusion. The specific phosphatidylinositol 4,5-bisphosphate hydrolytic activity of PLCzeta implies that DAG (diacylglycerol) production, and hence PKC (protein kinase C) stimulation, also occurs during mammalian egg fertilization. Fertilization-mediated increase in PKC activity has been demonstrated; however, its precise role is unclear. RESULTS We investigated PLCzeta- and fertilization-mediated generation of DAG in mouse eggs by monitoring plasma-membrane translocation of a fluorescent DAG-specific reporter. Consistent plasma-membrane DAG formation at fertilization, or after injection of physiological concentrations of PLCzeta, was barely detectable. However, when PLCzeta is overexpressed in eggs, significant plasma-membrane DAG production occurs in concert with a series of unexpected secondary high-frequency Ca(2+) oscillations. We show that these secondary Ca(2+) oscillations can be mimicked in a variety of situations by the stimulation of PKC and that they can be prevented by PKC inhibition. The way PKC leads to secondary Ca(2+) oscillations appears to involve Ca(2+) influx and the loading of thapsigargin-sensitive Ca(2+) stores. CONCLUSIONS Our results suggest that overproduction of DAG in PLCzeta-injected eggs can lead to PKC-mediated Ca(2+) influx and subsequent overloading of Ca(2+) stores. These results suggest that DAG generation in the plasma membrane of fertilizing mouse eggs is minimized since it can perturb egg Ca(2+) homoeostasis via excessive Ca(2+) influx.
Collapse
|
24
|
Huke S, Bers DM. Ryanodine receptor phosphorylation at Serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochem Biophys Res Commun 2008; 376:80-5. [PMID: 18755143 PMCID: PMC2581610 DOI: 10.1016/j.bbrc.2008.08.084] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
The cardiac ryanodine receptor (RyR) controls Ca2+ release from the sarcoplasmic reticulum (SR) during excitation-contraction coupling. Three phosphorylation sites have been identified: Serine-(S)2808, S2814 and recently S2030. We measured phosphorylation with at least two different antibodies per site and demonstrate that for S2808 results were highly antibody-dependent and two out of three S2808 antibodies did not accurately report phosphorylation level. The RyR was substantially phosphorylated in quiescent rat cardiomyocytes at S2808 and less so at S2814, but appeared to be unphosphorylated at S2030. Basal phosphorylation at S2808/S2814 was maintained by a Ca2+ dependent kinase other than Ca2+/Calmodulin-dependent kinase (CaMKII). During stimulation with Isoproterenol S2808 was phosphorylated by protein kinase A (PKA) and S2814 was phosphorylated by CaMKII. Phosphatase 1 appears to be the main phosphatase dephosphorylating S2808/S2814, but phosphatase 2a may also dephosphorylate S2814. RyR phosphorylation is complex, but important in understanding RyR functional modulation.
Collapse
|
25
|
Marchi S, Rimessi A, Giorgi C, Baldini C, Ferroni L, Rizzuto R, Pinton P. Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli. Biochem Biophys Res Commun 2008; 375:501-5. [PMID: 18723000 PMCID: PMC2576286 DOI: 10.1016/j.bbrc.2008.07.153] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 12/16/2022]
Abstract
The proto-oncogene Akt is a potent inhibitor of apoptosis, and it is activated in many human cancers. A number of recent studies have highlighted the importance of the inositol 1,4,5-trisphosphate (IP3) receptor(IP3R) in mediating calcium (Ca2+) transfer from the endoplasmic reticulum (ER) to the mitochondriain several models of apoptosis. Akt is a serine-threonine kinase and recent data indicate the IP3R as a target of its phosphorylation activity. Here we show that HeLa cells, overexpressing the constitutively active myristoylated/palmitylatedAKT1 (m/p-AKT1), were found to have a reduced Ca2+ release from ER after stimulation with agonist coupled to the generation of IP3. In turn, this affected cytosolic and mitochondria Ca2+ response after Ca2+release from the ER induced either by agonist stimulation or by apoptotic stimuli releasing Ca2+ from intracellular stores. Most importantly, this alteration of ER Ca2+ content and release, reduces significantly cellular sensitivity to Ca2+ mediated proapoptotic stimulation. These results reveal a primary role of Akt in shaping intracellular Ca2+ homeostasis, that may underlie its protective role against some proapoptotic stimuli.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory for Genomics and Biotechnology (ER-Gentech), University of Ferrara, Via Borsari 46, I-44100 Ferrara
| | - Alessandro Rimessi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory for Genomics and Biotechnology (ER-Gentech), University of Ferrara, Via Borsari 46, I-44100 Ferrara
| | - Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory for Genomics and Biotechnology (ER-Gentech), University of Ferrara, Via Borsari 46, I-44100 Ferrara
- Vita-Salute San Raffaele University, Center of Excellence in Cell Development, and IIT Network, Research Unit of Molecular Neuroscience, Via Olgettina 58, 20132 Milan, Italy
| | - Claudio Baldini
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory for Genomics and Biotechnology (ER-Gentech), University of Ferrara, Via Borsari 46, I-44100 Ferrara
| | - Letizia Ferroni
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory for Genomics and Biotechnology (ER-Gentech), University of Ferrara, Via Borsari 46, I-44100 Ferrara
| | - Rosario Rizzuto
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory for Genomics and Biotechnology (ER-Gentech), University of Ferrara, Via Borsari 46, I-44100 Ferrara
| | - Paolo Pinton
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory for Genomics and Biotechnology (ER-Gentech), University of Ferrara, Via Borsari 46, I-44100 Ferrara
| |
Collapse
|
26
|
Ito J, Yoon SY, Lee B, Vanderheyden V, Vermassen E, Wojcikiewicz R, Alfandari D, De Smedt H, Parys JB, Fissore RA. Inositol 1,4,5-trisphosphate receptor 1, a widespread Ca2+ channel, is a novel substrate of polo-like kinase 1 in eggs. Dev Biol 2008; 320:402-13. [PMID: 18621368 PMCID: PMC2895400 DOI: 10.1016/j.ydbio.2008.05.548] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 05/22/2008] [Accepted: 05/22/2008] [Indexed: 12/16/2022]
Abstract
To initiate embryo development, the sperm induces in the egg release of intracellular calcium ([Ca2+](i)). During oocyte maturation, the inositol 1,4,5-trisphosphate receptor (IP(3)R1), the channel implicated, undergoes modifications that enhance its function. We found that IP(3)R1 becomes phosphorylated during maturation at an MPM-2 epitope and that this persists until the fertilization-associated [Ca2+](i) responses cease. We also reported that maturation without ERK activity diminishes IP(3)R1 MPM-2 reactivity and [Ca2+](i) responses. Here, we show that IP(3)R1 is a novel target for Polo-like kinase1 (Plk1), a conserved M-phase kinase, which phosphorylates it at an MPM-2 epitope. Plk1 and IP(3)R1 interact in an M-phase preferential manner, and they exhibit close co-localization in the spindle/spindle poles area. This co-localization is reduced in the absence of ERK activity, as the ERK pathway regulates spindle organization and IP(3)R1 cortical re-distribution. We propose that IP(3)R1 phosphorylation by Plk1, and possibly by other M-phase kinases, underlies the delivery of spatially and temporally regulated [Ca2+](i) signals during meiosis/mitosis and cytokinesis.
Collapse
Affiliation(s)
- Junya Ito
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Sook-Young Yoon
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Bora Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Veerle Vanderheyden
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, K.U.Leuven, Campus Gasthuisberg, O&N1 bus 00802, B-3000 Leuven, Belgium
| | - Elke Vermassen
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, K.U.Leuven, Campus Gasthuisberg, O&N1 bus 00802, B-3000 Leuven, Belgium
| | - Richard Wojcikiewicz
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, K.U.Leuven, Campus Gasthuisberg, O&N1 bus 00802, B-3000 Leuven, Belgium
| | - Jan B. Parys
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, K.U.Leuven, Campus Gasthuisberg, O&N1 bus 00802, B-3000 Leuven, Belgium
| | - Rafael A. Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
27
|
Joseph SK, Hajnóczky G. IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis 2008; 12:951-68. [PMID: 17294082 DOI: 10.1007/s10495-007-0719-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) serve to discharge Ca(2+) from ER stores in response to agonist stimulation. The present review summarizes the role of these receptors in models of Ca(2+)-dependent apoptosis. In particular we focus on the regulation of IP(3)Rs by caspase-3 cleavage, cytochrome c, anti-apoptotic proteins and Akt kinase. We also address the evidence that some of the effects of IP(3)Rs in apoptosis may be independent of their ion-channel function. The role of IP(3)Rs in delivering Ca(2+) to the mitochondria is discussed from the perspective of the factors determining inter-organellar dynamics and the spatial proximity of mitochondria and ER membranes.
Collapse
Affiliation(s)
- Suresh K Joseph
- Department of Pathology & Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
28
|
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R.
Collapse
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085, USA.
| | | | | | | |
Collapse
|
29
|
Caron AZ, Chaloux B, Arguin G, Guillemette G. Protein kinase C decreases the apparent affinity of the inositol 1,4,5-trisphosphate receptor type 3 in RINm5F cells. Cell Calcium 2007; 42:323-31. [PMID: 17320950 DOI: 10.1016/j.ceca.2007.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 12/18/2006] [Accepted: 01/11/2007] [Indexed: 12/31/2022]
Abstract
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ channel which plays a major role in Ca2+ signalling. Three isoforms of IP3R have been identified (IP3R-1, IP3R-2 and IP3R-3) and most cell types express different proportions of each isoform. The differences between the pharmacological and functional properties of the various isoforms of IP3R are poorly known. RINm5F cells who express almost exclusively (approximately 90%) the IP3R-3, represent an interesting model to study this particular isoform. Here, we investigated a regulatory mechanism by which protein kinase C (PKC) may influence IP3R-3-mediated Ca2+ release. With an immunoprecipitation approach we confirmed that RINm5F cells express almost exclusively the IP3R-3 isoform. With an in vitro phosphorylation approach, we showed that the immunopurified IP3R-3 was efficiently phosphorylated by exogenous PKC. With a direct in cellulo approach and an indirect in cellulo back-phosphorylation approach we showed that phorbol-12-myristate-13-acetate (PMA) causes the phosphorylation of IP3R-3 in intact RINm5F cells. In saponin-permeabilized RINm5F cells, 3-induced Ca2+ release was reduced after a pre-treatment with PMA. PMA also reduced the Ca2+ response of intact RINm5F cells stimulated with carbachol and EGF, two agonists that use different receptor types to activate phospholipase C. These results suggest the existence of a negative feedback mechanism involving two components of the Ca2+ signalling cascade, whereby activated PKC dampens IP3R-3 activity.
Collapse
Affiliation(s)
- Annabelle Z Caron
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | |
Collapse
|
30
|
Lee B, Vermassen E, Yoon SY, Vanderheyden V, Ito J, Alfandari D, De Smedt H, Parys JB, Fissore RA. Phosphorylation of IP3R1 and the regulation of [Ca2+]i responses at fertilization: a role for the MAP kinase pathway. Development 2006; 133:4355-65. [PMID: 17038520 PMCID: PMC2909192 DOI: 10.1242/dev.02624] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A sperm-induced intracellular Ca2+ signal ([Ca2+]i) underlies the initiation of embryo development in most species studied to date. The inositol 1,4,5 trisphosphate receptor type 1 (IP3R1) in mammals, or its homologue in other species, is thought to mediate the majority of this Ca2+ release. IP3R1-mediated Ca2+ release is regulated during oocyte maturation such that it reaches maximal effectiveness at the time of fertilization, which, in mammalian eggs, occurs at the metaphase stage of the second meiosis (MII). Consistent with this, the [Ca2+]i oscillations associated with fertilization in these species occur most prominently during the MII stage. In this study, we have examined the molecular underpinnings of IP3R1 function in eggs. Using mouse and Xenopus eggs, we show that IP3R1 is phosphorylated during both maturation and the first cell cycle at a MPM2-detectable epitope(s), which is known to be a target of kinases controlling the cell cycle. In vitro phosphorylation studies reveal that MAPK/ERK2, one of the M-phase kinases, phosphorylates IP3R1 at at least one highly conserved site, and that its mutation abrogates IP3R1 phosphorylation in this domain. Our studies also found that activation of the MAPK/ERK pathway is required for the IP3R1 MPM2 reactivity observed in mouse eggs, and that eggs deprived of the MAPK/ERK pathway during maturation fail to mount normal [Ca2+]i oscillations in response to agonists and show compromised IP3R1 function. These findings identify IP3R1 phosphorylation by M-phase kinases as a regulatory mechanism of IP3R1 function in eggs that serves to optimize [Ca2+]i release at fertilization.
Collapse
Affiliation(s)
- Bora Lee
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Elke Vermassen
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Sook-Young Yoon
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Veerle Vanderheyden
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Junya Ito
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Dominique Alfandari
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Humbert De Smedt
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Jan B. Parys
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Rafael A. Fissore
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| |
Collapse
|
31
|
Schaub MC, Hefti MA, Zaugg M. Integration of calcium with the signaling network in cardiac myocytes. J Mol Cell Cardiol 2006; 41:183-214. [PMID: 16765984 DOI: 10.1016/j.yjmcc.2006.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 03/07/2006] [Accepted: 04/04/2006] [Indexed: 12/23/2022]
Abstract
Calcium has evolved as global intracellular messenger for signal transduction in the millisecond time range by reversibly binding to calcium-sensing proteins. In the cardiomyocyte, ion pumps, ion exchangers and channels keep the cytoplasmic calcium level at rest around approximately 100 nM which is more than 10,000-fold lower than outside the cell. Intracellularly, calcium is mainly stored in the sarcoplasmic reticulum, which comprises the bulk of calcium available for the heartbeat. Regulation of cardiac function including contractility and energy production relies on a three-tiered control system, (i) immediate and fast feedback in response to mechanical load on a beat-to-beat basis (Frank-Starling relation), (ii) more sustained regulation involving transmitters and hormones as primary messengers, and (iii) long-term adaptation by changes in the gene expression profile. Calcium signaling over largely different time scales requires its integration with the protein kinase signaling network which is governed by G-protein-coupled receptors, growth factor and cytokine receptors at the surface membrane. Short-term regulation is dominated by the beta-adrenergic system, while long-term regulation with phenotypic remodeling depends on sustained signaling by growth factors, cytokines and calcium. Mechanisms and new developments in intracellular calcium handling and its interrelation with the MAPK signaling pathways are discussed in detail.
Collapse
Affiliation(s)
- Marcus C Schaub
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland.
| | | | | |
Collapse
|
32
|
Szlufcik K, Bultynck G, Callewaert G, Missiaen L, Parys JB, De Smedt H. The suppressor domain of inositol 1,4,5-trisphosphate receptor plays an essential role in the protection against apoptosis. Cell Calcium 2006; 39:325-36. [PMID: 16458354 DOI: 10.1016/j.ceca.2005.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 11/24/2005] [Accepted: 11/28/2005] [Indexed: 12/12/2022]
Abstract
The N-terminal 1-225 amino acids (aa) of the type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R1) function as a suppressor/coupling domain. In this study we used IP(3)R-deficient B-lymphocytes to investigate the effects of modifications in this domain on IP(3) binding and Ca(2+)-release activity. Although the N-terminal 1-225 aa of IP(3)R3 had the same role as in IP(3)R1, the suppression of IP(3) binding for IP(3)R1 was lost when the suppressor/coupling domains were exchanged between the two isoforms. Resulting chimeric receptors showed a higher sensitivity to IP(3)-induced activation (IICR). Deletion of 11 aa in IP(3)R1 ([Delta76-86]-IP(3)R1) or replacing aa 76-86 of the IP(3)R1 in the suppressor/coupling domain by 13 aa of IP(3)R3 ([75-87 T3]-IP(3)R1) also resulted in increased IP(3) binding and sensitivity of IICR. These residues constitute the only part of the suppressor/coupling domain that is strikingly different between the two isoforms. Expression of [Delta76-86]-IP(3)R1 and of [75-87 T3]-IP(3)R1 increased the propensity of cells to undergo staurosporine-induced apoptosis, but had no effect on the Ca(2+) content in the endoplasmic reticulum. In the cell model used, our observations suggest that the sensitivity of the Ca(2+)-release activity of IP(3)R1 to IP(3) influences the sensitivity of the cells to apoptotic stimuli and that the suppressor/coupling domain may have an anti-apoptotic function by attenuating the sensitivity of IICR.
Collapse
Affiliation(s)
- Karolina Szlufcik
- Laboratorium voor Fysiologie, KU Leuven Campus Gasthuisberg O/N, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The development of targeted probes (based on the molecular engineering of luminescent or fluorescent proteins) has allowed the specific measurement of [Ca2+] in intracellular organelles or cytoplasmic subdomains. This approach gave novel information on different aspects of cellular Ca2+ homeostasis. Regarding mitochondria, it was possible to demonstrate that, upon physiological stimulation of cells, Ca2+ is rapidly accumulated in the matrix. We will discuss the basic characteristics of this process, its role in modulating physiological and pathological events, such as the regulation of aerobic metabolism and the induction of cell death, and new insight into the regulatory mechanisms operating in vivo.
Collapse
Affiliation(s)
- Sara Leo
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, and Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Italy
| | | | | | | |
Collapse
|
34
|
Nadif Kasri N, Bultynck G, Parys JB, Callewaert G, Missiaen L, De Smedt H. Suramin and disulfonated stilbene derivatives stimulate the Ca2+-induced Ca2+ -release mechanism in A7r5 cells. Mol Pharmacol 2005; 68:241-50. [PMID: 15851651 DOI: 10.1124/mol.105.013045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have described previously a novel Ca2+-induced Ca2+-release (CICR) mechanism in permeabilized A7r5 cells (embryonic rat aorta) and 16HBE14o-cells (human bronchial mucosa) cells (J Biol Chem 278:27548-27555, 2003). This CICR mechanism was activated upon the elevation of the free cytosolic calcium concentration [Ca2+]c and was not inhibited by pharmacological inhibitors of the inositol-1,4,5-trisphosphate (IP3) receptor nor of the ryanodine receptor. This CICR mechanism was inhibited by calmodulin (CaM)1234, a Ca2+-insensitive CaM mutant, and by different members of the superfamily of CaM-like Ca2+-binding proteins. Here, we present evidence that the CICR mechanism that is expressed in A7r5 and 16HBE14o-cells is strongly activated by suramin and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). We found several indications that both activation mechanisms are indeed two different modes of the same release system. Suramin/DIDS-induced Ca2+ release was only detected in cells that displayed the CICR mechanism, and cell types that do not express this type of CICR mechanism did not exhibit suramin/DIDS-induced Ca2+ release. Furthermore, we show that the suramin-stimulated Ca2+ release is regulated by Ca2+ and CaM in a similar way as the previously described CICR mechanism. The pharmacological characterization of the suramin/DIDS-induced Ca2+ release further confirms its properties as a novel CaM-regulated Ca2+-release mechanism. We also investigated the effects of disulfonated stilbene derivatives on IP3-induced Ca2+ release and found, in contrast to the effect on CICR, a strong inhibition by DIDS and 4'-acetoamido-4'-isothiocyanostilbene-2',2'-disulfonic acid.
Collapse
Affiliation(s)
- Nael Nadif Kasri
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven Campus Gasthuisberg Herestraat 49/802, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|