1
|
Choi SI, Jin Y, Choi Y, Seong BL. Beyond Misfolding: A New Paradigm for the Relationship Between Protein Folding and Aggregation. Int J Mol Sci 2024; 26:53. [PMID: 39795912 PMCID: PMC11720324 DOI: 10.3390/ijms26010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Aggregation is intricately linked to protein folding, necessitating a precise understanding of their relationship. Traditionally, aggregation has been viewed primarily as a sequential consequence of protein folding and misfolding. However, this conventional paradigm is inherently incomplete and can be deeply misleading. Remarkably, it fails to adequately explain how intrinsic and extrinsic factors, such as charges and cellular macromolecules, prevent intermolecular aggregation independently of intramolecular protein folding and structure. The pervasive inconsistencies between protein folding and aggregation call for a new framework. In all combined reactions of molecules, both intramolecular and intermolecular rate (or equilibrium) constants are mutually independent; accordingly, intrinsic and extrinsic factors independently affect both rate constants. This universal principle, when applied to protein folding and aggregation, indicates that they should be treated as two independent yet interconnected processes. Based on this principle, a new framework provides groundbreaking insights into misfolding, Anfinsen's thermodynamic hypothesis, molecular chaperones, intrinsic chaperone-like activities of cellular macromolecules, intermolecular repulsive force-driven aggregation inhibition, proteome solubility maintenance, and proteinopathies. Consequently, this paradigm shift not only refines our current understanding but also offers a more comprehensive view of how aggregation is coupled to protein folding in the complex cellular milieu.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
| | - Yoontae Jin
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yura Choi
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Baik L. Seong
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
A Conceptual Framework for Integrating Cellular Protein Folding, Misfolding and Aggregation. Life (Basel) 2021; 11:life11070605. [PMID: 34202456 PMCID: PMC8304792 DOI: 10.3390/life11070605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
How proteins properly fold and maintain solubility at the risk of misfolding and aggregation in the cellular environments still remains largely unknown. Aggregation has been traditionally treated as a consequence of protein folding (or misfolding). Notably, however, aggregation can be generally inhibited by affecting the intermolecular interactions leading to aggregation, independently of protein folding and conformation. We here point out that rigorous distinction between protein folding and aggregation as two independent processes is necessary to reconcile and underlie all observations regarding the combined cellular protein folding and aggregation. So far, the direct attractive interactions (e.g., hydrophobic interactions) between cellular macromolecules including chaperones and interacting polypeptides have been widely believed to mainly stabilize polypeptides against aggregation. However, the intermolecular repulsions by large excluded volume and surface charges of cellular macromolecules can play a key role in stabilizing their physically connected polypeptides against aggregation, irrespective of the connection types and induced conformational changes, underlying the generic intrinsic chaperone activity of cellular macromolecules. Such rigorous distinction and intermolecular repulsive force-driven aggregation inhibition by cellular macromolecules could give new insights into understanding the complex cellular protein landscapes that remain uncharted.
Collapse
|
4
|
Choi SI, Seong BL. A social distancing measure governing the whole proteome. Curr Opin Struct Biol 2020; 66:104-111. [PMID: 33238232 DOI: 10.1016/j.sbi.2020.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022]
Abstract
Protein folding in vivo has been largely understood in the context of molecular chaperones preventing aggregation of nascent polypeptides in the crowded cellular environment. Nascent chains utilize the crowded environment in favor of productive folding by direct physical connection with cellular macromolecules. The intermolecular repulsive forces by large excluded volume and surface charges of interacting cellular macromolecules, exerting 'social distancing' measure among folding intermediates, could play an important role in stabilizing their physically connected polypeptides against aggregation regardless of the physical connection types. The generic intrinsic chaperone activity of cellular macromolecules likely provides a robust cellular environment for the productive protein folding and solubility maintenance at the whole proteome level.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Choi SI. A Simple Principle for Understanding the Combined Cellular Protein Folding and Aggregation. Curr Protein Pept Sci 2020; 21:3-21. [DOI: 10.2174/1389203720666190725114550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022]
Abstract
Proteins can undergo kinetic/thermodynamic partitioning between folding and aggregation. Proper protein folding and thermodynamic stability are crucial for aggregation inhibition. Thus, proteinfolding principles have been widely believed to consistently underlie aggregation as a consequence of conformational change. However, this prevailing view appears to be challenged by the ubiquitous phenomena that the intrinsic and extrinsic factors including cellular macromolecules can prevent aggregation, independently of (even with sacrificing) protein folding rate and stability. This conundrum can be definitely resolved by ‘a simple principle’ based on a rigorous distinction between protein folding and aggregation: aggregation can be controlled by affecting the intermolecular interactions for aggregation, independently of the intramolecular interactions for protein folding. Aggregation is beyond protein folding. A unifying model that can conceptually reconcile and underlie the seemingly contradictory observations is described here. This simple principle highlights, in particular, the importance of intermolecular repulsive forces against aggregation, the magnitude of which can be correlated with the size and surface properties of molecules. The intermolecular repulsive forces generated by the common intrinsic properties of cellular macromolecules including chaperones, such as their large excluded volume and surface charges, can play a key role in preventing the aggregation of their physically connected polypeptides, thus underlying the generic intrinsic chaperone activity of soluble cellular macromolecules. Such intermolecular repulsive forces of bulky cellular macromolecules, distinct from protein conformational change and attractive interactions, could be the puzzle pieces for properly understanding the combined cellular protein folding and aggregation including how proteins can overcome their metastability to amyloid fibrils in vivo.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Matsumura I, Chyong D. Statistical noise from recombinant plasmids can be abated via complementation of a ribosomal protein gene deletion. Protein Eng Des Sel 2019; 32:433-441. [PMID: 32328658 DOI: 10.1093/protein/gzaa007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 11/14/2022] Open
Abstract
The phenotypes conferred by recombinant plasmids upon host cells often exhibit variability between replicate populations. This statistical noise is mostly a consequence of adaptive evolution in response to fitness burdens imposed by the plasmids themselves. We developed a novel strategy, 'ribosome pegging', to exclude common unwanted mutations that benefit host cells at the expense of heterologous gene expression. Plasmids that constitutively co-expressed the fluorescent reporter tagRFP and ribosomal protein L23 (rplW) were used to transform Escherichia coli cells that lacked the essential chromosomal rplW gene. Cells within the population that expressed too little L23, or too much, were evidently inviable. Ribosome pegging obviates the need for antibiotics, thus facilitating the deployment of recombinant bacteria in uncontrolled environments. We show that ribosome-pegged E. coli carrying a plasmid that constitutively expresses L23 and an artificially evolved enzyme protects fruit flies from otherwise toxic doses of the insecticide malathion.
Collapse
Affiliation(s)
- Ichiro Matsumura
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Donian Chyong
- Columbia College, Columbia University, New York, New York, U.S.A
| |
Collapse
|
7
|
Conversion of a soluble protein into a potent chaperone in vivo. Sci Rep 2019; 9:2735. [PMID: 30804538 PMCID: PMC6389997 DOI: 10.1038/s41598-019-39158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/18/2019] [Indexed: 01/31/2023] Open
Abstract
Molecular chaperones play an important role in cellular protein-folding assistance and aggregation inhibition. As a different but complementary model, we previously proposed that, in general, soluble cellular macromolecules with large excluded volume and surface charges exhibit intrinsic chaperone activity to prevent aggregation of their connected polypeptides irrespective of the connection type, thereby contributing to efficient protein folding. As a proof of concept, we here demonstrated that a model recombinant protein with a specific sequence-binding domain robustly exerted chaperone activity toward various proteins harbouring a short recognition tag of 7 residues in Escherichia coli. The chaperone activity of this protein was comparable to that of representative E. coli chaperones in vivo. Furthermore, in vitro refolding experiments confirmed the in vivo results. Our findings reveal that a soluble protein exhibits the intrinsic chaperone activity to prevent off-pathway aggregation of its interacting proteins, leading to more productive folding while allowing them to fold according to their intrinsic folding pathways. This study gives new insights into the plausible chaperoning role of soluble cellular macromolecules in terms of aggregation inhibition and indirect folding assistance.
Collapse
|
8
|
Chakraborty B, Bhakta S, Sengupta J. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs. PLoS One 2016; 11:e0153928. [PMID: 27099964 PMCID: PMC4839638 DOI: 10.1371/journal.pone.0153928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/06/2016] [Indexed: 12/29/2022] Open
Abstract
In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process.
Collapse
Affiliation(s)
- Biprashekhar Chakraborty
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Sayan Bhakta
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Jayati Sengupta
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- * E-mail:
| |
Collapse
|
9
|
Cho SH, Contreras LM, Ju SH. Synthetic chimeras with orthogonal ribosomal proteins increase translation yields by recruiting mRNA for translation as measured by profiling active ribosomes. Biotechnol Prog 2016; 32:285-93. [PMID: 26749267 DOI: 10.1002/btpr.2227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/19/2015] [Indexed: 12/20/2022]
Abstract
In addition to their roles in protein biosynthesis, components of cellular ribosomes perform roles that contribute to a number of important cellular processes. Exploitation of processes has led to the use of ribosomal parts as solubility enhancer partners and purification matrices in protein expression. In this work, an engineered version of the E. coli ribosomal protein L29 (L4H2) as a fusion partner for enhancing cellular expression of proteins that are poorly expressed in bacteria was exploited. It was demonstrated that a chimeric fusion of L4H2 with various Fcγ receptors increases total expression up to 3.2-fold, relative to Fcγ receptors expressed without the fusion. Mechanistic insights using a novel application of in vivo ribosome display suggested that, although total cellular mRNA levels of L4H2-Fcγ receptor remained unchanged relative to wild-type Fcγ receptors, mRNA levels of actively translated L4H2-Fcγ transcript increased about 3.8-fold relative to actively translated levels of wild-type Fcγ transcript. Similar increases in protein expression in the context of the other proteins tested, showing the generality of this approach for proteins beyond human receptors was observed. These results extended the number of potential schemes by which orthogonal ribosomal parts can be used to enhance complex protein expression in bacterial platforms. Within a larger scope, this study features the possibility of engineering 5' tags that enhance mRNA affinity to ribosomes as strategies to augment translation. It was envisioned that the successful application of profiling active ribosomes in a highly targeted manner could be beneficial for mechanistic translation studies concerning synthesis of target proteins. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:285-293, 2016.
Collapse
Affiliation(s)
- Seung Hee Cho
- Inst. for Cellular & Molecular Biology, The University of Texas at Austin, Molecular Biology Building, 2500 Speedway Stop A4800, Austin, TX, 78712
| | - Lydia M Contreras
- Inst. for Cellular & Molecular Biology, The University of Texas at Austin, Molecular Biology Building, 2500 Speedway Stop A4800, Austin, TX, 78712.,McKetta Dept. of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712
| | - Sang Hyun Ju
- McKetta Dept. of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712
| |
Collapse
|
10
|
Santner AA, Croy CH, Vasanwala FH, Uversky VN, Van YYJ, Dunker AK. Sweeping away protein aggregation with entropic bristles: intrinsically disordered protein fusions enhance soluble expression. Biochemistry 2012; 51:7250-62. [PMID: 22924672 DOI: 10.1021/bi300653m] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrinsically disordered, highly charged protein sequences act as entropic bristles (EBs), which, when translationally fused to partner proteins, serve as effective solubilizers by creating both a large favorable surface area for water interactions and large excluded volumes around the partner. By extending away from the partner and sweeping out large molecules, EBs can allow the target protein to fold free from interference. Using both naturally occurring and artificial polypeptides, we demonstrate the successful implementation of intrinsically disordered fusions as protein solubilizers. The artificial fusions discussed herein have a low level of sequence complexity and a high net charge but are diversified by means of distinctive amino acid compositions and lengths. Using 6xHis fusions as controls, soluble protein expression enhancements from 65% (EB60A) to 100% (EB250) were observed for a 20-protein portfolio. Additionally, these EBs were able to more effectively solubilize targets compared to frequently used fusions such as maltose-binding protein, glutathione S-transferase, thioredoxin, and N utilization substance A. Finally, although these EBs possess very distinct physiochemical properties, they did not perturb the structure, conformational stability, or function of the green fluorescent protein or the glutathione S-transferase protein. This work thus illustrates the successful de novo design of intrinsically disordered fusions and presents a promising technology and complementary resource for researchers attempting to solubilize recalcitrant proteins.
Collapse
Affiliation(s)
- Aaron A Santner
- Molecular Kinetics Inc., Indianapolis, Indiana 46268, United States
| | | | | | | | | | | |
Collapse
|
11
|
Choi SI, Son A, Lim KH, Jeong H, Seong BL. Macromolecule-assisted de novo protein folding. Int J Mol Sci 2012; 13:10368-10386. [PMID: 22949867 PMCID: PMC3431865 DOI: 10.3390/ijms130810368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 01/24/2023] Open
Abstract
In the processes of protein synthesis and folding, newly synthesized polypeptides are tightly connected to the macromolecules, such as ribosomes, lipid bilayers, or cotranslationally folded domains in multidomain proteins, representing a hallmark of de novo protein folding environments in vivo. Such linkage effects on the aggregation of endogenous polypeptides have been largely neglected, although all these macromolecules have been known to effectively and robustly solubilize their linked heterologous proteins in fusion or display technology. Thus, their roles in the aggregation of linked endogenous polypeptides need to be elucidated and incorporated into the mechanisms of de novo protein folding in vivo. In the classic hydrophobic interaction-based stabilizing mechanism underlying the molecular chaperone-assisted protein folding, it has been assumed that the macromolecules connected through a simple linkage without hydrophobic interactions and conformational changes would make no effect on the aggregation of their linked polypeptide chains. However, an increasing line of evidence indicates that the intrinsic properties of soluble macromolecules, especially their surface charges and excluded volume, could be important and universal factors for stabilizing their linked polypeptides against aggregation. Taken together, these macromolecules could act as folding helpers by keeping their linked nascent chains in a folding-competent state. The folding assistance provided by these macromolecules in the linkage context would give new insights into de novo protein folding inside the cell.
Collapse
Affiliation(s)
- Seong Il Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
- Authors to whom correspondence should be addressed; E-Mails: (S.I.C.); (H.J.); (B.L.S.); Tel.: +82-2-393-4631 (S.I.C.)
| | - Ahyun Son
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
| | - Keo-Heun Lim
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
| | - Hotcherl Jeong
- Vismer Co., Ltd., Ansan, Kyeonggi-do 426-791, Korea
- Authors to whom correspondence should be addressed; E-Mails: (S.I.C.); (H.J.); (B.L.S.); Tel.: +82-2-393-4631 (S.I.C.)
| | - Baik L. Seong
- Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
- Authors to whom correspondence should be addressed; E-Mails: (S.I.C.); (H.J.); (B.L.S.); Tel.: +82-2-393-4631 (S.I.C.)
| |
Collapse
|
12
|
Chaperoning roles of macromolecules interacting with proteins in vivo. Int J Mol Sci 2011; 12:1979-90. [PMID: 21673934 PMCID: PMC3111645 DOI: 10.3390/ijms12031979] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/15/2011] [Accepted: 03/17/2011] [Indexed: 11/28/2022] Open
Abstract
The principles obtained from studies on molecular chaperones have provided explanations for the assisted protein folding in vivo. However, the majority of proteins can fold without the assistance of the known molecular chaperones, and little attention has been paid to the potential chaperoning roles of other macromolecules. During protein biogenesis and folding, newly synthesized polypeptide chains interact with a variety of macromolecules, including ribosomes, RNAs, cytoskeleton, lipid bilayer, proteolytic system, etc. In general, the hydrophobic interactions between molecular chaperones and their substrates have been widely believed to be mainly responsible for the substrate stabilization against aggregation. Emerging evidence now indicates that other features of macromolecules such as their surface charges, probably resulting in electrostatic repulsions, and steric hindrance, could play a key role in the stabilization of their linked proteins against aggregation. Such stabilizing mechanisms are expected to give new insights into our understanding of the chaperoning functions for de novo protein folding. In this review, we will discuss the possible chaperoning roles of these macromolecules in de novo folding, based on their charge and steric features.
Collapse
|
13
|
Stampolidis P, Kaderbhai NN, Kaderbhai MA. Periplasmically-exported lupanine hydroxylase undergoes transition from soluble to functional inclusion bodies in Escherichia coli. Arch Biochem Biophys 2009; 484:8-15. [PMID: 19467626 DOI: 10.1016/j.abb.2009.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Pseudomonas lupanine hydroxylase is a periplasmic-localised, two domain quinocytochrome c enzyme. It requires numerous post-translocation modifications involving signal peptide processing, disulphide bridge formation and, heme linkage in the carboxy-terminal cytochrome c domain to eventually generate a Ca(2+)-bound quino-c hemoprotein that hydroxylates the plant alkaloid, lupanine. An exported, functional recombinant enzyme was generated in Escherichia coli by co-expression with cytochrome c maturation factors. Increased growth temperatures ranging from 18 to 30 degrees C gradually raised the enzyme production to a peak together with its concomitant aggregation as red solid particles, readily activatable in a fully functional form by mild chaotropic treatment. Here, we demonstrate that the exported lupanine hydroxylase undergoes a cascade transition from a soluble to "non-classical" inclusion body form when build-up in the periplasm exceeded a basal threshold concentration. These periplasmic aggregates were distinct from the non-secreted, signal-sequenceless counterpart that occurred as misfolded, non-functional concatamers in the form of classical inclusion bodies. We discuss our findings in the light of current models of how aggregation of lupanine hydroxylase arises in the periplasmic space.
Collapse
Affiliation(s)
- Pavlos Stampolidis
- Institute of Biological Sciences, Cledwyn Building, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DD, United Kingdom
| | | | | |
Collapse
|
14
|
Contreras-Martínez LM, DeLisa MP. Intracellular Ribosome Display Via SecM Translation Arrest as a Selection for Antibodies with Enhanced Cytosolic Stability. J Mol Biol 2007; 372:513-24. [PMID: 17669427 DOI: 10.1016/j.jmb.2007.06.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 06/14/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
Ribosome display is a powerful approach for affinity and stability maturation of recombinant antibodies. However, since ribosome display is performed entirely in vitro, there are several limitations to this approach including technical challenges associated with: (i) efficiently expressing and stalling antibodies on ribosomes using cell-free translation mixtures; and (ii) folding of antibodies in buffers where the concentration and composition of factors varies from that found in the intracellular milieu. We have developed a novel method for intracellular ribosome display that takes advantage of the recently discovered Escherichia coli SecM translation arrest mechanism. Specifically, we provide the first evidence that the encoding mRNA of SecM-stalled heterologous proteins remains stably attached to ribosomes, thereby enabling creation of stalled antibody-ribosome-mRNA (ARM) complexes entirely inside of living cells. Since ARM complexes faithfully maintain a genotype-phenotype link between the arrested antibody and its encoding mRNA, we demonstrate that this method is ideally suited for isolating stability-enhanced single-chain variable fragment (scFv) antibodies that are efficiently folded and functional in the bacterial cytoplasm.
Collapse
|
15
|
Borrero EE, Escobedo FA. Folding kinetics of a lattice protein via a forward flux sampling approach. J Chem Phys 2007; 125:164904. [PMID: 17092136 DOI: 10.1063/1.2357944] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We implement a forward flux sampling approach [R. J. Allen et al., J. Chem. Phys. 124, 194111 (2006)] for calculating transition rate constants and for sampling paths of protein folding events. The algorithm generates trajectories for the transition between the unfolded and folded states as chains of partially connected paths, which can be used to obtain the transition-state ensemble and the properties that characterize these intermediates. We apply this approach to Monte Carlo simulations of a model lattice protein in open space and in confined spaces of varying dimensions. We study the effect of confinement on both protein thermodynamic stability and folding kinetics; the former by mapping free-energy landscapes and the latter by the determination of rate constants and mechanistic details of the folding pathway. Our results show that, for the range of temperatures where the native state is stable, confinement of a protein destabilizes the unfolded state by reducing its entropy, resulting in increased thermodynamic stability of the folded state. Relative to the folding in open space, we find that the kinetics can be accelerated at temperatures above the temperature at which the unconfined protein folds fastest and that the rate constant increases with the number of constrained dimensions. By examining the statistical properties of the transition-state ensemble, we detect signs of a classical nucleation folding mechanism for a core of native contacts formed at an early stage of the process. This nucleus acts as folding foci and is composed of those residues that have higher probability to form native contacts in the transition-state intermediates, which can vary depending on the confinement conditions of the system.
Collapse
Affiliation(s)
- Ernesto E Borrero
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
16
|
Pi C, Liu J, Wang L, Jiang X, Liu Y, Peng C, Chen S, Xu A. Soluble expression, purification and functional identification of a disulfide-rich conotoxin derived from Conus litteratus. J Biotechnol 2007; 128:184-93. [PMID: 17069917 DOI: 10.1016/j.jbiotec.2006.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 08/31/2006] [Accepted: 09/14/2006] [Indexed: 01/24/2023]
Abstract
Conotoxins are a diverse array of small peptides mostly with multiple disulfide bridges. These peptides become an increasing significant source of neuro-pharmacological probes and drugs as a result of the high selectivity for ion channels and receptors. Usually, the analogue of natural conotoxins is produced by means of chemical synthesis. Here, we present a simple and fast strategy of producing disulfide-rich conotoxins via recombinant expression. By fused with thioredoxin and His tag, a novel O-superfamily conotoxin lt7a was successfully expressed in Escherichia coli and purified, resulting in a high yield of recombinant lt7a about 6 mg/l. The purity of target protein is up to 95% as identified by HPLC results. Whole cell patch-clamp recording revealed that the new conotoxin blocked voltage-sensitive sodium channels in rat dorsal root ganglion neurons, indicating it might be a novel microO-conotoxin.
Collapse
Affiliation(s)
- Canhui Pi
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, Open Laboratory for Marine Functional Genomics, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kristensen J, Sperling-Petersen HU, Mortensen KK, Sørensen HP. Generation of monoclonal antibodies for the assessment of protein purification by recombinant ribosomal coupling. Int J Biol Macromol 2005; 37:212-7. [PMID: 16330094 DOI: 10.1016/j.ijbiomac.2005.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 10/29/2005] [Accepted: 10/29/2005] [Indexed: 11/15/2022]
Abstract
We recently described a conceptually novel method for the purification of recombinant proteins with a propensity to form inclusion bodies in the cytoplasm of Escherichia coli. Recombinant proteins were covalently coupled to the E. coli ribosome by fusing them to ribosomal protein 23 (rpL23) followed by expression in an rpL23 deficient strain of E. coli. This allowed for the isolation of ribsomes with covalently coupled target proteins which could be efficiently purified by centrifugation after in vitro proteolysis at a specific site incorporated between rpL23 and the target protein. rpL23-GFP-His is among the fusion proteins used in our previous study for ribosomal coupling of C-terminally His-tagged green fluorescent protein. To assess the efficiency of separation of target protein from ribosomes, by site-specific proteolysis, we required monoclonal antibodies directed against rpL23 and GFP. We therefore purified rpL23-GFP-His, rpL23-His and GFP from E. coli recombinants using affinity, ion exchange and hydrophobic interaction chromatography. These proteins could be purified with yields of 150, 150 and 1500 microg per gram cellular wet weight, respectively. However, rpL23-GFP-His could only be expressed in a soluble form and subsequently purified, when cells were cultivated at reduced temperatures. The purified rpL23-GFP-His fusion protein was used to immunize balb/c mice and the hybridoma cell lines resulting from in vitro cell fusion were screened by ELISA using rpL23-His and GFP to select for monoclonal antibodies specific for each protein. This resulted in 20 antibodies directed against rpL23 and 3 antibodies directed against GFP. Antibodies were screened for isotypes and their efficiency in western immunoblots. The most efficient antibody against rpL23 and GFP were purified by Protein G Sepharose affinity chromatography. The purified antibodies were used to evaluate the separation of ribosomes from GFP, streptavidin, murine interleukin-6, a phagedisplay antibody and yeast elongation factor 1A by centrifugation, when ribosomes with covalently coupled target protein were cleaved at specific proteolytic cleavage sites. We conclude that the generated antibodies can be used to evaluate ribosomal coupling of recombinant target proteins as well as the efficiency of their separation from the ribosome.
Collapse
Affiliation(s)
- Janni Kristensen
- Laboratory of Biodesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
18
|
Abstract
Many mammalian receptor domains, among them a large number of potential therapeutic target proteins, are highly aggregation-prone upon heterologous expression in bacteria. This severely limits functional studies of such receptor domains and also their engineering towards improved properties. One of these proteins is the Nogoreceptor, which plays a central role in mediating the inhibition of axon growth and functional recovery after injury of the adult mammalian central nervous system. We show here that the ligand binding domain of the Nogoreceptor folds to an active conformation in ternary ribosomal complexes, as formed in ribosome display. In these complexes the receptor is still connected, via a C-terminal tether, to the peptidyl tRNA in the ribosome and the mRNA also stays connected. The ribosome prevents aggregation of the protein, which aggregates as soon as the release from the ribosome is triggered. In contrast, no active receptor was observed in phage display, where aggregation appears to prevent incorporation of the protein into the phage coat. This strategy sets the stage for rapidly studying defined mutations of such aggregation-prone receptors in vitro and to improve their properties by in vitro evolution using the ribosome display technology.
Collapse
Affiliation(s)
- Bernhard Schimmele
- Biochemisches Institut der Universität Zürich, Winterthurer Strasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
19
|
Sørensen HP, Mortensen KK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 2005; 4:1. [PMID: 15629064 PMCID: PMC544838 DOI: 10.1186/1475-2859-4-1] [Citation(s) in RCA: 489] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 01/04/2005] [Indexed: 11/10/2022] Open
Abstract
Pure, soluble and functional proteins are of high demand in modern biotechnology. Natural protein sources rarely meet the requirements for quantity, ease of isolation or price and hence recombinant technology is often the method of choice. Recombinant cell factories are constantly employed for the production of protein preparations bound for downstream purification and processing. Eschericia coli is a frequently used host, since it facilitates protein expression by its relative simplicity, its inexpensive and fast high density cultivation, the well known genetics and the large number of compatible molecular tools available. In spite of all these qualities, expression of recombinant proteins with E. coli as the host often results in insoluble and/or nonfunctional proteins. Here we review new approaches to overcome these obstacles by strategies that focus on either controlled expression of target protein in an unmodified form or by applying modifications using expressivity and solubility tags.
Collapse
Affiliation(s)
| | - Kim Kusk Mortensen
- Laboratory of BioDesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| |
Collapse
|