1
|
Turley TN, Theis JL, Evans JM, Fogarty ZC, Gulati R, Hayes SN, Tweet MS, Olson TM. Identification of Rare Genetic Variants in Familial Spontaneous Coronary Artery Dissection and Evidence for Shared Biological Pathways. J Cardiovasc Dev Dis 2023; 10:393. [PMID: 37754822 PMCID: PMC10532385 DOI: 10.3390/jcdd10090393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Rare familial spontaneous coronary artery dissection (SCAD) kindreds implicate genetic disease predisposition and provide a unique opportunity for candidate gene discovery. Whole-genome sequencing was performed in fifteen probands with non-syndromic SCAD who had a relative with SCAD, eight of whom had a second relative with extra-coronary arteriopathy. Co-segregating variants and associated genes were prioritized by quantitative variant, gene, and disease-level metrics. Curated public databases were queried for functional relationships among encoded proteins. Fifty-four heterozygous coding variants in thirteen families co-segregated with disease and fulfilled primary filters of rarity, gene variation constraint, and predicted-deleterious protein effect. Secondary filters yielded 11 prioritized candidate genes in 12 families, with high arterial tissue expression (n = 7), high-confidence protein-level interactions with genes associated with SCAD previously (n = 10), and/or previous associations with connective tissue disorders and aortopathies (n = 3) or other vascular phenotypes in mice or humans (n = 11). High-confidence associations were identified among 10 familial SCAD candidate-gene-encoded proteins. A collagen-encoding gene was identified in five families, two with distinct variants in COL4A2. Familial SCAD is genetically heterogeneous, yet perturbations of extracellular matrix, cytoskeletal, and cell-cell adhesion proteins implicate common disease-susceptibility pathways. Incomplete penetrance and variable expression suggest genetic or environmental modifiers.
Collapse
Affiliation(s)
- Tamiel N. Turley
- Molecular Pharmacology and Experimental Therapeutics Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA;
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jeanne L. Theis
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jared M. Evans
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA; (J.M.E.); (Z.C.F.)
| | - Zachary C. Fogarty
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA; (J.M.E.); (Z.C.F.)
| | - Rajiv Gulati
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (R.G.); (S.N.H.); (M.S.T.)
| | - Sharonne N. Hayes
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (R.G.); (S.N.H.); (M.S.T.)
| | - Marysia S. Tweet
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (R.G.); (S.N.H.); (M.S.T.)
| | - Timothy M. Olson
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (R.G.); (S.N.H.); (M.S.T.)
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Jiang L, Wang X, Wang Y, Chen X. Quantitative proteomics reveals that miR-222 inhibits erythroid differentiation by targeting BLVRA and CRKL. Cell Biochem Funct 2018; 36:95-105. [PMID: 29368338 DOI: 10.1002/cbf.3321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/02/2017] [Accepted: 12/26/2017] [Indexed: 01/27/2023]
Abstract
miR-222 plays an important role in erythroid differentiation, but the potential targets of miR-222 in the regulation of erythroid differentiation remain to be determined. The target genes of miR-222 were identified by proteomics combined with bioinformatics analysis in this study. Thirteen proteins were upregulated, and 13 were downregulated in K562 cells following transfection with miR-222 inhibitor for 24 and 48 hours. Among these proteins, BLVRA and CRKL were upregulated after transfection of miR-222 inhibitor in K562 cells and human CD34+ HPCs. Moreover, miR-222 mimics reduced and miR-222 inhibitor enhanced the mRNA and protein levels of both BLVRA and CRKL. Luciferase assay showed that miR-222 directly targeted 3'-UTR of BLVRA and CRKL. In addition, overexpression of either BLVRA or CRKL or both increased the erythroid differentiation of K562 cells, while silencing of either BLVRA or CRKL or both by siRNA significantly attenuated hemin-induced erythroid differentiation of K562 cells. Our results indicated that BLVRA and CRKL are targets of miR-222.
Collapse
Affiliation(s)
- Li Jiang
- Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xing Wang
- Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Wang
- Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoyan Chen
- Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
3
|
Héroult M, Schaffner F, Pfaff D, Prahst C, Kirmse R, Kutschera S, Riedel M, Ludwig T, Vajkoczy P, Graeser R, Augustin HG. EphB4 Promotes Site-Specific Metastatic Tumor Cell Dissemination by Interacting with Endothelial Cell–Expressed EphrinB2. Mol Cancer Res 2010; 8:1297-309. [DOI: 10.1158/1541-7786.mcr-09-0453] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Liu H, Kho AT, Kohane IS, Sun Y. Predicting survival within the lung cancer histopathological hierarchy using a multi-scale genomic model of development. PLoS Med 2006; 3:e232. [PMID: 16800721 PMCID: PMC1483910 DOI: 10.1371/journal.pmed.0030232] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 03/02/2006] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The histopathologic heterogeneity of lung cancer remains a significant confounding factor in its diagnosis and prognosis-spurring numerous recent efforts to find a molecular classification of the disease that has clinical relevance. METHODS AND FINDINGS Molecular profiles of tumors from 186 patients representing four different lung cancer subtypes (and 17 normal lung tissue samples) were compared with a mouse lung development model using principal component analysis in both temporal and genomic domains. An algorithm for the classification of lung cancers using a multi-scale developmental framework was developed. Kaplan-Meier survival analysis was conducted for lung adenocarcinoma patient subgroups identified via their developmental association. We found multi-scale genomic similarities between four human lung cancer subtypes and the developing mouse lung that are prognostically meaningful. Significant association was observed between the localization of human lung cancer cases along the principal mouse lung development trajectory and the corresponding patient survival rate at three distinct levels of classical histopathologic resolution: among different lung cancer subtypes, among patients within the adenocarcinoma subtype, and within the stage I adenocarcinoma subclass. The earlier the genomic association between a human tumor profile and the mouse lung development sequence, the poorer the patient's prognosis. Furthermore, decomposing this principal lung development trajectory identified a gene set that was significantly enriched for pyrimidine metabolism and cell-adhesion functions specific to lung development and oncogenesis. CONCLUSIONS From a multi-scale disease modeling perspective, the molecular dynamics of murine lung development provide an effective framework that is not only data driven but also informed by the biology of development for elucidating the mechanisms of human lung cancer biology and its clinical outcome.
Collapse
MESH Headings
- Adenocarcinoma/chemistry
- Adenocarcinoma/classification
- Adenocarcinoma/genetics
- Adenocarcinoma/mortality
- Adenocarcinoma/pathology
- Algorithms
- Animals
- Carcinoid Tumor/chemistry
- Carcinoid Tumor/genetics
- Carcinoid Tumor/mortality
- Carcinoid Tumor/pathology
- Carcinoma, Non-Small-Cell Lung/chemistry
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Small Cell/chemistry
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/mortality
- Carcinoma, Small Cell/pathology
- Cell Adhesion/genetics
- Cell Transformation, Neoplastic/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Genes, cdc
- Genomics
- Humans
- Kaplan-Meier Estimate
- Lung/chemistry
- Lung/embryology
- Lung/growth & development
- Lung Neoplasms/chemistry
- Lung Neoplasms/classification
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Mice
- Models, Biological
- Neoplasm Metastasis/genetics
- Neoplasm Staging
- Prognosis
- Pyrimidines/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Species Specificity
Collapse
Affiliation(s)
- Hongye Liu
- Children's Hospital Informatics Program, Children's Hospital Boston, Boston, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
5
|
Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, Lindblom P, Shani M, Zicha D, Adams RH. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 2006; 124:161-73. [PMID: 16413489 DOI: 10.1016/j.cell.2005.10.034] [Citation(s) in RCA: 351] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 08/26/2005] [Accepted: 10/17/2005] [Indexed: 11/29/2022]
Abstract
New blood vessels are initially formed through the assembly or sprouting of endothelial cells, but the recruitment of supporting pericytes and vascular smooth muscle cells (mural cells) ensures the formation of a mature and stable vascular network. Defective mural-cell coverage is associated with the poorly organized and leaky vasculature seen in tumors or other human diseases. Here we report that mural cells require ephrin-B2, a ligand for Eph receptor tyrosine kinases, for normal association with small-diameter blood vessels (microvessels). Tissue-specific mutant mice display perinatal lethality; vascular defects in skin, lung, gastrointestinal tract, and kidney glomeruli; and abnormal migration of smooth muscle cells to lymphatic capillaries. Cultured ephrin-B2-deficient smooth muscle cells are defective in spreading, focal-adhesion formation, and polarized migration and show increased motility. Our results indicate that the role of ephrin-B2 and EphB receptors in these processes involves Crk-p130(CAS) signaling and suggest that ephrin-B2 has some cell-cell-contact-independent functions.
Collapse
Affiliation(s)
- Shane S Foo
- Vascular Development Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|