1
|
Liu D, Geary CW, Chen G, Shao Y, Li M, Mao C, Andersen ES, Piccirilli JA, Rothemund PWK, Weizmann Y. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Nat Chem 2020; 12:249-259. [PMID: 31959958 DOI: 10.1038/s41557-019-0406-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/06/2019] [Indexed: 01/31/2023]
Abstract
In biological systems, large and complex structures are often assembled from multiple simpler identical subunits. This strategy-homooligomerization-allows efficient genetic encoding of structures and avoids the need to control the stoichiometry of multiple distinct units. It also allows the minimal number of distinct subunits when designing artificial nucleic acid structures. Here, we present a robust self-assembly system in which homooligomerizable tiles are formed from intramolecularly folded RNA single strands. Tiles are linked through an artificially designed branched kissing-loop motif, involving Watson-Crick base pairing between the single-stranded regions of a bulged helix and a hairpin loop. By adjusting the tile geometry to gain control over the curvature, torsion and the number of helices, we have constructed 16 different linear and circular structures, including a finite-sized three-dimensional cage. We further demonstrate cotranscriptional self-assembly of tiles based on branched kissing loops, and show that tiles inserted into a transfer RNA scaffold can be overexpressed in bacterial cells.
Collapse
Affiliation(s)
- Di Liu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Cody W Geary
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Departments of Bioengineering, Computational and Mathematical Sciences, and Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA
| | - Gang Chen
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Yaming Shao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Mo Li
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ebbe S Andersen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Joseph A Piccirilli
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Paul W K Rothemund
- Departments of Bioengineering, Computational and Mathematical Sciences, and Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA.
| | - Yossi Weizmann
- Department of Chemistry, University of Chicago, Chicago, IL, USA. .,Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
2
|
Takeuchi Y, Endo M, Suzuki Y, Hidaka K, Durand G, Dausse E, Toulmé JJ, Sugiyama H. Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure. Biomater Sci 2017; 4:130-5. [PMID: 26438892 DOI: 10.1039/c5bm00274e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA molecules uniquely form a complex through specific hairpin loops, called a kissing complex. The kissing complex is widely investigated and used for the construction of RNA nanostructures. Molecular switches have also been created by combining a kissing loop and a ligand-binding aptamer to control the interactions of RNA molecules. In this study, we incorporated two kinds of RNA molecules into a DNA origami structure and used atomic force microscopy to observe their ligand-responsive interactions at the single-molecule level. We used a designed RNA aptamer called GTPswitch, which has a guanosine triphosphate (GTP) responsive domain and can bind to the target RNA hairpin named Aptakiss in the presence of GTP. We observed shape changes of the DNA/RNA strands in the DNA origami, which are induced by the GTPswitch, into two different shapes in the absence and presence of GTP, respectively. We also found that the switching function in the nanospace could be improved by using a cover strand over the kissing loop of the GTPswitch or by deleting one base from this kissing loop. These newly designed ligand-responsive aptamers can be used for the controlled assembly of the various DNA and RNA nanostructures.
Collapse
Affiliation(s)
- Yosuke Takeuchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Yuki Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Guillaume Durand
- ARNA laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France. and Inserm U869, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Eric Dausse
- ARNA laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France. and Inserm U869, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Jean-Jacques Toulmé
- ARNA laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France. and Inserm U869, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
3
|
Borgia G, Maraolo AE, Buonomo AR, Scotto R, Gentile I. The therapeutic potential of new investigational hepatitis C virus translation inhibitors. Expert Opin Investig Drugs 2016; 25:1209-14. [PMID: 27537604 DOI: 10.1080/13543784.2016.1225036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis, hepatocellular carcinoma and liver-related death worldwide. Currently, the anti-HCV armamentarium encompasses several direct-acting antivirals (DAA) that achieve very high response rates and have an excellent tolerability profile. However, they do not represent a final solution for HCV global eradication for at least these two reasons: i) some patients harbour resistant strains to DAAs and cannot benefit from currently available treatments; ii) the cost of these drugs remains very high. AREAS COVERED This review summarizes pre-clinical and clinical data regarding HCV translation inhibitors, a new class of drugs currently in the pipeline with novel mechanisms of action. EXPERT OPINION The availability of DAAs resolved most issues related to HCV treatment compared with the previous interferon-based therapies. However, there are some patients that cannot achieve a viral clearance with currently available treatments. Therefore, there is still room for new drugs in this setting, providing that they demonstrate an advantage in terms of efficacy, safety, cost or or simplicity of use. Based on preliminary results, at least for some promising molecules (e.g. miravirsen and RG-101), studies on safety and efficacy on this intriguing class of drugs are needed.
Collapse
Affiliation(s)
- Guglielmo Borgia
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| | - Alberto Enrico Maraolo
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| | - Antonio Riccardo Buonomo
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| | - Riccardo Scotto
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| | - Ivan Gentile
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| |
Collapse
|
4
|
Durand G, Dausse E, Goux E, Fiore E, Peyrin E, Ravelet C, Toulmé JJ. A combinatorial approach to the repertoire of RNA kissing motifs; towards multiplex detection by switching hairpin aptamers. Nucleic Acids Res 2016; 44:4450-9. [PMID: 27067541 PMCID: PMC4872101 DOI: 10.1093/nar/gkw206] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/15/2016] [Indexed: 01/22/2023] Open
Abstract
Loop–loop (also known as kissing) interactions between RNA hairpins are involved in several mechanisms in both prokaryotes and eukaryotes such as the regulation of the plasmid copy number or the dimerization of retroviral genomes. The stability of kissing complexes relies on loop parameters (base composition, sequence and size) and base combination at the loop–loop helix - stem junctions. In order to identify kissing partners that could be used as regulatory elements or building blocks of RNA scaffolds, we analysed a pool of 5.2 × 106 RNA hairpins with randomized loops. We identified more than 50 pairs of kissing RNA hairpins. Two kissing motifs, 5′CCNY and 5′RYRY, generate highly stable complexes with KDs in the low nanomolar range. Such motifs were introduced in the apical loop of hairpin aptamers that switch between unfolded and folded state upon binding to their cognate target molecule, hence their name aptaswitch. The aptaswitch–ligand complex is specifically recognized by a second RNA hairpin named aptakiss through loop–loop interaction. Taking advantage of our kissing motif repertoire we engineered aptaswitch–aptakiss modules for purine derivatives, namely adenosine, GTP and theophylline and demonstrated that these molecules can be specifically and simultaneously detected by surface plasmon resonance or by fluorescence anisotropy.
Collapse
Affiliation(s)
- Guillaume Durand
- University of Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, 33076 Bordeaux, France Inserm U1212, 146 rue Léo Saignat, 33076 Bordeaux, France CNRS UMR5320, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Eric Dausse
- University of Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, 33076 Bordeaux, France Inserm U1212, 146 rue Léo Saignat, 33076 Bordeaux, France CNRS UMR5320, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Emma Goux
- University Grenoble Alpes, Département de Pharmacochimie Moléculaire, CNRS UMR5063, 38400 St Martin d'Hères, France
| | - Emmanuelle Fiore
- University Grenoble Alpes, Département de Pharmacochimie Moléculaire, CNRS UMR5063, 38400 St Martin d'Hères, France
| | - Eric Peyrin
- University Grenoble Alpes, Département de Pharmacochimie Moléculaire, CNRS UMR5063, 38400 St Martin d'Hères, France
| | - Corinne Ravelet
- University Grenoble Alpes, Département de Pharmacochimie Moléculaire, CNRS UMR5063, 38400 St Martin d'Hères, France
| | - Jean-Jacques Toulmé
- University of Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, 33076 Bordeaux, France Inserm U1212, 146 rue Léo Saignat, 33076 Bordeaux, France CNRS UMR5320, 146 rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
5
|
Dausse E, Barré A, Aimé A, Groppi A, Rico A, Ainali C, Salgado G, Palau W, Daguerre E, Nikolski M, Toulmé JJ, Di Primo C. Aptamer selection by direct microfluidic recovery and surface plasmon resonance evaluation. Biosens Bioelectron 2016; 80:418-425. [PMID: 26874109 DOI: 10.1016/j.bios.2016.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/19/2016] [Accepted: 02/02/2016] [Indexed: 01/02/2023]
Abstract
A surface plasmon resonance (SPR)-based SELEX approach has been used to raise RNA aptamers against a structured RNA, derived from XBP1 pre-mRNA, that folds as two contiguous hairpins. Thanks to the design of the internal microfluidic cartridge of the instrument, the selection was performed during the dissociation phase of the SPR analysis by recovering the aptamer candidates directly from the target immobilized onto the sensor chip surface. The evaluation of the pools was performed by SPR, simultaneously, during the association phase, each time the amplified and transcribed candidates were injected over the immobilized target. SPR coupled with SELEX from the first to the last round allowed identifying RNA aptamers that formed highly stable loop-loop complexes (KD equal to 8nM) with the hairpin located on the 5' side of the target. High throughput sequencing of two key rounds confirmed the evolution observed by SPR and also revealed the selection of hairpins displaying a loop not fully complementary to the loop of its target. These candidates were selected mainly because they bound 79 times faster to the target than those having a complementary loop. SELEX coupled with SPR is expected to speed up the selection process because selection and evaluation are performed simultaneously.
Collapse
Affiliation(s)
- Eric Dausse
- University of Bordeaux, Laboratoire ARNA, Bordeaux F-33000, France; INSERM U1212-CNRS UMR 5320, IECB, Pessac F-33600, France
| | - Aurélien Barré
- University of Bordeaux, CBiB-LaBRI, Bordeaux F-33000, France
| | - Ahissan Aimé
- University of Bordeaux, Laboratoire ARNA, Bordeaux F-33000, France; INSERM U1212-CNRS UMR 5320, IECB, Pessac F-33600, France
| | - Alexis Groppi
- University of Bordeaux, CBiB-LaBRI, Bordeaux F-33000, France
| | - Alain Rico
- Thermo Fisher Scientific, Saint Aubin F-91190, France
| | | | - Gilmar Salgado
- University of Bordeaux, Laboratoire ARNA, Bordeaux F-33000, France; INSERM U1212-CNRS UMR 5320, IECB, Pessac F-33600, France
| | - William Palau
- University of Bordeaux, Laboratoire ARNA, Bordeaux F-33000, France; INSERM U1212-CNRS UMR 5320, IECB, Pessac F-33600, France
| | | | - Macha Nikolski
- University of Bordeaux, CBiB-LaBRI, Bordeaux F-33000, France
| | - Jean-Jacques Toulmé
- University of Bordeaux, Laboratoire ARNA, Bordeaux F-33000, France; INSERM U1212-CNRS UMR 5320, IECB, Pessac F-33600, France
| | - Carmelo Di Primo
- University of Bordeaux, Laboratoire ARNA, Bordeaux F-33000, France; INSERM U1212-CNRS UMR 5320, IECB, Pessac F-33600, France.
| |
Collapse
|
6
|
An improved design of the kissing complex-based aptasensor for the detection of adenosine. Anal Bioanal Chem 2015; 407:6515-24. [DOI: 10.1007/s00216-015-8818-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/16/2015] [Accepted: 06/01/2015] [Indexed: 01/01/2023]
|
7
|
Durand G, Lisi S, Ravelet C, Dausse E, Peyrin E, Toulmé JJ. Riboswitches Based on Kissing Complexes for the Detection of Small Ligands. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Durand G, Lisi S, Ravelet C, Dausse E, Peyrin E, Toulmé JJ. Riboswitches based on kissing complexes for the detection of small ligands. Angew Chem Int Ed Engl 2014; 53:6942-5. [PMID: 24916019 DOI: 10.1002/anie.201400402] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Indexed: 01/08/2023]
Abstract
Biosensors derived from aptamers were designed for which folding into a hairpin shape is triggered by binding of the cognate ligand. These aptamers (termed aptaswitches) thus switch between folded and unfolded states in the presence and absence of the ligand, respectively. The apical loop of the folded aptaswitch is recognized by a second hairpin called the aptakiss through loop-loop or kissing interactions, whereas the aptakiss does not bind the unfolded aptaswitch. Therefore, the formation of a kissing complex signals the presence of the ligand. Aptaswitches were designed that enable the detection of GTP and adenosine in a specific and quantitative manner by surface plasmon resonance when using a grafted aptakiss or in solution by anisotropy measurement with a fluorescently labeled aptakiss. This approach is generic and can potentially be extended to the detection of any molecule for which hairpin aptamers have been identified, as long as the apical loop is not involved in ligand binding.
Collapse
Affiliation(s)
- Guillaume Durand
- Univ. Bordeaux, IECB, Laboratoire ARNA, 2 rue Robert Escarpit, 33607 Pessac (France); Inserm U869, Laboratoire ARNA, 146 rue Léo Saignat, 33076 Bordeaux (France)
| | | | | | | | | | | |
Collapse
|
9
|
Cao S, Xu X, Chen SJ. Predicting structure and stability for RNA complexes with intermolecular loop-loop base-pairing. RNA (NEW YORK, N.Y.) 2014; 20:835-45. [PMID: 24751648 PMCID: PMC4024638 DOI: 10.1261/rna.043976.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/23/2014] [Indexed: 05/24/2023]
Abstract
RNA loop-loop interactions are essential for genomic RNA dimerization and regulation of gene expression. In this article, a statistical mechanics-based computational method that predicts the structures and thermodynamic stabilities of RNA complexes with loop-loop kissing interactions is described. The method accounts for the entropy changes for the formation of loop-loop interactions, which is a notable advancement that other computational models have neglected. Benchmark tests with several experimentally validated systems show that the inclusion of the entropy parameters can indeed improve predictions for RNA complexes. Furthermore, the method can predict not only the native structures of RNA/RNA complexes but also alternative metastable structures. For instance, the model predicts that the SL1 domain of HIV-1 RNA can form two different dimer structures with similar stabilities. The prediction is consistent with experimental observation. In addition, the model predicts two different binding sites for hTR dimerization: One binding site has been experimentally proposed, and the other structure, which has a higher stability, is structurally feasible and needs further experimental validation.
Collapse
Affiliation(s)
- Song Cao
- Department of Physics and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Xiaojun Xu
- Department of Physics and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Shi-Jie Chen
- Department of Physics and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
10
|
Binning JM, Leung DW, Amarasinghe GK. Aptamers in virology: recent advances and challenges. Front Microbiol 2012; 3:29. [PMID: 22347221 PMCID: PMC3274758 DOI: 10.3389/fmicb.2012.00029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/17/2012] [Indexed: 01/23/2023] Open
Abstract
Aptamers generated from randomized libraries of nucleic acids have found utility in a wide variety of fields and in the clinic. Aptamers can be used to target both intracellular and extracellular components, including small molecules, proteins, cells, and viruses. With recent technological developments in stringent selection and rapid isolation strategies, it is likely that aptamers will continue to make an impact as useful tools and reagents. Although many recently developed aptamers are intended for use as therapeutic and diagnostic agents, use of aptamers for basic research, including target validation, remains an active area with high potential to impact our understanding of molecular mechanisms and for drug discovery. In this brief review, we will discuss recent aptamer discoveries, their potential role in structural virology, as well as challenges and future prospects.
Collapse
Affiliation(s)
- Jennifer M Binning
- Department of Pathology and Immunology, Washington University School of Medicine St. Louis, MO, USA
| | | | | |
Collapse
|
11
|
Dausse E, Taouji S, Evadé L, Di Primo C, Chevet E, Toulmé JJ. HAPIscreen, a method for high-throughput aptamer identification. J Nanobiotechnology 2011; 9:25. [PMID: 21639912 PMCID: PMC3127992 DOI: 10.1186/1477-3155-9-25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/03/2011] [Indexed: 01/24/2023] Open
Abstract
Background Aptamers are oligonucleotides displaying specific binding properties for a predetermined target. They are selected from libraries of randomly synthesized candidates through an in vitro selection process termed SELEX (Systematic Evolution of Ligands by EXponential enrichment) alternating selection and amplification steps. SELEX is followed by cloning and sequencing of the enriched pool of oligonucleotides to enable comparison of the selected sequences. The most represented candidates are then synthesized and their binding properties are individually evaluated thus leading to the identification of aptamers. These post-selection steps are time consuming and introduce a bias to the expense of poorly amplified binders that might be of high affinity and are consequently underrepresented. A method that would circumvent these limitations would be highly valuable. Results We describe a novel homogeneous solution-based method for screening large populations of oligonucleotide candidates generated from SELEX. This approach, based on the AlphaScreen® technology, is carried out on the exclusive basis of the binding properties of the selected candidates without the needs of performing a priori sequencing. It therefore enables the functional identification of high affinity aptamers. We validated the HAPIscreen (High throughput APtamer Identification screen) methodology using aptamers targeted to RNA hairpins, previously identified in our laboratory. We then screened pools of candidates issued from SELEX rounds in a 384 well microplate format and identify new RNA aptamers to pre-microRNAs. Conclusions HAPIscreen, an Alphascreen®-based methodology for the identification of aptamers is faster and less biased than current procedures based on sequence comparison of selected oligonucleotides and sampling binding properties of few individuals. Moreover this methodology allows for screening larger number of candidates. Used here for selecting anti-premiR aptamers, HAPIscreen can be adapted to any type of tagged target and is fully amenable to automation.
Collapse
Affiliation(s)
- Eric Dausse
- Inserm U869, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33706 Pessac, France
| | | | | | | | | | | |
Collapse
|
12
|
Davis DR, Seth PP. Therapeutic targeting of HCV internal ribosomal entry site RNA. Antivir Chem Chemother 2011; 21:117-28. [PMID: 21233533 DOI: 10.3851/imp1693] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HCV infection is a significant human disease, leading to liver cirrhosis and cancer, and killing >10,000 people in the US annually. Translation of the viral RNA genome is initiated by ribosomal binding to a highly structured RNA element, the internal ribosomal entry site (IRES), which presents a novel target for therapeutic intervention. We will first discuss studies of oligonucleotide therapeutics targeting various regions of the 340-nucleotide IRES, many of which have effectively blocked IRES function in vitro and are active against virus replication in cell culture. Although low nanomolar potencies have been obtained for DNA- and RNA-based molecules, stability and drug delivery challenges remain to be addressed for these particular HCV compounds. Several classes of small molecule inhibitors have been identified from screening protocols or designed from established RNA therapeutic scaffolds. In particular, small molecule IRES inhibitors based on a benzimidazole scaffold bind specifically to the IRES, and inhibit viral replication in cell culture at micromolar concentrations with low toxicity. The structure of the RNA target in complex with a representative member of these small molecule inhibitors demonstrates that a large RNA conformational change occurs upon inhibitor binding. The RNA complex shows how the inhibitor alters the global RNA structure and provides a framework for structure-based drug design of novel HCV therapeutics.
Collapse
Affiliation(s)
- Darrell R Davis
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA.
| | | |
Collapse
|
13
|
Romero-López C, Berzal-Herranz A. A long-range RNA-RNA interaction between the 5' and 3' ends of the HCV genome. RNA (NEW YORK, N.Y.) 2009; 15:1740-1752. [PMID: 19605533 PMCID: PMC2743058 DOI: 10.1261/rna.1680809] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/04/2009] [Indexed: 02/05/2023]
Abstract
The RNA genome of the hepatitis C virus (HCV) contains multiple conserved structural cis domains that direct protein synthesis, replication, and infectivity. The untranslatable regions (UTRs) play essential roles in the HCV cycle. Uncapped viral RNAs are translated via an internal ribosome entry site (IRES) located at the 5' UTR, which acts as a scaffold for recruiting multiple protein factors. Replication of the viral genome is initiated at the 3' UTR. Bioinformatics methods have identified other structural RNA elements thought to be involved in the HCV cycle. The 5BSL3.2 motif, which is embedded in a cruciform structure at the 3' end of the NS5B coding sequence, contributes to the three-dimensional folding of the entire 3' end of the genome. It is essential in the initiation of replication. This paper reports the identification of a novel, strand-specific, long-range RNA-RNA interaction between the 5' and 3' ends of the genome, which involves 5BSL3.2 and IRES motifs. Mutants harboring substitutions in the apical loop of domain IIId or in the internal loop of 5BSL3.2 disrupt the complex, indicating these regions are essential in initiating the kissing interaction. No complex was formed when the UTRs of the related foot and mouth disease virus were used in binding assays, suggesting this interaction is specific for HCV sequences. The present data firmly suggest the existence of a higher-order structure that may mediate a protein-independent circularization of the HCV genome. The 5'-3' end bridge may have a role in viral translation modulation and in the switch from protein synthesis to RNA replication.
Collapse
Affiliation(s)
- Cristina Romero-López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | | |
Collapse
|
14
|
Watrin M, Von Pelchrzim F, Dausse E, Schroeder R, Toulmé JJ. In vitro selection of RNA aptamers derived from a genomic human library against the TAR RNA element of HIV-1. Biochemistry 2009; 48:6278-84. [PMID: 19496624 DOI: 10.1021/bi802373d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transactivating responsive (TAR) element is a RNA hairpin located in the 5' untranslated region of HIV-1 mRNA. It is essential for full-length transcription of the retroviral genome and therefore for HIV-1 replication. Hairpin aptamers that generate highly stable and specific complexes with TAR were previously identified, thus decreasing the level of TAR-dependent expression in cultured cells [Kolb, G., et al. (2006) RNA Biol. 3, 150-156]. We performed genomic SELEX against TAR using a human RNA library to identify human transcripts that might interact with the retroviral genome through loop-loop interactions and potentially contribute to the regulation of TAR-mediated processes. We identified a genomic aptamer termed a1 that folds as a hairpin with an apical loop complementary to five nucleotides of the TAR hexanucleotide loop. Surface plasmon resonance experiments performed on a truncated or mutated version of the a1 aptamer, in the presence of the Rop protein of Escherichia coli, indicate the formation of a highly stable a1-TAR kissing complex. The 5' ACCCAG loop of a1 constitutes a new motif of interaction with the TAR loop.
Collapse
Affiliation(s)
- Marguerite Watrin
- Inserm U869, European Institute of Chemistry and Biology, Pessac, France
| | | | | | | | | |
Collapse
|
15
|
Kikuchi K, Umehara T, Nishikawa F, Fukuda K, Hasegawa T, Nishikawa S. Increased inhibitory ability of conjugated RNA aptamers against the HCV IRES. Biochem Biophys Res Commun 2009; 386:118-23. [PMID: 19501043 DOI: 10.1016/j.bbrc.2009.05.135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 05/30/2009] [Indexed: 11/28/2022]
Abstract
Hepatitis C virus (HCV) translation begins within the internal ribosome entry site (IRES). We have previously isolated two RNA aptamers, 2-02 and 3-07, which specifically bind to domain II and domain III-IV of the HCV IRES, respectively, and inhibit IRES-dependent translation. To improve the function of these aptamers, we constructed two conjugated molecules of 2-02 and 3-07. These bound to the target RNA more efficiently than the two parental aptamers. Furthermore, they inhibited IRES-dependent translation about 10 times as efficiently as the 3-07 aptamer. This result indicates that combining aptamers for different target recognition sites potentiates the inhibition activity by enhancing the domain-binding efficiency.
Collapse
Affiliation(s)
- Kunio Kikuchi
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Shiohara T, Saito H, Inoue T. A designed RNA selection: establishment of a stable complex between a target and selectant RNA via two coordinated interactions. Nucleic Acids Res 2009; 37:e23. [PMID: 19136470 PMCID: PMC2647284 DOI: 10.1093/nar/gkn1012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In this paper, we describe a new method for selecting RNA aptamers that cooperatively bind to two specific sites within a target RNA. We designed a selection system in which two RNAs, a target RNA and a RNA pool, were assembled by employing a pre-organized GAAA tetraloop-11-nt receptor interaction. This allows us to select the binding sequence against a targeted internal loop as well as a linker region optimized for binding of the two binding sites. After the selection, the aptamers bound with dissociation constants in the nanomolar range, thereby forming a stable complex with the target RNA. Thus this method enables identification of aptamers for a specific binding site together with a linker for cooperative binding of the two RNAs. It appears that our new method can be applied generally to select RNAs that adhere tightly to a target RNA via two specific sites. The method can also be applicable for further engineering of both natural and artificial RNAs.
Collapse
Affiliation(s)
- Tomoaki Shiohara
- Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
17
|
Watrin M, Dausse E, Lebars I, Rayner B, Bugaut A, Toulmé JJ. Aptamers targeting RNA molecules. Methods Mol Biol 2009; 535:79-105. [PMID: 19377979 DOI: 10.1007/978-1-59745-557-2_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oligonucleotides complementary to RNA sequences interact poorly with folded target regions. In vitro selection of oligonucleotides carried out against RNA structures have led to aptamers that frequently differ from antisense sequences, but rather take advantage of non-double-stranded peculiarities of the target. Studies along this line provide information about tertiary RNA architectures as well as their interaction with ligand of interest. We describe here a genomic SELEX approach and its application to the recognition of stem-loop structures prone to the formation of kissing complexes. We also provide technical details for running a procedure termed 2D-SELEX that takes advantage of both in vitro selection and dynamic combinatorial chemistry. This allows selecting aptamer derivatives containing modified nucleotides that cannot be incorporated by polymerases. Last we present in vitro transcription conditions under which large amounts of RNA, suitable for NMR structural studies, can be obtained. These different aspects of the SELEX technology have been applied to the trans-activating responsive element of the human immunodeficiency virus type 1, which is crucial for the transcription of the retroviral genome.
Collapse
Affiliation(s)
- Marguerite Watrin
- Institut Européen de Chimie et Biologie, Pessac, France, Université Victor Segalen, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
18
|
Mazauric MH, Licznar P, Prère MF, Canal I, Fayet O. Apical loop-internal loop RNA pseudoknots: a new type of stimulator of -1 translational frameshifting in bacteria. J Biol Chem 2008; 283:20421-32. [PMID: 18474594 DOI: 10.1074/jbc.m802829200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nearly all members of a widespread family of bacterial transposable elements related to insertion sequence 3 (IS3), therefore called the IS3 family, very likely use programmed -1 ribosomal frameshifting to produce their transposase, a protein required for mobility. Comparative analysis of the potential frameshift signals in this family suggested that most of the insertion sequences from the IS51 group contain in their mRNA an elaborate pseudoknot that could act as a recoding stimulator. It results from a specific intramolecular interaction between an apical loop and an internal loop from two stem-loop structures. Directed mutagenesis, chemical probing, and gel mobility assays of the frameshift region of one element from the IS51 group, IS3411, provided clear evidences of the existence of the predicted structure. Modeling was used to generate a three-dimensional molecular representation of the apical loop-internal loop complex. We could demonstrate that mutations affecting the stability of the structure reduce both frameshifting and transposition, thus establishing the biological importance of this new type of RNA structure for the control of transposition level.
Collapse
Affiliation(s)
- Marie-Hélène Mazauric
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR5100, Centre National de la Recherche Scientifique and Université Paul Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|
19
|
Guerniou V, Gillet R, Berrée F, Carboni B, Felden B. Targeted inhibition of the hepatitis C internal ribosomal entry site genomic RNA with oligonucleotide conjugates. Nucleic Acids Res 2007; 35:6778-87. [PMID: 17921501 PMCID: PMC2175329 DOI: 10.1093/nar/gkm770] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hepatitis C is a major public health concern, with an estimated 170 million people infected worldwide and an urgent need for new drug development. An attractive therapeutic approach is to prevent the ‘cap-independent’ translation initiation of the viral proteins by interfering with both the structure and function of the hepatitis C viral internal ribosomal entry site (HCV IRES). Towards this goal, we report the design, synthesis and purification of novel bi-functional molecules containing DNA or RNA antisenses attached to functional groups performing RNA hydrolysis. These 5′ or 3′-coupled conjugates bind the HCV IRES with affinity and specificity and elicit targeted hydrolysis of the viral genomic RNA after short (1 h) incubation at low (500 nM) concentration at 37°C in vitro. Additional secondary cleavage sites are induced and their mapping within the RNA structure indicates that functional domains IIIb-e are excised from the IRES that, based on cryo-EM studies, becomes incapable of binding the small ribosomal subunit and initiation factor 3 (eIF3). All these molecules inhibit, in a dose-dependent manner, the ‘IRES-dependent’ translation in vitro. The 5′-coupled imidazole conjugate reduces viral protein synthesis by half at a 300 nM concentration (IC50), corresponding to a 4-fold increase of activity when compared to the naked oligonucleotide. These new conjugates are now being tested for activity on infected hepatic cell lines.
Collapse
Affiliation(s)
- Valérie Guerniou
- Biochimie Pharmaceutique, Inserm U835, Upres JE 2311, Université de Rennes 1, France
| | | | | | | | | |
Collapse
|
20
|
Thélu MA, Leroy V, Ramzan M, Dufeu-Duchesne T, Marche P, Zarski JP. IRES complexity before IFN-alpha treatment and evolution of the viral load at the early stage of treatment in peripheral blood mononuclear cells from chronic hepatitis C patients. J Med Virol 2007; 79:242-53. [PMID: 17245718 DOI: 10.1002/jmv.20792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
At the early stage of treatment, IFN alpha-2a induces inhibition of HCV replication. The viral load reflects mainly the degradation rate of the viruses. However, differences in the behavior of the viral population depend on changes, which occurred in the HCV-IRES genome. In this study, cloning and sequencing strategies permitted the generation of a large number of IRES sequences from the PBMCs of 18 patients (5 women, 13 men) with chronic hepatitis C. The HCV IRES appeared to be highly conserved structurally. However, some variability was found between the different isolates obtained: 467 substitutions with a median of 7 variants/patients. No relationship was observed between pre-treatment IRES complexity and the viral load at the beginning. However, on review of the evolution of viral load in the PBMCs during the first 3 days of IFN alpha-2a treatment, patients could be classified into two groups: Group 1, in which the viral population continued to replicate and Group 2, in which the viral load decreased significantly (P = 0.01727). Positioning of the mutations on the predicted IRES secondary structure showed that the distribution of the mutations and their apparition frequency were different between the two groups. At the early stage of treatment, IFN alpha-2a was efficient in reducing the viral replication in a significant number of patients; mechanisms of response might affect the virus directly. However, pre-treatment genomic variations observed in the 5'NCR of HCV were not a parameter of a later response to antiviral therapy in chronic hepatitis C patients. (244)
Collapse
Affiliation(s)
- M A Thélu
- Département d'Hépato-Gastroentérologie, Hôpital Albert Michallon, Grenoble, France
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Aptamers are artificial nucleic acid ligands that can be generated in vitro against a wide range of molecules, including the gene products of viruses. Aptamers are isolated from complex libraries of synthetic nucleic acids by an iterative, cell-free process that involves repetitively reducing the complexity of the library by partitioning on the basis of selective binding to the target molecule, followed by reamplification. For virologists, aptamers have potential uses as tools to help to analyse the molecular biology of virus replication, as a complement to the more familiar monoclonal antibodies. They also have potential applications as diagnostic biosensors and in the development of antiviral agents. In recent years, these two promising avenues have been explored increasingly by virologists; here, the progress that has been made is reviewed.
Collapse
Affiliation(s)
- William James
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX2 3RE, UK
| |
Collapse
|
22
|
Romero-López C, Díaz-González R, Berzal-Herranz A. RNA Selection and Evolution In Vitro:Powerful Techniques for the Analysis and Identification of new Molecular Tools. BIOTECHNOL BIOTEC EQ 2007; 21:272-282. [DOI: 10.1080/13102818.2007.10817461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
23
|
Trepanier JB, Tanner JE, Alfieri C. Oligonucleotide-Based Therapeutic Options against Hepatitis C Virus Infection. Antivir Ther 2006. [DOI: 10.1177/135965350601100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hepatitis C virus (HCV) is the cause of a silent pandemic that, due to the chronic nature of the disease and the absence of curative therapy, continues to claim an ever-increasing number of lives. Current antiviral regimens have proven largely unsatisfactory for patients with HCV drug-resistant genotypes. It is therefore important to explore alternative therapeutic stratagems whose mode of action allows them to bypass viral resistance. Antisense oligonucleotides, ribozymes, small interfering RNAs, aptamers and deoxyribozymes constitute classes of oligonucleotide-based compounds designed to target highly conserved or functionally crucial regions contained within the HCV genome. The therapeutic expectation for such compounds is the elimination of HCV from infected individuals. Progress in oligonucleotide-based HCV antivirals towards clinical application depends on development of nucleotide designs that bolster efficacy while minimizing toxicity, improvement in liver-targeting delivery systems, and refinement of small-animal models for preclinical testing.
Collapse
Affiliation(s)
- Janie B Trepanier
- Sainte-Justine Hospital Research Centre, and the Department of Microbiology and Immunology, Université de Montréal, Montréal, Québec, Canada
| | | | - Caroline Alfieri
- Sainte-Justine Hospital Research Centre, and the Department of Microbiology and Immunology, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
24
|
Caldarelli SA, Mehiri M, Di Giorgio A, Martin A, Hantz O, Zoulim F, Terreux R, Condom R, Patino N. A cyclic PNA-based compound targeting domain IV of HCV IRES RNA inhibits in vitro IRES-dependent translation. Bioorg Med Chem 2005; 13:5700-9. [PMID: 16061387 DOI: 10.1016/j.bmc.2005.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/03/2005] [Accepted: 06/03/2005] [Indexed: 11/28/2022]
Abstract
A cyclic molecule 1 constituted by a hepta-peptide nucleic acid sequence complementary to the apical loop of domain IV of hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA has been prepared via a 'mixed' liquid-phase strategy, which relies on easily available protected PNA and poly(2-aminoethylglycinamide) building blocks. This compound 1 has been elaborated to mimic 'loop-loop' interactions. For comparison, its linear analog has also been investigated. Although preliminary biological assays have revealed the ability of 1 to inhibit in vitro the HCV IRES-dependent translation in a dose-dependent manner, the linear analog has shown a slightly higher activity.
Collapse
Affiliation(s)
- Sergio A Caldarelli
- Laboratoire de Chimie Bioorganique UMR-CNRS 6001, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Romero-López C, Barroso-delJesus A, Puerta-Fernández E, Berzal-Herranz A. Interfering with hepatitis C virus IRES activity using RNA molecules identified by a novel in vitro selection method. Biol Chem 2005; 386:183-190. [PMID: 15843163 DOI: 10.1515/bc.2005.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis C virus (HCV) infection is one of the world's major health problems, and the identification of efficient HCV inhibitors is a major goal. Here we report the isolation of efficient anti-HCV internal ribosome entry site (IRES) RNA molecules identified by a new in vitro selection method. The newly developed procedure consists of two sequential steps that use distinct criteria for selection: selection for binding and selection for cleaving. The selection protocol was applied to a population of more than 10(15) variants of an anti-hepatitis C virus ribozyme covalently linked to an aptamer motif. The ribozyme was directed against positions 357 to 369 of the HCV IRES, and the cleavage substrate was a 691-nucleotide-long RNA fragment that comprises the entire HCV IRES domain. After six selection cycles, seven groups of RNA variants were identified. A representative of each group was tested for its capacity to inhibit IRES activity using in vitro translation assays. All selected RNAs promoted significant inhibition, some by as much as 95%.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, E-18100 Granada, Spain
| | | | | | | |
Collapse
|