1
|
Ioannidis K, Cohen A, Ghosheh M, Ehrlich A, Fischer A, Cohen M, Nahmias Y. Aminoglycoside-induced lipotoxicity and its reversal in kidney on chip. LAB ON A CHIP 2022; 22:4469-4480. [PMID: 36281785 DOI: 10.1039/d2lc00825d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aminoglycosides are an important class of antibiotics that play a critical role in the treatment of life-threatening infections, but their use is limited by their toxicity. In fact, gentamicin causes severe nephrotoxicity in 17% of hospitalized patients. The kidney proximal tubule is particularly vulnerable to drug-induced nephrotoxicity due to its role in drug transport. In this work, we developed a perfused vascularized model of human kidney tubuloids integrated with tissue-embedded microsensors that track the metabolic dynamics of aminoglycoside-induced renal toxicity in real time. Our model shows that gentamicin disrupts proximal tubule polarity at concentrations 20-fold below its TC50, leading to a 3.2-fold increase in glucose uptake, and reverse TCA cycle flux culminating in a 40-fold increase in lipid accumulation. Blocking glucose reabsorption using the SGLT2 inhibitor empagliflozin significantly reduced gentamicin toxicity by 10-fold. These results demonstrate the utility of sensor-integrated kidney-on-chip platforms to rapidly identify new metabolic mechanisms that may underly adverse drug reactions. The results should improve our ability to modulate the toxicity of novel aminoglycosides.
Collapse
Affiliation(s)
- Konstantinos Ioannidis
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Aaron Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mohammad Ghosheh
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Tissue Dynamics, Jerusalem 91904, Israel
| | - Amit Fischer
- Department of Biological Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Merav Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Tissue Dynamics, Jerusalem 91904, Israel
| |
Collapse
|
2
|
Hussein MM, Althagafi HA, Alharthi F, Albrakati A, Alsharif KF, Theyab A, Kassab RB, Mufti AH, Algahtani M, Oyouni AAA, Baty RS, Abdel Moneim AE, Lokman MS. Apigenin attenuates molecular, biochemical, and histopathological changes associated with renal impairments induced by gentamicin exposure in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65276-65288. [PMID: 35484458 DOI: 10.1007/s11356-022-20235-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/09/2022] [Indexed: 04/16/2023]
Abstract
Gentamicin (GM) is an aminoglycoside antibiotic used to treat bacterial infections. However, its application is accompanied by renal impairments. Apigenin is a flavonoid found in many edible plants with potent therapeutic values. This study was designed to elucidate the therapeutic effects of apigenin on GM-induced nephrotoxicity. Animals were injected orally with three different doses of apigenin (5 mg kg-1 day-1, 10 mg kg-1 day-1, and 20 mg kg-1 day-1). Apigenin administration abolished the alterations in the kidney index and serum levels of kidney-specific functions markers, namely blood urea nitrogen and creatinine, and KIM-1, NGAL, and cystatin C following GM exposure. Additionally, apigenin increased levels of enzymatic (glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase) and non-enzymatic antioxidant proteins (reduced glutathione) and decreased levels of lipid peroxide, nitric oxide, and downregulated nitric oxide synthase-2 in the kidney tissue following GM administration. At the molecular scope, apigenin administration was found to upregulate the mRNA expression of Nfe2l2 and Hmox1 in the kidney tissue. Moreover, apigenin administration suppressed renal inflammation and apoptosis by decreasing levels of interleukin-1β, tumor necrosis factor-alpha, nuclear factor kappa-B, Bax, and caspase-3, while increasing B-cell lymphoma-2 compared with those in GM-administered group. The recorded data suggests that apigenin treatment could be used to alleviate renal impairments associated with GM administration.
Collapse
Affiliation(s)
- Manal M Hussein
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Al Makhwah, Al-Bahah, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | | | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Al Makhwah, Al-Bahah, Saudi Arabia.
| | - Ahmad H Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, the Comprehensive Specialized Clinics of Security Forces, Jeddah, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Roua S Baty
- Department of Biotechnology, College of Applied Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia
| |
Collapse
|
3
|
Biochemical interaction of pyrvinium in gentamicin-induced acute kidney injury by modulating calcium dyshomeostasis and mitochondrial dysfunction. Chem Biol Interact 2022; 363:110020. [PMID: 35750223 DOI: 10.1016/j.cbi.2022.110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022]
Abstract
Acute kidney injury (AKI) has a poor clinical prognosis and increases the risk of chronic kidney failure (CKD). It is a common complication of organ failure in hospitalised patients (10-15% of all hospitalizations) and in intensive care unit (ICU) patients, with an incidence of up to 50%. Concerning ICU, AKI has a mortality rate ranging from 27% to 35%, rising to 60%-65% when dialysis is needed, with roughly 5%-20% of survivors requiring dialysis on discharge. AKI is believed to cause over 7 million deaths per year worldwide. Currently, there is no treatment for AKI or its progression to CKD. When activated by AKI, numerous pathways have been suggested as possible contributors to CKD progression. Wnt/β-catenin is a crucial regulator of kidney development that increases following the injury. Despite the overwhelming evidence that Wnt/β-catenin promotes AKI, tubulointerstitial fibrosis, a hallmark of CKD progression, is also promoted by this pathway. The therapeutic potential of Wnt/β-catenin in the treatment of AKI and the progression from AKI to CKD is being studied. This hypothesis aims to determine whether the Wnt/β-catenin inhibitor pyrvinium has a beneficial effect on the renal dysfunction and damage caused by Gentamicin.
Collapse
|
4
|
Aqueous Extract from Cinnamomum zeylanicum (Lauraceae) Stem Bark Ameliorates Gentamicin-Induced Nephrotoxicity in Rats by Modulating Oxidative Stress and Inflammatory Markers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5543889. [PMID: 34335818 PMCID: PMC8315860 DOI: 10.1155/2021/5543889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 01/16/2023]
Abstract
Nephropathies and especially nephrotoxicity have become one of the serious causes of life-threatening conditions because of intensive exposure to xenobiotic whether by environmental pollution or by drug abuse. The present study was undertaken to assess the protective effects of Cinnamomum zeylanicum stem bark aqueous extract (AECZ) on gentamicin-induced nephrotoxicity. AECZ was prepared by maceration in water and tested orally at the doses of 200 and 400 mg/kg/day to prevent gentamicin-induced nephropathies in male Wistar rats. Gentamicin (100 mg/kg/day) was administered for 14 consecutive days by intraperitoneal route, concomitantly with AECZ or silymarin (50 mg/kg/day) used as reference drug. Animal body weight was monitored during the treatment. After the last treatment on the 14th day, animals were sacrificed. Blood was collected for the evaluation of hematological and renal function biomarkers. The homogenate of one kidney was used to assess oxidative stress markers and proinflammatory cytokines, while the other one was fixed in formaldehyde for histopathological studies. Gentamicin decreased body weight, serum total proteins, and calcium level but increased kidneys' relative weight, serum creatinine, urea, and uric acid. Moreover, the levels of reduced glutathione, catalase, and superoxide dismutase activities were decreased, while an increase in malondialdehyde, proinflammatory cytokines (TNF-α, IL-1β, and IL-6), and nitrites was observed in the negative control group as compared to normal control. Histological analysis of the kidney revealed the presence of tubular necrosis, glomerular degeneration, and macrophage infiltration in the gentamicin-treated group. All these impairment parameters were prevented by AECZ and silymarin treatments. AECZ has a protective effect against gentamicin-induced nephrotoxicity. The antioxidant and anti-inflammatory potentials of this extract may highly contribute to its nephroprotective activity.
Collapse
|
5
|
Santos VF, Costa MS, Campina FF, Rodrigues RR, Santos ALE, Pereira FM, Batista KLR, Silva RC, Pereira RO, Rocha BAM, Coutinho HDM, Teixeira CS. The Galactose-Binding Lectin Isolated from Vatairea macrocarpa Seeds Enhances the Effect of Antibiotics Against Staphylococcus aureus-Resistant Strain. Probiotics Antimicrob Proteins 2021; 12:82-90. [PMID: 30737650 DOI: 10.1007/s12602-019-9526-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of natural products together with standard antimicrobial drugs has recently received more attention as a strategy to combat infectious diseases caused by multidrug-resistant (MDR) microorganisms. This study aimed to evaluate the capacity of a galactose-binding lectin from Vatairea macrocarpa seeds (VML) to modulate antibiotic activity against standard and MDR Staphylococcus aureus and Escherichia coli bacterial strains. The minimum inhibitory concentration (MIC) obtained for VML against all strains was not clinically relevant (MIC ≥ 1024 μg/mL). However, when VML was combined with the antibacterial drugs gentamicin, norfloxacin and penicillin, a significant increase in antibiotic activity was observed against S. aureus, whereas the combination of VML and norfloxacin presented decreased and, hence, antagonistic antibiotic activity against E. coli. By its inhibition of hemagglutinating activity, gentamicin (MIC = 50 mM) revealed its interaction with the carbohydrate-binding site (CBS) of VML. Using molecular docking, it was found that gentamicin interacts with residues that constitute the CBS of VML with a score of - 120.79 MDS. It is this interaction between the antibiotic and the lectin's CBS that may be responsible for the enhanced activity of gentamicin in S. aureus. Thus, our results suggest that the VML can be an effective modulating agent against S. aureus. This is the first study to report the effect of lectins as modulators of bacterial sensitivity, and as such, the outcome of this study could lay the groundwork for future research involving the use of lectins and conventional antibiotics against such infectious diseases such as community-acquired methicillin-resistant S. aureus (MRSA).
Collapse
Affiliation(s)
- Valdenice F Santos
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Campus Chapadinha S/N, Chapadinha, Maranhão, 65500-000, Brazil
| | - Maria S Costa
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Fábia F Campina
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Renato R Rodrigues
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Campus Chapadinha S/N, Chapadinha, Maranhão, 65500-000, Brazil
| | - Ana L E Santos
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Campus Chapadinha S/N, Chapadinha, Maranhão, 65500-000, Brazil
| | - Felipe M Pereira
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Campus Chapadinha S/N, Chapadinha, Maranhão, 65500-000, Brazil
| | - Karla L R Batista
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Campus Chapadinha S/N, Chapadinha, Maranhão, 65500-000, Brazil
| | - Rafael C Silva
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Campus Chapadinha S/N, Chapadinha, Maranhão, 65500-000, Brazil
| | - Raquel O Pereira
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Campus Chapadinha S/N, Chapadinha, Maranhão, 65500-000, Brazil
| | - Bruno A M Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Henrique D M Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Claudener S Teixeira
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Campus Chapadinha S/N, Chapadinha, Maranhão, 65500-000, Brazil.
| |
Collapse
|
6
|
Mohamed DI, Khairy E, Saad SST, Habib EK, Hamouda MA. Potential protective effects of Dapagliflozin in gentamicin induced nephrotoxicity rat model via modulation of apoptosis associated miRNAs. Gene 2019; 707:198-204. [PMID: 31075409 DOI: 10.1016/j.gene.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Drug-induced kidney injury (DIKI) can be manifested with progressive chronic kidney diseases or end-stage renal diseases. Understanding the molecular disarrangements caused by DIKI is an attractive point of interest. A class of non-coding RNA called microRNAs (miRNAs) is known to play a major role in regulation of gene expression and signaling pathways making miRNAs excellent targets for new therapeutic agents. AIM OF THE STUDY We aimed to investigate the role of miRNA 21 and 181a in gentamicin (GNT) induced nephrotoxicity rat model and the protective effect of Dapagliflozin (DAPA) in modulating their expression through studying its effect on renal function as well as renal histopathological changes. MATERIALS AND METHODS Wistar rats were used and divided into: naïve, DAPA, GNT and DAPA + GNT groups. In all studied groups, kidney function, oxidative stress, apoptosis markers and miRNAs' expression in serum and renal biopsies were investigated in addition to the histopathological studies to identify its early renoprotective effect. RESULTS DAPA was found to improve kidney function, oxidative stress markers, decrease apoptosis of renal tubular cells and increase miR-21 but decrease the expression of miR-181a with restoration of the renal architecture after 14 days of treatment in GNT induced nephrotoxicity rat model. CONCLUSIONS DAPA produced significant decrease in renal expression of miR-181a on the other hand it increased the expression of renal miR-21, this may introduce a novel early protective effect of DAPA against GNT-induced nephrotoxicity.
Collapse
Affiliation(s)
- Doaa I Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Eman Khairy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, P.O. Box 11381, Abbassia, Cairo, Egypt
| | - Sherin S T Saad
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman K Habib
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, P.O. Box 11381, Abbassia, Cairo, Egypt
| | | |
Collapse
|
7
|
Kandeil MA, Hassanin KM, Mohammed ET, Safwat GM, Mohamed DS. Wheat germ and vitamin E decrease BAX/BCL-2 ratio in rat kidney treated with gentamicin. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
8
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|
9
|
Randjelovic P, Veljkovic S, Stojiljkovic N, Sokolovic D, Ilic I. Gentamicin nephrotoxicity in animals: Current knowledge and future perspectives. EXCLI JOURNAL 2017; 16:388-399. [PMID: 28507482 PMCID: PMC5427480 DOI: 10.17179/excli2017-165] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022]
Abstract
Due to high relative blood flow the kidney is prone to drug-induced damage. Aminoglycoside type antibiotic gentamicin is one of the leading cause of drug-induced nephrotoxicity. In recent years gentamicin nephrotoxicity is significantly reduced by shifting to once daily dosage as well as by eliminating known risk factors. Application of gentamicin is still related to serious side effects which are reported more often compared to other antibiotics. Because gentamicin is still heavily used and is highly efficient in treating infections, it is important to find mechanisms to reduce its nephrotoxicity. This aim can only be achieved through better understanding of kidney metabolism of gentamicin. This problem has been extensively researched in the last 20 years. The experimental results have provided evidence for almost complete understanding of mechanisms responsible for gentamicin nephrotoxicity. We now have well described morphological, biochemical and functional changes in kidney due to gentamicin application. During the years, this model has become so popular that now it is used as an experimental model for nephrotoxicity per se. This situation can mislead an ordinary reader of scientific literature that we know everything about it and there is nothing new to discover here. But quite opposite is true. The precise and complete mechanism of gentamicin nephrotoxicity is still point of speculation and an unfinished story. With emerge of new and versatile technics in biomedicine we have an opportunity to reexamine old beliefs and discover new facts. This review focuses on current knowledge in this area and gives some future perspectives.
Collapse
Affiliation(s)
- Pavle Randjelovic
- University of Niš, Faculty of Medicine, Department of Physiology, Niš, Serbia
| | - Slavimir Veljkovic
- University of Niš, Faculty of Medicine, Department of Physiology, Niš, Serbia
| | - Nenad Stojiljkovic
- University of Niš, Faculty of Medicine, Department of Physiology, Niš, Serbia
| | - Dušan Sokolovic
- University of Niš, Faculty of Medicine, Department of Biochemistry, Niš, Serbia
| | - Ivan Ilic
- University of Niš, Faculty of Medicine, Institute of Pathology, Niš, Serbia
| |
Collapse
|
10
|
Structural and binding studies of a C-type galactose-binding lectin from Bothrops jararacussu snake venom. Toxicon 2017; 126:59-69. [DOI: 10.1016/j.toxicon.2016.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 01/26/2023]
|
11
|
Denamur S, Boland L, Beyaert M, Verstraeten SL, Fillet M, Tulkens PM, Bontemps F, Mingeot-Leclercq MP. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum. Toxicol Appl Pharmacol 2016; 309:24-36. [DOI: 10.1016/j.taap.2016.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
|
12
|
Affiliation(s)
- P Garcia-Huerta
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - A Rivas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - C Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Stawicki TM, Esterberg R, Hailey DW, Raible DW, Rubel EW. Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death. Front Cell Neurosci 2015; 9:46. [PMID: 25741241 PMCID: PMC4332341 DOI: 10.3389/fncel.2015.00046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/30/2015] [Indexed: 01/01/2023] Open
Abstract
The majority of hearing loss and balance disorders are caused by the permanent loss of mechanosensory hair cells of the inner ear. Identification of genes and compounds that modulate susceptibility to hair cell death is frequently confounded by the difficulties of assaying for such complex phenomena in mammalian models. The zebrafish has emerged as a powerful animal model for genetic and chemical screening in many contexts. Several characteristics of the zebrafish, such as its small size and external location of mechanosensory hair cells within the lateral line sensory organ, uniquely position it as an ideal model organism for the study of hair cell toxicity. We have used this model to screen for genes and compounds that affect hair cell survival during ototoxin exposure and have identified agents that would not be expected to play a role in this process based on a priori knowledge of their function. The identification of such agents yields better understanding of hair cell death and holds promise to stem hearing loss and balance disorders in the human population.
Collapse
Affiliation(s)
- Tamara M Stawicki
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Biological Structure, University of Washington Seattle, WA, USA
| | - Robert Esterberg
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Otolaryngology, Head and Neck Surgery, University of Washington Seattle, WA, USA
| | - Dale W Hailey
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Biological Structure, University of Washington Seattle, WA, USA
| | - David W Raible
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Biological Structure, University of Washington Seattle, WA, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Otolaryngology, Head and Neck Surgery, University of Washington Seattle, WA, USA
| |
Collapse
|
14
|
Perigolo de Oliveira M, Constant JF, Peuchmaur M, Pitta I, Décout JL. Antibiotic drugs aminoglycosides cleave DNA at abasic sites: shedding new light on their toxicity? Chem Res Toxicol 2013; 26:1710-9. [PMID: 24127848 DOI: 10.1021/tx4002836] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abasic sites are probably the most common lesions in DNA resulting from the hydrolytic cleavage of glycosidic bonds that can occur spontaneously and through DNA alkylation by anticancer agents, by radiotherapy, and during the repair processes of damaged nucleic bases. If not repaired, the abasic site can be mutagenic or lethal. Thus, compounds able to specifically bind and react at abasic sites have attracted much attention for therapeutic and diagnostic purposes. Here, we report on the efficient cleavage activity of characteristic antibiotic drugs of the major aminoglycosides (AG) family at abasic sites introduced either by depurination in a plasmidic DNA or site specifically in a synthetic oligonucleotide. Among the antibiotic AG drugs selected for this study, neomycin B is the most efficient (a 0.1 μM concentration induces 50% cleavage of an abasic site containing DNA). This cleavage activity could be related to aminoglycoside toxicity but also find medicinal applications through potentiation of cancer radiotherapy and chemotherapy with alkylating drugs. In the search for antibiotic and antiviral agents, we have previously described the synthesis of derivatives of the small aminoglycoside neamine, which corresponds to rings I and II of neomycin B constituted of four rings. The cleavage activity at abasic sites of four of these neamine derivatives is also reported in the present study. One of them appeared to be much more active than the parent compound neamine with cleavage efficiency close to that of neomycin.
Collapse
Affiliation(s)
- Maralise Perigolo de Oliveira
- UMR 5063, Département de Pharmacochimie Moléculaire, ICMG FR 2607, Université de Grenoble I/CNRS , 470 rue de la Chimie, BP 53, F-38041 Grenoble, France
| | | | | | | | | |
Collapse
|
15
|
Karasawa T, Sibrian-Vazquez M, Strongin RM, Steyger PS. Identification of cisplatin-binding proteins using agarose conjugates of platinum compounds. PLoS One 2013; 8:e66220. [PMID: 23755301 PMCID: PMC3670892 DOI: 10.1371/journal.pone.0066220] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/07/2013] [Indexed: 12/31/2022] Open
Abstract
Cisplatin is widely used as an antineoplastic drug, but its ototoxic and nephrotoxic side-effects, as well as the inherent or acquired resistance of some cancers to cisplatin, remain significant clinical problems. Cisplatin's selectivity in killing rapidly proliferating cancer cells is largely dependent on covalent binding to DNA via cisplatin's chloride sites that had been aquated. We hypothesized that cisplatin's toxicity in slowly proliferating or terminally differentiated cells is primarily due to drug-protein interactions, instead of drug-DNA binding. To identify proteins that bind to cisplatin, we synthesized two different platinum-agarose conjugates, one with two amino groups and another with two chlorides attached to platinum that are available for protein binding, and conducted pull-down assays using cochlear and kidney cells. Mass spectrometric analysis on protein bands after gel electrophoresis and Coomassie blue staining identified several proteins, including myosin IIA, glucose-regulated protein 94 (GRP94), heat shock protein 90 (HSP90), calreticulin, valosin containing protein (VCP), and ribosomal protein L5, as cisplatin-binding proteins. Future studies on the interaction of these proteins with cisplatin will elucidate whether these drug-protein interactions are involved in ototoxicity and nephrotoxicity, or contribute to tumor sensitivity or resistance to cisplatin treatment.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America.
| | | | | | | |
Collapse
|
16
|
Dagil R, O'Shea C, Nykjær A, Bonvin AMJJ, Kragelund BB. Gentamicin binds to the megalin receptor as a competitive inhibitor using the common ligand binding motif of complement type repeats: insight from the nmr structure of the 10th complement type repeat domain alone and in complex with gentamicin. J Biol Chem 2012; 288:4424-35. [PMID: 23275343 DOI: 10.1074/jbc.m112.434159] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gentamicin is an aminoglycoside widely used in treatments of, in particular, enterococcal, mycobacterial, and severe Gram-negative bacterial infections. Large doses of gentamicin cause nephrotoxicity and ototoxicity, entering the cell via the receptor megalin. Until now, no structural information has been available to describe the interaction with gentamicin in atomic detail, and neither have any three-dimensional structures of domains from the human megalin receptor been solved. To address this gap in our knowledge, we have solved the NMR structure of the 10th complement type repeat of human megalin and investigated its interaction with gentamicin. Using NMR titration data in HADDOCK, we have generated a three-dimensional model describing the complex between megalin and gentamicin. Gentamicin binds to megalin with low affinity and exploits the common ligand binding motif previously described (Jensen, G. A., Andersen, O. M., Bonvin, A. M., Bjerrum-Bohr, I., Etzerodt, M., Thogersen, H. C., O'Shea, C., Poulsen, F. M., and Kragelund, B. B. (2006) J. Mol. Biol. 362, 700-716) utilizing the indole side chain of Trp-1126 and the negatively charged residues Asp-1129, Asp-1131, and Asp-1133. Binding to megalin is highly similar to gentamicin binding to calreticulin. We discuss the impact of this novel insight for the future structure-based design of gentamicin antagonists.
Collapse
Affiliation(s)
- Robert Dagil
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Hariprasad G, Kumar M, Rani K, Kaur P, Srinivasan A. Aminoglycoside induced nephrotoxicity: molecular modeling studies of calreticulin-gentamicin complex. J Mol Model 2011; 18:2645-52. [DOI: 10.1007/s00894-011-1289-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/20/2011] [Indexed: 12/11/2022]
|
20
|
Denamur S, Tyteca D, Marchand-Brynaert J, Van Bambeke F, Tulkens PM, Courtoy PJ, Mingeot-Leclercq MP. Role of oxidative stress in lysosomal membrane permeabilization and apoptosis induced by gentamicin, an aminoglycoside antibiotic. Free Radic Biol Med 2011; 51:1656-65. [PMID: 21835240 DOI: 10.1016/j.freeradbiomed.2011.07.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 07/08/2011] [Accepted: 07/16/2011] [Indexed: 10/18/2022]
Abstract
Gentamicin, an aminoglycoside antibiotic used to treat severe bacterial infections, may cause acute renal failure. At therapeutic concentrations, gentamicin accumulates in lysosomes and induces apoptosis in kidney proximal tubular cells. In gentamicin-treated renal LLC-PK1 cells, acridine orange release from lysosomes, previously interpreted as lysosomal membrane permeabilization, precedes the apoptotic cascade that develops during incubation with gentamicin. However, the link between gentamicin lysosomal accumulation and apoptosis remains unclear. We here examined if reactive oxygen species (ROS) production could account for gentamicin-induced acridine orange release and apoptosis, and the implication of iron in these events. We found that gentamicin induced ROS production prior to, and at lower drug concentrations than required for, acridine orange release and apoptosis. ROS antioxidant or scavenger, catalase, and N-acetylcysteine largely prevented these events. Vital confocal imaging revealed that gentamicin-induced ROS production occurs in lysosomes. Deferoxamine, an iron chelator, which is endocytosed and accumulates in lysosomes, largely prevented gentamicin-induced ROS production as well as apoptosis. Direct evidence for gentamicin-induced permeabilization of lysosomal membrane was provided by showing the release into the cytosol of Lucifer yellow, a membrane-impermeant endocytic tracer with a comparable molecular weight as gentamicin. Altogether, our data demonstrate a key role of lysosomal iron and early ROS production in gentamicin-induced lysosomal membrane permeabilization and apoptosis.
Collapse
Affiliation(s)
- Sophie Denamur
- Université Catholique de Louvain, Louvain Drug Research Institute, Laboratory of Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier 73, B-1200 Bruxelles, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Karasawa T, Steyger PS. Intracellular mechanisms of aminoglycoside-induced cytotoxicity. Integr Biol (Camb) 2011; 3:879-86. [PMID: 21799993 DOI: 10.1039/c1ib00034a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since introduction into clinical practice over 60 years ago, aminoglycoside antibiotics remain important drugs in the treatment of bacterial infections, cystic fibrosis and tuberculosis. However, the ototoxic and nephrotoxic properties of these drugs are still a major clinical problem. Recent advances in molecular biology and biochemistry have begun to uncover the intracellular actions of aminoglycosides that lead to cytotoxicity. In this review, we discuss intracellular binding targets of aminoglycosides, highlighting specific aminoglycoside-binding proteins (HSP73, calreticulin and CLIMP-63) and their potential for triggering caspases and Bcl-2 signalling cascades that are involved in aminoglycoside-induced cytotoxicity. We also discuss potential strategies to reduce aminoglycoside cytotoxicity, which are necessary for greater bactericidal efficacy during aminoglycoside pharmacotherapy.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| | | |
Collapse
|
22
|
Karasawa T, Wang Q, David LL, Steyger PS. Calreticulin binds to gentamicin and reduces drug-induced ototoxicity. Toxicol Sci 2011; 124:378-87. [PMID: 21785162 DOI: 10.1093/toxsci/kfr196] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides like gentamicin are among the most commonly used antibiotics in clinical practice and are essential for treating life-threatening tuberculosis and Gram-negative bacterial infections. However, aminoglycosides are also nephrotoxic and ototoxic. Although a number of mechanisms have been proposed, it is still unclear how aminoglycosides induce cell death in auditory sensory epithelia and subsequent deafness. Aminoglycosides bind to various intracellular molecules, such as RNA and phosphoinositides. We hypothesized that aminoglycosides, based on their tissue-specific susceptibility, also bind to intracellular proteins that play a role in drug-induced ototoxicity. By conjugating an aminoglycoside, gentamicin, to agarose beads and conducting a gentamicin-agarose pull-down assay, we have isolated gentamicin-binding proteins (GBPs) from immortalized cells of mouse organ of Corti, HEI-OC1. Mass spectrometry identified calreticulin (CRT) as a GBP. Immunofluorescence revealed that CRT expression is concentrated in strial marginal cells and hair cell stereocilia, primary locations of drug uptake and cytotoxicity in the cochlea. In HEI-OC1 cells treated with gentamicin, reduction of CRT expression using small interfering RNA (siRNA) reduced intracellular drug levels. CRT-deficient mouse embryonic fibroblast (MEF) cells as well as CRT siRNA-transfected wild-type MEFs also had reduced cell viability after gentamicin treatment. A pull-down assay using deletion mutants of CRT determined that the carboxyl C-domain of CRT binds to gentamicin. HeLa cells transfected with CRT C-domain deletion mutant construct were more susceptible to gentamicin-induced cytotoxicity compared with cells transfected with full-length CRT or other deletion mutants. Therefore, we conclude that CRT binding to gentamicin is protective against gentamicin-induced cytotoxicity.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Aminoglycoside-induced nephrotoxicity and ototoxicity is a major clinical problem. To understand how aminoglycosides, including gentamicin, induce cytotoxicity in the kidney proximal tubule and the inner ear, we identified gentamicin-binding proteins (GBPs) from mouse kidney cells by pulling down GBPs with gentamicin–agarose conjugates and mass spectrometric analysis. Among several GBPs specific to kidney proximal tubule cells, cytoskeleton-linking membrane protein of 63 kDa (CLIMP-63) was the only protein localized in the endoplasmic reticulum, and was co-localized with gentamicin-Texas Red (GTTR) conjugate after cells were treated with GTTR for 1 h. In western blots, kidney proximal tubule cells and cochlear cells, but not kidney distal tubule cells, exhibited a dithiothreitol (DTT)-resistant dimer band of CLIMP-63. Gentamicin treatment increased the presence of DTT-resistant CLIMP-63 dimers in both kidney proximal (KPT11) and distal (KDT3) tubule cells. Transfection of wild-type and mutant CLIMP-63 into 293T cells showed that the gentamicin-dependent dimerization requires CLIMP-63 palmitoylation. CLIMP-63 siRNA transfection enhanced cellular resistance to gentamicin-induced toxicity, which involves apoptosis, in KPT11 cells. Thus, the dimerization of CLIMP-63 is likely an early step in aminoglycoside-induced cytotoxicity in the kidney and cochlea. Gentamicin also enhanced the binding between CLIMP-63 and 14-3-3 proteins, and we also identified that 14-3-3 proteins are involved in gentamicin-induced cytotoxicity, likely by binding to CLIMP-63.
Collapse
|
24
|
Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 2010; 79:33-45. [PMID: 20861826 DOI: 10.1038/ki.2010.337] [Citation(s) in RCA: 435] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nephrotoxicity is one of the most important side effects and therapeutical limitations of aminoglycoside antibiotics, especially gentamicin. Despite rigorous patient monitoring, nephrotoxicity appears in 10-25% of therapeutic courses. Traditionally, aminoglycoside nephrotoxicity has been considered to result mainly from tubular damage. Both lethal and sub-lethal alterations in tubular cells handicap reabsorption and, in severe cases, may lead to a significant tubular obstruction. However, a reduced glomerular filtration is necessary to explain the symptoms of the disease. Reduced filtration is not solely the result of tubular obstruction and tubular malfunction, resulting in tubuloglomerular feedback activation; renal vasoconstriction and mesangial contraction are also crucial to fully explain aminoglycoside nephrotoxicity. This review critically presents an integrative view on the interactions of tubular, glomerular, and vascular effects of gentamicin, in the context of the most recent information available. Moreover, it discusses therapeutic perspectives for prevention of aminoglycoside nephrotoxicity derived from the pathophysiological knowledge.
Collapse
Affiliation(s)
- Jose M Lopez-Novoa
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | |
Collapse
|
25
|
Quiros Y, Vicente-Vicente L, Morales AI, Lopez-Novoa JM, Lopez-Hernandez FJ. An Integrative Overview on the Mechanisms Underlying the Renal Tubular Cytotoxicity of Gentamicin. Toxicol Sci 2010; 119:245-56. [DOI: 10.1093/toxsci/kfq267] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
26
|
Wang Q, Steyger PS. Trafficking of systemic fluorescent gentamicin into the cochlea and hair cells. J Assoc Res Otolaryngol 2009; 10:205-19. [PMID: 19255807 DOI: 10.1007/s10162-009-0160-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 02/05/2009] [Indexed: 01/16/2023] Open
Abstract
Aminoglycosides enter inner ear hair cells across their apical membranes via endocytosis, or through the mechanoelectrical transduction channels in vitro, suggesting that these drugs enter cochlear hair cells from endolymph to exert their cytotoxic effect. We used zebrafish to determine if fluorescently tagged gentamicin (GTTR) also enters hair cells via apically located calcium-sensitive cation channels and the cytotoxicity of GTTR to hair cells. We then examined the serum kinetics of GTTR following systemic injection in mice and which murine cochlear sites preferentially loaded with systemically administered GTTR over time by confocal microscopy. GTTR is taken up by, and is toxic to, wild-type zebrafish neuromast hair cells. Neuromast hair cell uptake of GTTR is attenuated by high concentrations of extracellular calcium or unconjugated gentamicin and is blocked in mariner mutant zebrafish, suggestive of entry via the apical mechanotransduction channel. In murine cochleae, GTTR is preferentially taken up by the stria vascularis compared to the spiral ligament, peaking 3 h after intra-peritoneal injection, following GTTR kinetics in serum. Strial marginal cells display greater intensity of GTTR fluorescence compared to intermediate and basal cells. Immunofluorescent detection of gentamicin in the cochlea also revealed widespread cellular labeling throughout the cochlea, with preferential labeling of marginal cells. Only GTTR fluorescence displayed increasing cytoplasmic intensity with increasing concentration, unlike the cytoplasmic intensity of fluorescence from immunolabeled gentamicin. These data suggest that systemically administered aminoglycosides are trafficked from strial capillaries into marginal cells and clear into endolymph. If so, this will facilitate electrophoretically driven aminoglycoside entry into hair cells from endolymph. Trans-strial trafficking of aminoglycosides from strial capillaries to marginal cells will be dependent on as-yet-unidentified mechanisms that convey these drugs across the intra-strial electrical barrier and into marginal cells.
Collapse
Affiliation(s)
- Qi Wang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
27
|
Cribb AE, Peyrou M, Muruganandan S, Schneider L. The Endoplasmic Reticulum in Xenobiotic Toxicity. Drug Metab Rev 2008; 37:405-42. [PMID: 16257829 DOI: 10.1080/03602530500205135] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER) is involved in an array of cellular functions that play important roles in xenobiotic toxicity. The ER contains the majority of cytochrome P450 enzymes involved in xenobiotic metabolism, as well as a number of conjugating enzymes. In addition to its role in drug bioactivation and detoxification, the ER can be a target for damage by reactive intermediates leading to cell death or immune-mediated toxicity. The ER contains a set of luminal proteins referred to as ER stress proteins (including GRP78, GRP94, protein disulfide isomerase, and calreticulin). These proteins help regulate protein processing and folding of membrane and secretory proteins in the ER, calcium homeostasis, and ER-associated apoptotic pathways. They are induced in response to ER stress. This review discusses the importance of the ER in molecular events leading to cell death following xenobiotic exposure. Data showing that the ER is important in both renal and hepatic toxicity will be discussed.
Collapse
Affiliation(s)
- Alastair E Cribb
- Laboratory of Comparative Pharmacogenetics, Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada.
| | | | | | | |
Collapse
|
28
|
Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation. Apoptosis 2008; 13:11-32. [PMID: 17968659 DOI: 10.1007/s10495-007-0151-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Apoptosis plays a central role not only in the physiological processes of kidney growth and remodeling, but also in various human renal diseases and drug-induced nephrotoxicity. We present in a synthetic fashion the main molecular and cellular pathways leading to drug-induced apoptosis in kidney and the mechanisms regulating it. We illustrate them using three main nephrotoxic drugs (cisplatin, gentamicin, and cyclosporine A). We discuss the main regulators and effectors that have emerged as key targets for the design of therapeutic strategies. Novel approaches using gene therapy, antisense strategies, recombinant proteins, or compounds obtained from both classical organic and combinatorial chemistry are examined. Finally, key issues that need to be addressed for the success of apoptosis-based therapies are underlined.
Collapse
|
29
|
Peyrou M, Cribb AE. Effect of endoplasmic reticulum stress preconditioning on cytotoxicity of clinically relevant nephrotoxins in renal cell lines. Toxicol In Vitro 2007; 21:878-86. [PMID: 17416481 DOI: 10.1016/j.tiv.2007.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/04/2007] [Accepted: 03/01/2007] [Indexed: 11/20/2022]
Abstract
The cytoprotection of LLC-PK1 cells afforded by endoplasmic reticulum (ER) stress preconditioning suggests that the ER plays an important role during drug-induced renal toxicity. However, in vitro studies have been largely limited to LLC-PK1 cells and model toxins. Therefore, we tested the hypothesis that cytoprotection following ER stress preconditioning is a common property of renal cell lines (LLC-PK1 (pig), NRK-52E (rat), HEK293 (human), MDCK (dog)) and extends to clinically relevant nephrotoxins. ER stress inducers (tunicamycin, thapsigargin and oxidized dithiothreitol (DTTox)) resulted in a dose-dependent increase in GRP78 and GRP94 stress protein expression, but the magnitude of induction was cell line- and inducer-dependent. Toxicity of the model toxins iodoacetamide and tert-butylhydroperoxide was modified by preconditioning. DTTox was effective in decreasing the toxicity in all cell lines, but protection was variable with tunicamycin and thapsigargin. Toxicity of clinically relevant drugs (cisplatin, gentamicin, glyoxylate, cyclosporine A, p-aminophenol) was significantly decreased in cells preconditioned by tunicamycin or DTTox. These results demonstrate that ER stress preconditioning offers cytoprotection against clinically relevant nephrotoxins in renal cell lines from multiple species, although there were qualitative and quantitative differences between the cell lines. These results support the hypothesis that ER is involved in drug-induced renal toxicity.
Collapse
Affiliation(s)
- Mathieu Peyrou
- Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3.
| | | |
Collapse
|
30
|
Servais H, Jossin Y, Van Bambeke F, Tulkens PM, Mingeot-Leclercq MP. Gentamicin causes apoptosis at low concentrations in renal LLC-PK1 cells subjected to electroporation. Antimicrob Agents Chemother 2006; 50:1213-21. [PMID: 16569831 PMCID: PMC1426926 DOI: 10.1128/aac.50.4.1213-1221.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gentamicin accumulates in the lysosomes of kidney proximal tubular cells and causes apoptosis at clinically relevant doses. Gentamicin-induced apoptosis can be reproduced with cultured renal cells, but only at high extracellular concentrations (1 to 3 mM; 0.4 to 1.2 g/liter) because of its low level of uptake. We recently showed that gentamicin-induced apoptosis in LLC-PK1 cells involves a rapid (2-h) permeabilization of lysosomes and activation of the mitochondrial pathway of apoptosis (10 h). We now examine whether the delivery of gentamicin to the cytosol by electroporation would sensitize LLC-PK1 cells to apoptosis. Cells were subjected to eight pulses (1 ms) at 800 V/cm (square waves) in the presence of gentamicin (3 microM to 3 mM; 1.2 mg/liter to 1.2 g/liter); returned to gentamicin-free medium; and examined at 8 h for their Bax (a marker of mitochondrial pathway activation) contents by Western blotting and competitive reverse transcriptase PCR and at 24 h for apoptosis by 4',6'-diamidino-2'-phenylindole staining (confirmed by electron microscopy) and for necrosis (by determination of lactate dehydrogenase release). Nonelectroporated cells were incubated with gentamicin for 8 and 24 h. Significant increases in Bax levels (8 h) and apoptosis (24 h) were detected with 0.03 mM (13.2 mg/liter) gentamicin in electroporated cells compared with those achieved with 2 mM (928 mg/liter) in incubated cells. The increase in the Bax level was not associated with an increase in the level of its mRNA but was associated with the accumulation of ubiquitinated forms (probably as a result of impairment of its degradation by the proteasome). Assay of cell-associated gentamicin showed a marked, immediate, but transient accumulation in electroporated cells, whereas a slow, steady uptake was detected in incubated cells. The data indicate that cytosolic gentamicin triggers apoptosis. Sequestration of gentamicin in lysosomes would, to some extent, protect against apoptosis.
Collapse
Affiliation(s)
- Hélène Servais
- Unité de Pharmacologie Cellulaire et Moléculaire, Université Catholique de Louvain, 7370 avenue E. Mounier 73, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
31
|
Kimura T, Imaishi K, Hagiwara Y, Horibe T, Hayano T, Takahashi N, Urade R, Kato K, Kikuchi M. ERp57 binds competitively to protein disulfide isomerase and calreticulin. Biochem Biophys Res Commun 2005; 331:224-30. [PMID: 15845382 DOI: 10.1016/j.bbrc.2005.03.147] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Indexed: 11/27/2022]
Abstract
In this study, we screened for protein disulfide isomerase (PDI)-binding proteins in bovine liver microsomes under strict salt concentrations, using affinity column chromatography. One main band observed using SDS-PAGE was identified as ERp57 (one of the PDI family proteins) by LC-MS/MS analysis. The K(D) value of PDI binding to ERp57 was calculated as 5.46x10(-6)M with the BIACORE system. The interactions between PDI and ERp57 occurred specifically at their a and b domains, respectively. Interestingly, low concentrations of ERp57 enhanced the chaperone activity of PDI, while high concentrations interfered with chaperone activity. On the other hand, ERp57 did not affect the isomerase activity of PDI. Additionally, following pre-incubation of ERp57 with calreticulin (CRT), decreased interactions were observed between ERp57 and PDI, and vice versa. Based on the data, we propose that once ERp57 binds to PDI or CRT, the resultant complex inhibits further interactions. Therefore, ERp57 selectively forms a protein-folding complex with PDI or CRT in ER.
Collapse
Affiliation(s)
- Taiji Kimura
- Department of Bioscience and Technology, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|