1
|
Dey D, Hasan MM, Biswas P, Papadakos SP, Rayan RA, Tasnim S, Bilal M, Islam MJ, Arshe FA, Arshad EM, Farzana M, Rahaman TI, Baral SK, Paul P, Bibi S, Rahman MA, Kim B. Investigating the Anticancer Potential of Salvicine as a Modulator of Topoisomerase II and ROS Signaling Cascade. Front Oncol 2022; 12:899009. [PMID: 35719997 PMCID: PMC9198638 DOI: 10.3389/fonc.2022.899009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Salvicine is a new diterpenoid quinone substance from a natural source, specifically in a Chinese herb. It has powerful growth-controlling abilities against a broad range of human cancer cells in both in vitro and in vivo environments. A significant inhibitory effect of salvicine on multidrug-resistant (MDR) cells has also been discovered. Several research studies have examined the activities of salvicine on topoisomerase II (Topo II) by inducing reactive oxygen species (ROS) signaling. As opposed to the well-known Topo II toxin etoposide, salvicine mostly decreases the catalytic activity with a negligible DNA breakage effect, as revealed by several enzymatic experiments. Interestingly, salvicine dramatically reduces lung metastatic formation in the MDA-MB-435 orthotopic lung cancer cell line. Recent investigations have established that salvicine is a new non-intercalative Topo II toxin by interacting with the ATPase domains, increasing DNA-Topo II interaction, and suppressing DNA relegation and ATP hydrolysis. In addition, investigations have revealed that salvicine-induced ROS play a critical role in the anticancer-mediated signaling pathway, involving Topo II suppression, DNA damage, overcoming multidrug resistance, and tumor cell adhesion suppression, among other things. In the current study, we demonstrate the role of salvicine in regulating the ROS signaling pathway and the DNA damage response (DDR) in suppressing the progression of cancer cells. We depict the mechanism of action of salvicine in suppressing the DNA-Topo II complex through ROS induction along with a brief discussion of the anticancer perspective of salvicine.
Collapse
Affiliation(s)
- Dipta Dey
- Biochemistry and Molecular Biology department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Rehab A. Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Sabiha Tasnim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Mohammod Johirul Islam
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Farzana Alam Arshe
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Efat Muhammad Arshad
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Maisha Farzana
- College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, United Kingdom
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Priyanka Paul
- Biochemistry and Molecular Biology department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Md. Ataur Rahman
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
2
|
Quinonoids: Therapeutic Potential for Lung Cancer Treatment. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2460565. [PMID: 32337232 PMCID: PMC7166295 DOI: 10.1155/2020/2460565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Owing to its high incidence and mortality, the development and discovery of novel anticancer drugs is of great importance. In recent years, many breakthroughs have been achieved in the search for effective anticancer substances from natural products. Many anticancer drugs used clinically and proven to be effective are derived from natural products. Quinonoids, including naphthoquinones, phenanthrenequinones, benzoquinones, and anthraquinones, constitute a large group of natural bioactive compounds that widely exist in higher and lower plant species. Given that most of these compounds possess anticancer effects, they are applied in many cancer studies, especially in lung cancer research. They can promote apoptosis, induce autophagy, and inhibit proliferation, angiogenesis, and cell invasion and migration. Some drugs can enhance anticancer effects when combined with other drugs. Thus, quinonoids have broad application prospects in the treatment of lung cancer. Here, we summarize the previous studies on the antilung cancer activities of quinonoids together with their underlying mechanisms and analyze the common research targets with different effects so as to provide references for the discovery of quinonoids against lung cancer.
Collapse
|
4
|
Xu B, Ding J, Chen KX, Miao ZH, Huang H, Liu H, Luo XM. Advances in Cancer Chemotherapeutic Drug Research in China. RECENT ADVANCES IN CANCER RESEARCH AND THERAPY 2012. [PMCID: PMC7158183 DOI: 10.1016/b978-0-12-397833-2.00012-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bin Xu
- Corresponding author: Bin Xu, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zi Road, Shanghai 201203, People’s Republic of China. Tel: O21-54920515 (o), 13501793936 (mobile), Fax: 021-54920568, e-mail:
| | | | | | | | | | | | | |
Collapse
|
5
|
Can CYP1A1 siRNA be an effective treatment for lung cancer? Cell Mol Biol Lett 2008; 13:240-9. [PMID: 18161011 PMCID: PMC6275798 DOI: 10.2478/s11658-007-0050-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/06/2007] [Indexed: 11/20/2022] Open
Abstract
Previously, we identified a novel correlation between the upregulated expression of telomerase (hTERT) and cytochrome P450 1A1 (CYP1A1) in A549 human lung cancer cell line. The expression correlation was confirmed by silencing CYP1A1 expression using siRNA technology and observing a silencing of hTERT transcription. Furthermore, silencing CYP1A1 and subsequently downregulating hTERT resulted in the reduction of cancer cell viability by more than 40%, which appeared as early as 24 hours after the treatment. The concomitant downregulation of CYP1A1 and hTERT resulted in rapid cell death. This finding can be further exploited to develop new molecular targets for the treatment of lung cancer.
Collapse
|
6
|
Zhang YW, Zhang ZX, Miao ZH, Ding J. The telomeric protein TRF2 is critical for the protection of A549 cells from both telomere erosion and DNA double-strand breaks driven by salvicine. Mol Pharmacol 2008; 73:824-32. [PMID: 18025071 DOI: 10.1124/mol.107.039081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Telomere repeat binding factor 2 (TRF2) has been increasingly recognized to be involved in DNA damage response and telomere maintenance. Our previous report found that salvicine (SAL), a novel topoisomerase II poison, elicited DNA double-strand breaks and telomere erosion in separate experimental systems. However, it remains to be clarified whether they share a common response to these two events and in particular whether TRF2 is involved in this process. In this study, we found that SAL concurrently induced DNA double-strand breaks, telomeric DNA damage, and telomere erosion in lung carcinoma A549 cells. It was unexpected to find that SAL led to disruption of TRF2, independently of either its transcription or proteasome-mediated degradation. By overexpressing the full-length trf2 gene and transfecting TRF2 small interfering RNAs, we showed that TRF2 protein protected both telomeric and genomic DNA from the SAL-elicited events. It is noteworthy that although both the Ataxia-telangiectasia-mutated (ATM) and the ATM- and Rad3-related (ATR) kinases responded to the SAL-induced DNA damages, only ATR was essential for the telomere erosion. The study also showed that the activated ATR augmented the SAL-triggered TRF2 disruption, whereas TRF2 reduction in turn enhanced ATR function. All of these findings suggest the emerging significance of TRF2 protecting both telomeric DNA and genomic DNA on the one hand and reveal the mutual modulation between ATR and TRF2 in sensing DNA damage signaling during cancer development on the other hand.
Collapse
Affiliation(s)
- Yong-Wei Zhang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | | | | | | |
Collapse
|
7
|
Meng LH, Ding J. Salvicine, a novel topoisomerase II inhibitor, exerts its potent anticancer activity by ROS generation. Acta Pharmacol Sin 2007; 28:1460-5. [PMID: 17723179 DOI: 10.1111/j.1745-7254.2007.00698.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salvicine is a novel diterpenoid quinone compound obtained by structural modification of a natural product lead isolated from a Chinese herb with potent growth inhibitory activity against a wide spectrum of human tumor cells in vitro and in mice bearing human tumor xenografts. Salvicine has also been found to have a profound cytotoxic effect on multidrug-resisitant (MDR) cells. Moreover, Salvicine significantly reduced the lung metastatic foci of MDA-MB-435 orthotopic xenograft. Recent studies demonstrated that salvicine is a novel non-intercalative topoisomerase II (Topo II) poison by binding to the ATPase domain, promoting DNA-Topo II binding and inhibiting Topo II-mediated DNA relegation and ATP hydrolysis. Further studies have indicated that salcivine-elicited ROS plays a central role in salvicine-induced cellular response including Topo II inhibition, DNA damage, circumventing MDR and tumor cell adhesion inhibition.
Collapse
Affiliation(s)
- Ling-hua Meng
- Division of Antitumor Pharmacology, State Key laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | |
Collapse
|
8
|
Wang MW, Hao X, Chen K. Biological screening of natural products and drug innovation in China. Philos Trans R Soc Lond B Biol Sci 2007; 362:1093-105. [PMID: 17317643 PMCID: PMC2435573 DOI: 10.1098/rstb.2007.2036] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural products have been applied to human healthcare for thousands of years. Drug discovery in ancient times was largely by chance and based on clinical practices. As understanding of therapeutic benefits deepens and demands for natural products increase, previously serendipitous discoveries evolve into active searches for new medicines. Many drugs presently prescribed by physicians are either directly isolated from plants or are artificially modified versions of natural products. Scientists are looking for lead compounds with specific structures and pharmacological effects often from natural sources. Experiences and successes of Chinese scientists in this specialized area have resulted in a number of widely used drugs. The tremendous progress made in life sciences has not only revealed many pathological processes of diseases, but also led to the establishment of various molecular and cellular bioassays in conjunction with high-throughput technologies. This is advantageous and permits certain natural compounds that are difficult to isolate and purify, and compounds that are difficult to synthesize, to be assayed. The transition from traditional to empirical and to molecular screening will certainly increase the probability of discovering new leads and drug candidates from natural products.
Collapse
Affiliation(s)
- Ming-Wei Wang
- The National Centre for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.
| | | | | |
Collapse
|
9
|
Shervington A, Mohammed K, Patel R, Lea R. Identification of a novel co-transcription of P450/1A1 with telomerase in A549. Gene 2007; 388:110-6. [PMID: 17141429 DOI: 10.1016/j.gene.2006.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 10/03/2006] [Accepted: 10/16/2006] [Indexed: 11/23/2022]
Abstract
A novel co-transcription of CYP1A1 with hTERT, the active subunit of telomerase has been identified in alveolar epithelial cancer cell line (A549). This correlation was confirmed by chemically inducing the transcription of CYP1A1 in four cell lines: control normal lung cells (CCD-32Lu); alveolar epithelial cancer cell line (A549); large cell carcinoma (H460) and drug resistance large cell carcinoma (COR-L23/5010) observing a concomitant increase in hTERT mRNA level. In addition, siRNA was used to silence CYP1A1 transcription in A549 observing a decrease in the level of hTERT mRNA. The transcription correlation between CYP1A1 and hTERT may suggest a possible new mechanism for cancer therapy based on alternative gene targets. The co-transcription showed that the AhR pathway plays an active role in the activation of CYP1A1 which subsequently activates hTERT transcription. This study showed that the expression of CYP1A1 and CYP1A2 are cell specific and CYP2E1 and GSTM1 may not play a significant role in lung carcinogenesis.
Collapse
Affiliation(s)
- A Shervington
- University of Central Lancashire, Department of Biological Sciences, Preston, PR1 2HE, UK.
| | | | | | | |
Collapse
|
10
|
Olaussen KA, Dubrana K, Domont J, Spano JP, Sabatier L, Soria JC. Telomeres and telomerase as targets for anticancer drug development. Crit Rev Oncol Hematol 2006; 57:191-214. [PMID: 16469501 DOI: 10.1016/j.critrevonc.2005.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 12/15/2022] Open
Abstract
In most human cancers, the telomere erosion problem has been bypassed through the activation of a telomere maintenance system (usually activation of telomerase). Therefore, telomere and telomerase are attractive targets for anti-cancer therapeutic interventions. Here, we review a large panel of strategies that have been explored to date, from small inhibitors of the catalytic sub-unit of telomerase to anti-telomerase immunotherapy and gene therapy. The many positive results that are reported from anti-telomere/telomerase assays suggest a prudent optimism for a possible clinical application in a close future. However, we discuss some of the main limits for these approaches of antitumour drug development and why significant work remains before a clinically useful drug can be proposed to patients.
Collapse
Affiliation(s)
- Ken André Olaussen
- Laboratory of Radiobiology and Oncology, DSV/DRR/LRO, CEA, Fontenay aux Roses, France
| | | | | | | | | | | |
Collapse
|