1
|
Cannon A, Thompson CM, Bhatia R, Armstrong KA, Solheim JC, Kumar S, Batra SK. Molecular mechanisms of pancreatic myofibroblast activation in chronic pancreatitis and pancreatic ductal adenocarcinoma. J Gastroenterol 2021; 56:689-703. [PMID: 34279724 PMCID: PMC9052363 DOI: 10.1007/s00535-021-01800-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 02/04/2023]
Abstract
Pancreatic fibrosis (PF) is an essential component of the pathobiology of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Activated pancreatic myofibroblasts (PMFs) are crucial for the deposition of the extracellular matrix, and fibrotic reaction in response to sustained signaling. Consequently, understanding of the molecular mechanisms of PMF activation is not only critical for understanding CP and PDAC biology but is also a fertile area of research for the development of novel therapeutic strategies for pancreatic pathologies. This review analyzes the key signaling events that drive PMF activation including, initiating signals from transforming growth factor-β1, platelet derived growth factor, as well as other microenvironmental cues, like hypoxia and extracellular matrix rigidity. Further, we discussed the intracellular signal events contributing to PMF activation, and crosstalk with different components of tumor microenvironment. Additionally, association of epidemiologically established risk factors for CP and PDAC, like alcohol intake, tobacco exposure, and metabolic factors with PMF activation, is discussed to comprehend the role of lifestyle factors on pancreatic pathologies. Overall, this analysis provides insight into the biology of PMF activation and highlights salient features of this process, which offer promising therapeutic targets.
Collapse
Affiliation(s)
- Andrew Cannon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Christopher Michael Thompson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | - Joyce Christopher Solheim
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
3
|
Kusiak AA, Szopa MD, Jakubowska MA, Ferdek PE. Signaling in the Physiology and Pathophysiology of Pancreatic Stellate Cells - a Brief Review of Recent Advances. Front Physiol 2020; 11:78. [PMID: 32116785 PMCID: PMC7033654 DOI: 10.3389/fphys.2020.00078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in pancreatic stellate cells (PSCs) has been steadily growing over the past two decades due mainly to the central role these cells have in the desmoplastic reaction associated with diseases of the pancreas, such as pancreatitis or pancreatic cancer. In recent years, the scientific community has devoted substantial efforts to understanding the signaling pathways that govern PSC activation and interactions with neoplastic cells. This mini review aims to summarize some very recent findings on signaling in PSCs and highlight their impact to the field.
Collapse
Affiliation(s)
- Agnieszka A Kusiak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mateusz D Szopa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Pawel E Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Al Alawi R, Alhamdani MSS, Hoheisel JD, Baqi Y. Antifibrotic and tumor microenvironment modulating effect of date palm fruit (Phoenix dactylifera L.) extracts in pancreatic cancer. Biomed Pharmacother 2020; 121:109522. [DOI: 10.1016/j.biopha.2019.109522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
|
5
|
Xu XF, Liu F, Xin JQ, Fan JW, Wu N, Zhu LJ, Duan LF, Li YY, Zhang H. Respective roles of the mitogen-activated protein kinase (MAPK) family members in pancreatic stellate cell activation induced by transforming growth factor-β1 (TGF-β1). Biochem Biophys Res Commun 2018; 501:365-373. [PMID: 29705706 DOI: 10.1016/j.bbrc.2018.04.176] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022]
Abstract
Activated pancreatic stellate cells (PSCs) play a crucial role in the progression of pancreatic fibrosis. Transforming growth factor-β (TGF-β) is one of the strongest stimulator inducing fibrosis. The mitogen-activated protein kinase (MAPK) proteins (including ERK, JNK and p38 MAPK) are known to contribute to PSC activation and pancreatic fibrosis. Previous studies have identified PSC activation induced by TGF-β1 is related to MAPK pathway, but the respective role of MAPK family members in PSC activation still unclear, and which family member may be the key mediator in mice PSC activation still controversial. In this study, we investigated the influence of different MAPK family member (JNK, ERK, and p38 MAPK) on mice PSC activation using an in vivo and in vitro model. The results showed p-JNK, p-ERK and p-p38 MAPK were all over-expressed in CP group, and p-JNK, p-ERK, and p-p38 MAPK were co-expressed with activated PSC. In vitro, TGF-β1 induced JNK and ERK over-expression in PSCs. In contrast, p38 MAPK expression in PSC showed only a very weak increase. JNK- and ERK-specific inhibitors inhibited FN and α-SMA mRNA expression in PSCs, and a p38 MAPK inhibitor had no effect on PSC activation. These findings indicate that JNK and ERK were directly involved in the PSCs activation induced by TGF-β1 and the development of pancreatic fibrosis. p38 MAPK participate in the progression of CP, but it does not respond to TGF-β1 directly and may not be regarded as the target of TGF-β1 induced PSC activation.
Collapse
Affiliation(s)
- Xiao-Fan Xu
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Fang Liu
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Jia-Qi Xin
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Jian-Wei Fan
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Nan Wu
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Lin-Jia Zhu
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Li-Fang Duan
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yong-Yu Li
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Hong Zhang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China; Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China.
| |
Collapse
|
6
|
Yeo D, Phillips P, Baldwin GS, He H, Nikfarjam M. Inhibition of group 1 p21-activated kinases suppresses pancreatic stellate cell activation and increases survival of mice with pancreatic cancer. Int J Cancer 2017; 140:2101-2111. [PMID: 28109008 DOI: 10.1002/ijc.30615] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 12/20/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer remains one of the most lethal of all solid tumors. Pancreatic stellate cells (PSCs) are primarily responsible for the fibrosis that constitutes the stroma and p21-activated kinase 1 (PAK1) may have a role in signalling pathways involving PSCs. This study aimed to examine the role of PAK1 in PSCs and in the interaction of PSCs with pancreatic cancer cells. Human PSCs were isolated using the modified outgrowth method. The effect of inhibiting PAK1 with group 1 PAK inhibitor, FRAX597, on cell proliferation and apoptosis in vitro was measured by thymidine incorporation and annexin V assays, respectively. The effect of depleting host PAK1 on the survival of mice with pancreatic Pan02 cell tumors was evaluated using PAK1 knockout (KO) mice. PAK1 was expressed in isolated PSCs. FRAX597 reduced the activation of PSCs, inhibited PSC proliferation, and increased PSC apoptosis at least in partial by inhibiting PAK1 activity. The decreased expression and activity of PAK1 in PAK1 KO mice tumors was associated with an increased mouse survival. These results implicate PAK1 as a regulator of PSC activation, proliferation and apoptosis. Targeting stromal PAK1 could increase therapeutic response and survival of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Dannel Yeo
- Department of Surgery, University of Melbourne. Austin Health, Melbourne, VIC, Australia
| | - Phoebe Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne. Austin Health, Melbourne, VIC, Australia
| | - Hong He
- Department of Surgery, University of Melbourne. Austin Health, Melbourne, VIC, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne. Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Tjomsland V, Pomianowska E, Aasrum M, Sandnes D, Verbeke CS, Gladhaug IP. Profile of MMP and TIMP Expression in Human Pancreatic Stellate Cells: Regulation by IL-1α and TGFβ and Implications for Migration of Pancreatic Cancer Cells. Neoplasia 2016; 18:447-56. [PMID: 27435927 PMCID: PMC4954934 DOI: 10.1016/j.neo.2016.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma is characterized by a prominent fibroinflammatory stroma with both tumor-promoting and tumor-suppressive functions. The pancreatic stellate cell (PSC) is the major cellular stromal component and the main producer of extracellular matrix proteins, including collagens, which are degraded by metalloproteinases (MMPs). PSCs interact with cancer cells through various factors, including transforming growth factor (TGF)β and interleukin (IL)-1α. The role of TGFβ in the dual nature of tumor stroma, i.e., protumorigenic or tumor suppressive, is not clear. We aimed to investigate the roles of TGFβ and IL-1α in the regulation of MMP profiles in PSCs and the subsequent effects on cancer cell migration. Human PSCs isolated from surgically resected specimens were cultured in the presence of pancreatic cancer cell lines, as well as IL-1α or TGFβ. MMP production and activities in PSCs were quantified by gene array transcripts, mRNA measurements, fluorescence resonance energy transfer-based activity assay, and zymography. PSC-conditioned media and pancreatic cancer cells were included in a collagen matrix cell migration model. We found that production of IL-1α by pancreatic cancer cells induced alterations in MMP and tissue inhibitors of matrix metalloproteinase (TIMP) profiles and activities in PSCs, upregulated expression and activation of MMP1 and MMP3, and enhanced migration of pancreatic cancer cells in the collagen matrix model. TGFβ counteracted the effects of IL-1α on PSCs, reestablished PSC MMP and TIMP profiles and activities, and inhibited migration of cancer cells. This suggests that tumor TGFβ has a role as a suppressor of stromal promotion of tumor progression through alterations in PSC MMP profiles with subsequent inhibition of pancreatic cancer cell migration.
Collapse
Affiliation(s)
- Vegard Tjomsland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pharmacology, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Eva Pomianowska
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Monica Aasrum
- Department of Pharmacology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dagny Sandnes
- Department of Pharmacology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Caroline Sophie Verbeke
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ivar Prydz Gladhaug
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
8
|
Zha M, Xu W, Jones PM, Sun Z. Isolation and characterization of human islet stellate cells. Exp Cell Res 2015; 341:61-66. [PMID: 26546984 DOI: 10.1016/j.yexcr.2015.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS We have previously demonstrated that islet stellate cells (ISCs) exhibiting a similar phenotype to classical pancreatic stellate cells (PSCs) could be isolated from rat islets, where they may contribute to islet fibrosis in type 2 diabetes mellitus (T2DM). This study was designed to determine whether human islets also contain ISC. MATERIALS AND METHODS Using standard explants techniques, human ISCs were enriched from freshly isolated human islets. Immunofluorescence visualization of markers for PSCs(α-smooth muscle actin;α-SMA), desmin, vimentin, glial fibrillary acidic protein (GFAP) was used to characterize the human ISC. Cell counting kit-8 (CCK-8) was used to assess the proliferation of ISC. The wound-healing assay and the transwell migration were used to assess the migration capacity of ISC. Immunofluorescence against collagen typesI (col-I), collagen typesIII (col-III) and fibronectin (FN) was performed to identify extracellular matrix (ECM) component synthesized by ISC. Adipogenic and osteogenic differentiation were tried to detected stem cell potential. RESULTS In culture, ISC with triangular shape grow out from human islets. The passaged ISC expressed α-SMA, desmin, vimentin, GFAP and was positive for col-I, col-III and FN. The proliferation and migration ability of ISC was significantly slower than those of PSC. And both the human PSC and ISC were able to differentiate in vitro into adipocyte- and osteoblast-like cells. CONCLUSION Similar to our previous rat experiment, the current study shows that human islets also contain ISC which is phenotypically similar but not identical to human PSC.
Collapse
Affiliation(s)
- Min Zha
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of medicine, Southeast University, Nanjing, China; Department of Endocrinology, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of TCM, Hanzhong Road, Nanjing, China
| | - Wei Xu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of medicine, Southeast University, Nanjing, China
| | - Peter M Jones
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of medicine, Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Han S, Delitto D, Zhang D, Sorenson HL, Sarosi GA, Thomas RM, Behrns KE, Wallet SM, Trevino JG, Hughes SJ. Primary outgrowth cultures are a reliable source of human pancreatic stellate cells. J Transl Med 2015; 95:1331-1340. [PMID: 26322418 DOI: 10.1038/labinvest.2015.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
Recent advances demonstrate a critical yet poorly understood role for the pancreatic stellate cell (PSC) in the pathogenesis of chronic pancreatitis (CP) and pancreatic cancer (PC). Progress in this area has been hampered by the availability, fidelity, and/or reliability of in vitro models of PSCs. We examined whether outgrowth cultures from human surgical specimens exhibited reproducible phenotypic and functional characteristics of PSCs. PSCs were cultured from surgical specimens of healthy pancreas, CP and PC. Growth dynamics, phenotypic characteristics, soluble mediator secretion profiles and co-culture with PC cells both in vitro and in vivo were assessed. Forty-seven primary cultures were established from 52 attempts, demonstrating universal α-smooth muscle actin and glial fibrillary acidic protein but negligible epithelial surface antigen expression. Modification of culture conditions consistently led to cytoplasmic lipid accumulation, suggesting induction of a quiescent phenotype. Secretion of growth factors, chemokines and cytokines did not significantly differ between donor pathologies, but did evolve over time in culture. Co-culture of PSCs with established PC cell lines resulted in significant changes in levels of multiple secreted mediators. Primary PSCs co-inoculated with PC cells in a xenograft model led to augmented tumor growth and metastasis. Therefore, regardless of donor pathology, outgrowth cultures produce PSCs that demonstrate consistent growth and protein secretion properties. Primary cultures from pancreatic surgical specimens, including malignancies, may represent a reliable source of human PSCs.
Collapse
Affiliation(s)
- Song Han
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Daniel Delitto
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Dongyu Zhang
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Heather L Sorenson
- Department of Periodontology and Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - George A Sarosi
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
- Department of Surgery, North Florida/South Georgia Veterans Health System, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ryan M Thomas
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
- Department of Surgery, North Florida/South Georgia Veterans Health System, University of Florida College of Medicine, Gainesville, FL, USA
| | - Kevin E Behrns
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Shannon M Wallet
- Department of Periodontology and Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Jose G Trevino
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Steven J Hughes
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| |
Collapse
|
10
|
Fokas E, O'Neill E, Gordon-Weeks A, Mukherjee S, McKenna WG, Muschel RJ. Pancreatic ductal adenocarcinoma: From genetics to biology to radiobiology to oncoimmunology and all the way back to the clinic. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1855:61-82. [PMID: 25489989 DOI: 10.1016/j.bbcan.2014.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death. Despite improvements in the clinical management, the prognosis of PDAC remains dismal. In the present comprehensive review, we will examine the knowledge of PDAC genetics and the new insights into human genome sequencing and clonal evolution. Additionally, the biology and the role of the stroma in tumour progression and response to treatment will be presented. Furthermore, we will describe the evidence on tumour chemoresistance and radioresistance and will provide an overview on the recent advances in PDAC metabolism and circulating tumour cells. Next, we will explore the characteristics and merits of the different mouse models of PDAC. The inflammatory milieu and the immunosuppressive microenvironment mediate tumour initiation and treatment failure. Hence, we will also review the inflammatory and immune escaping mechanisms and the new immunotherapies tested in PDAC. A better understanding of the different mechanisms of tumour formation and progression will help us to identify the best targets for testing in future clinical studies of PDAC.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/therapeutic use
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/therapy
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/immunology
- Humans
- Immunotherapy/methods
- Inflammation/pathology
- Mice
- Neoplastic Cells, Circulating/immunology
- Neoplastic Cells, Circulating/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Radiation Tolerance/genetics
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK.
| | - Eric O'Neill
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| | - Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Somnath Mukherjee
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| | - W Gillies McKenna
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| | - Ruth J Muschel
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| |
Collapse
|
11
|
Schober M, Jesenofsky R, Faissner R, Weidenauer C, Hagmann W, Michl P, Heuchel RL, Haas SL, Löhr JM. Desmoplasia and chemoresistance in pancreatic cancer. Cancers (Basel) 2014; 6:2137-54. [PMID: 25337831 PMCID: PMC4276960 DOI: 10.3390/cancers6042137] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/08/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) occurs mainly in people older than 50 years of age. Although great strides have been taken in treating PDAC over the past decades its incidence nearly equals its mortality rate and it was quoted as the 4th leading cause of cancer deaths in the U.S. in 2012. This review aims to focus on research models and scientific developments that help to explain the extraordinary resistance of PDAC towards current therapeutic regimens. Furthermore, it highlights the main features of drug resistance including mechanisms promoted by cancer cells or cancer stem cells (CSCs), as well as stromal cells, and the acellular components surrounding the tumor cells—known as peritumoral desmoplasia—that affects intra-tumoral drug delivery. Finally, therapeutic concepts and avenues for future research are suggested, based on the topics discussed.
Collapse
Affiliation(s)
- Marvin Schober
- Division of Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universitaet Marburg, Baldingerstrasse, Marburg 35043, Germany.
| | - Ralf Jesenofsky
- Department of Medicine II (Department of Gastroenterology, Hepatology, and Infectious Diseases), University Medical Center Mannheim (UMM), Theodor-Kutzer-Ufer 1-3, Mannheim 68135, Germany.
| | - Ralf Faissner
- Department of Medicine II (Department of Gastroenterology, Hepatology, and Infectious Diseases), University Medical Center Mannheim (UMM), Theodor-Kutzer-Ufer 1-3, Mannheim 68135, Germany.
| | - Cornelius Weidenauer
- Department of Medicine II (Department of Gastroenterology, Hepatology, and Infectious Diseases), University Medical Center Mannheim (UMM), Theodor-Kutzer-Ufer 1-3, Mannheim 68135, Germany.
| | - Wolfgang Hagmann
- Lung Cancer, Genomics/Epigenomics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69121, Germany.
| | - Patrick Michl
- Division of Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universitaet Marburg, Baldingerstrasse, Marburg 35043, Germany.
| | - Rainer L Heuchel
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE-141 52 Huddinge, Sweden.
| | - Stephan L Haas
- Gastrocentrum, Karolinska University Hospital, Stockholm, Stockholm 141 86, Sweden.
| | - J-Matthias Löhr
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE-141 52 Huddinge, Sweden.
| |
Collapse
|
12
|
Haqq J, Howells LM, Garcea G, Metcalfe MS, Steward WP, Dennison AR. Pancreatic stellate cells and pancreas cancer: current perspectives and future strategies. Eur J Cancer 2014; 50:2570-82. [PMID: 25091797 DOI: 10.1016/j.ejca.2014.06.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a very poor prognosis. To date patient outcomes have not improved principally due to the limited number of patients suitable for surgical resections and the radiation and chemotherapy resistance of these tumours. In the last decade, a failure of conventional therapies has forced researchers to re-examine the environment of PDAC. The tumour environment has been demonstrated to consist of an abundance of stroma containing many cells but predominantly pancreatic stellate cells (PSCs). Recent research has focused on understanding the interaction between PSCs and PDAC cells in vitro and in vivo. It is believed that the interaction between these cells is responsible for supporting tumour growth, invasion and metastasis and creating the barrier to delivery of chemotherapeutics. Novel approaches which focus on the interactions between PDAC and PSCs which sustain the tumour microenvironment may achieve significant patient benefits. This manuscript reviews the current evidence regarding PSCs, their interaction with PDAC cells and the potential implication this may have for future therapies. METHODS A PubMed search was carried out for the terms 'pancreas cancer' OR 'pancreatic cancer', AND 'pancreatic stellate cells', NOT 'hepatic stellate cells'. All studies were screened and assessed for their eligibility and manuscripts exploring the relationship between PSCs and PDAC were included. The studies were subdivided into in vitro and in vivo groups. RESULTS One hundred and sixty-six manuscripts were identified and reduced to seventy-three in vitro and in vivo studies for review. The manuscripts showed that PDAC cells and PSCs interact with each other to enhance proliferation, reduce apoptosis and increase migration and invasion of cancer cells. The pathways through which they facilitate these actions provide potential targets for future novel therapies. CONCLUSION There is accumulating evidence supporting the multiple roles of PSCs in establishing the tumour microenvironment and supporting the survival of PDAC. To further validate these findings there is a need for greater use of physiologically relevant models of pancreatic cancer in vitro such as three dimensional co-cultures and the use of orthotopic and genetically engineered murine (GEM) models in vivo.
Collapse
Affiliation(s)
- Jonathan Haqq
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom.
| | - Lynne M Howells
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Giuseppe Garcea
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Matthew S Metcalfe
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Will P Steward
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| |
Collapse
|
13
|
Lunardi S, Muschel RJ, Brunner TB. The stromal compartments in pancreatic cancer: are there any therapeutic targets? Cancer Lett 2013; 343:147-55. [PMID: 24141189 DOI: 10.1016/j.canlet.2013.09.039] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant stromal response also known as a desmoplastic reaction. Pancreatic Stellate Cells have been identified as playing a key role in pancreatic cancer desmoplasia. There is accumulating evidence that the stroma contributes to tumour progression and to the low therapeutic response of PDAC patients. In this review we described the main actors of the desmoplastic reaction within PDAC and novel therapeutic approaches that are being tested to block the detrimental function of the stroma.
Collapse
Affiliation(s)
- Serena Lunardi
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, RRI, Oxford OX3 7LJ, UK
| | - Ruth J Muschel
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, RRI, Oxford OX3 7LJ, UK
| | - Thomas B Brunner
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, RRI, Oxford OX3 7LJ, UK; Department of Radiation Oncology, University Hospitals Freiburg, Robert-Koch-Straße 3, 79106 Freiburg, Germany.
| |
Collapse
|
14
|
Apte MV, Wilson JS, Lugea A, Pandol SJ. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 2013; 144:1210-9. [PMID: 23622130 PMCID: PMC3729446 DOI: 10.1053/j.gastro.2012.11.037] [Citation(s) in RCA: 352] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease, and patient outcomes have not improved in decades. Treatments that target tumor cells have largely failed. This could be because research has focused on cancer cells and the influence of the stroma on tumor progression has been largely ignored. The focus of pancreatic cancer research began to change with the identification of pancreatic stellate cells, which produce the pancreatic tumor stroma. There is compelling in vitro and in vivo evidence for the influence of pancreatic stellate cells on pancreatic cancer development; several recent preclinical studies have reported encouraging results with approaches designed to target pancreatic stellate cells and the stroma. We review the background and recent advances in these areas, along with important areas of future research that could improve therapy.
Collapse
Affiliation(s)
- Minoti V. Apte
- Pancreatic Research Groups,Faculty of Medicine, South Western Sydney Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Jeremy S. Wilson
- Pancreatic Research Groups,Faculty of Medicine, South Western Sydney Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Aurelia Lugea
- Pancreatic Research Groups,Department of Veterans Affairs and University of California, Los Angeles, California
| | - Stephen J. Pandol
- Pancreatic Research Groups,Department of Veterans Affairs and University of California, Los Angeles, California,Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
15
|
Understanding the functions of tumor stroma in resistance to ionizing radiation: Emerging targets for pharmacological modulation. Drug Resist Updat 2013; 16:10-21. [DOI: 10.1016/j.drup.2013.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/14/2013] [Indexed: 02/08/2023]
|
16
|
Tod J, Jenei V, Thomas G, Fine D. Tumor-stromal interactions in pancreatic cancer. Pancreatology 2012; 13:1-7. [PMID: 23395563 DOI: 10.1016/j.pan.2012.11.311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/21/2012] [Accepted: 11/25/2012] [Indexed: 12/11/2022]
Abstract
Pancreatic adenocarcinoma has one of the worse prognoses of any cancer with a 5-year survival of only 3%. Pancreatic cancer displays one of the most prominent stromal reactions of all tumors and it is evident that this is a key contributing factor to disease outcome. The tumor microenvironment of pancreatic cancer harbors a wide spectrum of cell types and a complex network of mechanisms which all serve to promote tumor progression. It is clear that the symbiotic relationship between pancreatic cancer cells and stellate cells is the chief factor creating this unique tumor milieu. Pancreatic stellate cells play critical roles in evasion of cancer cell apoptosis, invasion and metastases, angiogenesis, and promotion of an immunosuppressive environment, all key hallmarks of malignancy. Existing treatments for pancreatic cancer focus on targeting the cancer cells rather than the whole tumor, of which cancer cells represent a small proportion. It is now increasingly evident that research targeted towards the interactions between these cell types, ideally at an early stage of tumor development, is imperative in order to propel the way forward to more effective treatments.
Collapse
Affiliation(s)
- Jo Tod
- Cancer Sciences Unit, Somers Building, University of Southampton School of Medicine, Tremona Rd., Southampton SO16 6YD, UK.
| | | | | | | |
Collapse
|
17
|
Apte MV, Pirola RC, Wilson JS. Pancreatic stellate cells: a starring role in normal and diseased pancreas. Front Physiol 2012; 3:344. [PMID: 22973234 PMCID: PMC3428781 DOI: 10.3389/fphys.2012.00344] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022] Open
Abstract
While the morphology and function of cells of the exocrine and endocrine pancreas have been studied over several centuries, one important cell type in the gland, the pancreatic stellate cell (PSC), had remained undiscovered until as recently as 20 years ago. Even after its first description in 1982, it was to be another 16 years before its biology could begin to be studied, because it was only in 1998 that methods were developed to isolate and culture PSCs from rodent and human pancreas. PSCs are now known to play a critical role in pancreatic fibrosis, a consistent histological feature of two major diseases of the pancreas—chronic pancreatitis and pancreatic cancer. In health, PSCs maintain normal tissue architecture via regulation of the synthesis and degradation of extracellular matrix (ECM) proteins. Recent studies have also implied other functions for PSCs as progenitor cells, immune cells or intermediaries in exocrine pancreatic secretion in humans. During pancreatic injury, PSCs transform from their quiescent phase into an activated, myofibroblast-like phenotype that secretes excessive amounts of ECM proteins leading to the fibrosis of chronic pancreatitis and pancreatic cancer. An ever increasing number of factors that stimulate and/or inhibit PSC activation via paracrine and autocrine pathways are being identified and characterized. It is also now established that PSCs interact closely with pancreatic cancer cells to facilitate cancer progression. Based on these findings, several therapeutic strategies have been examined in experimental models of chronic pancreatitis as well as pancreatic cancer, in a bid to inhibit/retard PSC activation and thereby alleviate chronic pancreatitis or reduce tumor growth in pancreatic cancer. The challenge that remains is to translate these pre-clinical developments into clinically applicable treatments for patients with chronic pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Minoti V Apte
- Pancreatic Research Group, Faculty of Medicine, South Western Sydney Clinical School, University of New South Wales Sydney, NSW, Australia
| | | | | |
Collapse
|
18
|
Liu H, Ma Q, Xu Q, Lei J, Li X, Wang Z, Wu E. Therapeutic potential of perineural invasion, hypoxia and desmoplasia in pancreatic cancer. Curr Pharm Des 2012; 18:2395-403. [PMID: 22372500 DOI: 10.2174/13816128112092395] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most fatal human malignancies. Though a relatively rare malignancy, it remains one of the deadliest tumors, with an extremely high mortality rate. The prognosis of patients with pancreatic cancer remains poor; only patients with small tumors and complete resection have a chance of a complete cure. Pancreatic cancer responds poorly to conventional therapies, including chemotherapy and irradiation. Tumor-specific targeted therapy is a relatively recent addition to the arsenal of anti-cancer therapies. It is important to find novel targets to distinguish tumor cells from their normal counterparts in therapeutic approaches. In the past few decades, studies have revealed the molecular mechanisms of pancreatic tumorigenesis, growth, invasion and metastasis. The proteins that participate in the pathophysiological processes of pancreatic cancer might be potential targets for therapy. This review describes the main players in perineural invasion, hypoxia and desmoplasia and the molecular mechanisms of these pathophysiological processes.
Collapse
Affiliation(s)
- Han Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Apte MV, Wilson JS. Dangerous liaisons: pancreatic stellate cells and pancreatic cancer cells. J Gastroenterol Hepatol 2012; 27 Suppl 2:69-74. [PMID: 22320920 DOI: 10.1111/j.1440-1746.2011.07000.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the characteristic features of the majority of pancreatic ductal adenocarcinomas is an abundant desmoplastic/stromal reaction. Until recently, this stroma had received little attention from researchers studying the pathogenesis of pancreatic cancer, with most of the research focus resting on the biology of tumor cells themselves. However, evidence is now accumulating that the stroma plays a critical role in pancreatic cancer progression. The cells responsible for producing the stromal reaction in pancreatic cancer are activated pancreatic stellate cells (PSCs, the key effector cells in pancreatic fibrogenesis). In vitro and in vivo studies have convincingly demonstrated a close bi-directional interaction between PSCs and pancreatic cancer cells, which facilitates local tumor growth as well as distant metastasis. PSCs also interact closely with endothelial cells to stimulate angiogenesis and are possibly involved in the known resistance of pancreatic cancer to chemotherapy and radiation. Most interestingly, it has recently been shown that PSCs from the primary tumor can travel to distant metastatic sites where they likely facilitate the seeding, survival, and proliferation of cancer cells. Thus, it is now recognized that the stroma is an important alternative therapeutic target in this disease and concerted pre-clinical research is underway to develop strategies to modulate/deplete the stromal reaction to inhibit cancer progression. The challenge is to translate these developments into clinically applicable treatments for patients.
Collapse
Affiliation(s)
- Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|
20
|
Bacterial DNA promotes proliferation of rat pancreatic stellate cells thorough toll-like receptor 9: potential mechanisms for bacterially induced fibrosis. Pancreas 2011; 40:823-31. [PMID: 21747311 DOI: 10.1097/mpa.0b013e318224a501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES We hoped to clarify the possible role of CpG DNA as a trigger factor for overt pancreatic inflammation of pancreatic stellate cells (PSCs). METHODS Pancreatic stellate cells were isolated from the male Lewis rat. The expression of Toll-like receptor 9 (TLR9) messenger RNA and protein were evaluated by reverse transcription-polymerase chain reaction and immunofluorescent cytochemistry. Internalization of CpG DNA was analyzed by confocal laser scanning microscopy. Pancreatic stellate cells were incubated with CpG DNA, and then cell proliferation and migration were assessed. RESULTS Constitutive expression of TLR9 occurs at the messenger RNA and protein levels. After several minutes of CpG DNA administration, CpG DNA was observed on the cell membrane surface and in the cytoplasm and found to be translocating into the perinucleus of PSCs. Pancreatic stellate cells migrated and proliferated in dose- and time-dependent manners in response to simulation by CpG DNA. Proliferation of PSCs was observed 3 hours after administration (earlier than platelet-derived growth factor-induced proliferation), suggesting that PSCs respond readily to provide innate immunity. Endosomal acidification inhibitors attenuated CpG DNA-induced signaling, leading to suppression of DNA synthesis by PSCs. CONCLUSIONS Our findings demonstrate that bacterial DNA promotes migration and proliferation of PSCs and suggest that bacterial DNA can initiate and sustain pancreatic inflammation and fibrosis by means of TLR9.
Collapse
|
21
|
Xue X, Lu Z, Tang D, Yao J, An Y, Wu J, Li Q, Gao W, Xu Z, Qian Z, Dai C, Wei J, Miao Y, Jiang K. Galectin-1 secreted by activated stellate cells in pancreatic ductal adenocarcinoma stroma promotes proliferation and invasion of pancreatic cancer cells: an in vitro study on the microenvironment of pancreatic ductal adenocarcinoma. Pancreas 2011; 40:832-9. [PMID: 21747316 DOI: 10.1097/mpa.0b013e318217945e] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study aimed to clarify that the activated pancreatic stellate cells (PaSCs) are the origin of the highly expressed galectin-1 in the stroma of pancreatic ductal adenocarcinoma (PDAC) tissue and to evaluate the effect of the secreted galectin-1 on proliferation and invasion ability of pancreatic cancer cell line CFPAC-1 in vitro. METHODS Different kinds of PaSCs were isolated from the normal or cancerous pancreatic tissues and cultured. Immunohistochemistry study, quantitative polymerase chain reaction, and Western blot were carried out to check the cellular origin of galectin-1 in PDAC tissue. By using modified Boyden chambers, in vitro coculture system of PaSCs was established with the pancreatic cancer cell line CFPAC-1 and based on which we assessed the proliferation and invasion ability of CFPAC-1 with or without galectin-1 antagonists. RESULTS We identified PaSCs as the primary source of the highly expressed galectin-1 in PDAC stroma. Galectin-1 secreted by PaSCs increased CFPAC-1 proliferative rate in the proliferation assay and facilitated CFPAC-1 infiltration in the invasion assay. CONCLUSIONS Under malignant circumstances, PaSCs express and secret galectin-1, which could further promote the proliferation and invasion of cancer cells.
Collapse
Affiliation(s)
- Xiaofeng Xue
- Laboratory of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
alpha-Smooth Muscle Actin Expressing Stroma Promotes an Aggressive Tumor Biology in Pancreatic Ductal Adenocarcinoma. Pancreas 2010; 39:1254-1262. [PMID: 20467342 DOI: 10.1097/mpa.0b013e3181dbf647] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES: Pancreatic ductal adenocarcinoma (PDAC) is often characterized by a prominent desmoplastic stroma that is induced partially by alpha-smooth muscle actin (SMA)-expressing activated pancreatic stellate cells (PSCs). This study aimed to investigate the significance of alpha-SMA expression in PDAC and the correlation between alpha-SMA mRNA levels and the patient prognosis. METHODS: We obtained formalin-fixed, paraffin-embedded tissue samples from 109 patients with PDAC, who underwent pancreatectomy at our institution from 1992 to 2007. We measured alpha-SMA mRNA levels by quantitative real-time reverse transcription-polymerase chain reaction and investigated the association of alpha-SMA mRNA expression with clinicopathologic parameters and survival time. We also assessed the influence of activated PSCs on malignant behaviors of pancreatic cancer cells using in vitro experiments. RESULTS: alpha-SMA immunoreactivity was detected exclusively in the stroma of PDAC. The group with high alpha-SMA expression showed a significantly shorter survival, as shown by univariate analysis (P = 0.005) and multivariate analysis (P < 0.0001). alpha-SMA-expressing activated PSCs enhanced the invasiveness, proliferation, and colony formation of pancreatic cancer cells. CONCLUSIONS: Quantitative analysis of alpha-SMA mRNA expression using formalin-fixed, paraffin-embedded tissue samples was useful to predict the prognosis of patients with PDAC. Activated PSCs may regulate the malignant behavior of pancreatic cancer cells.
Collapse
|
23
|
Interaction of stellate cells with pancreatic carcinoma cells. Cancers (Basel) 2010; 2:1661-82. [PMID: 24281180 PMCID: PMC3837330 DOI: 10.3390/cancers2031661] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer is characterized by its late detection, aggressive growth, intense infiltration into adjacent tissue, early metastasis, resistance to chemo- and radiotherapy and a strong “desmoplastic reaction”. The dense stroma surrounding carcinoma cells is composed of fibroblasts, activated stellate cells (myofibroblast-like cells), various inflammatory cells, proliferating vascular structures, collagens and fibronectin. In particular the cellular components of the stroma produce the tumor microenvironment, which plays a critical role in tumor growth, invasion, spreading, metastasis, angiogenesis, inhibition of anoikis, and chemoresistance. Fibroblasts, myofibroblasts and activated stellate cells produce the extracellular matrix components and are thought to interact actively with tumor cells, thereby promoting cancer progression. In this review, we discuss our current understanding of the role of pancreatic stellate cells (PSC) in the desmoplastic response of pancreas cancer and the effects of PSC on tumor progression, metastasis and drug resistance. Finally we present some novel ideas for tumor therapy by interfering with the cancer cell-host interaction.
Collapse
|
24
|
Gao Z, Wang X, Wu K, Zhao Y, Hu G. Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/CXCR4 axis. Pancreatology 2010; 10:186-93. [PMID: 20484957 DOI: 10.1159/000236012] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 08/08/2009] [Indexed: 12/11/2022]
Abstract
AIM Both pancreatic stellate cells (PSCs) and the stromal cell-derived factor-1(SDF-1)/CXCR4 receptor ligand system have important roles in pancreatic cancer progression. This study set out to detect if PSCs express SDF-1 and promote the invasion of pancreatic cancer through the SDF-1/CXCR4 receptor ligand axis. METHODS RT-PCR was performed to detect the expression of SDF-1 and CXCR4 in PSCs, pancreatic cancer lines and cancer tissue samples. ELISA was used to investigate the concentration of SDF-1 in PSC supernatants. An MTT assay was applied to detect the proliferation of pancreatic cancer cells. A transwell chamber migration assay was employed to detect the migration of AsPC-1 cells. An in vitro invasion assay was used to detect the invasion of AsPC-1 cells. RESULTS CXCR4 expression was detected in PSCs; AsPC-1, SW1990 and BxPC-3 cancer cells; and cancer tissues. SDF-1 was detected in PSCs and cancer tissues, but not in AsPC-1, SW1990 and BxPC-3 cells. SDF-1alpha protein was found in PSC supernatants. PSC-conditioned media can promote the proliferation, migration and invasion of pancreatic cancer cells. SDF-1 neutralizing antibody or AMD3100 can significantly inhibit these promotive and IAP.
Collapse
Affiliation(s)
- Zhenjun Gao
- Department of Gastroenterology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
25
|
Fujita H, Ohuchida K, Mizumoto K, Egami T, Miyoshi K, Moriyama T, Cui L, Yu J, Zhao M, Manabe T, Tanaka M. Tumor-stromal interactions with direct cell contacts enhance proliferation of human pancreatic carcinoma cells. Cancer Sci 2009; 100:2309-17. [PMID: 19735487 PMCID: PMC11159841 DOI: 10.1111/j.1349-7006.2009.01317.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is often characterized by an abundant desmoplastic stroma that is partially induced by activated pancreatic stellate cells (PSCs). Indirect co-culture has often been used to investigate the effects of cancer-stromal interactions on the proliferation of cancer cells, but the effects of cell-cell adhesion and juxtacrine signaling between cancer and stromal cells cannot be evaluated using this method. This study aimed to establish a simplified direct co-culture system that could be used to quantify populations of cancer cells in co-culture with PSCs, and to evaluate the effects of direct cell contact on the proliferation of cancer cells. We established three green fluorescent protein (GFP)-expressing pancreatic cancer cell lines and were able to quantify them with high reliability and reproducibility, even when co-cultured directly with PSCs, using a color plate reader. We assessed the differential effects of direct and indirect co-culture with PSCs on the proliferation of cancer cells, and found that the proliferation of GFP-expressing pancreatic cancer cell lines was dramatically enhanced by direct co-culture with PSCs, compared with the indirect co-culture system. We also found that direct co-culture of cancer cells and PSCs activated the Notch signaling pathway in both cell types. Direct cell contact between cancer cells and PSCs plays an important role in the control of cancer cell proliferation, and is essential to the understanding of tumor-stromal interactions.
Collapse
Affiliation(s)
- Hayato Fujita
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Masamune A, Watanabe T, Kikuta K, Shimosegawa T. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol 2009; 7:S48-54. [PMID: 19896099 DOI: 10.1016/j.cgh.2009.07.038] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/22/2009] [Accepted: 07/28/2009] [Indexed: 02/07/2023]
Abstract
Over a decade, there is accumulating evidence that activated pancreatic stellate cells (PSCs) play a pivotal role in the development of pancreatic fibrosis. In response to pancreatic injury or inflammation, quiescent PSCs are transformed (activated) to myofibroblast-like cells, which express alpha-smooth muscle actin. Activated PSCs proliferate, migrate, produce extracellular matrix components, such as type I collagen, and express cytokines and chemokines. Recent studies have suggested novel roles of PSCs in local immune functions and angiogenesis in the pancreas. If the pancreatic inflammation and injury are sustained or repeated, PSC activation is perpetuated, leading to the development of pancreatic fibrosis. In this context, pancreatic fibrosis can be defined as pathologic changes of extracellular matrix composition in both quantity and quality, resulting from perpetuated activation of PSCs. Because PSCs are very similar to hepatic stellate cells, PSC research should develop in directions more relevant to the pathophysiology of the pancreas, for example, issues related to trypsin, non-oxidative alcohol metabolites, and pancreatic cancer. Indeed, in addition to their roles in chronic pancreatitis, it has been increasingly recognized that PSCs contribute to the progression of pancreatic cancer. Very recently, contribution of bone marrow-derived cells to PSCs was reported. Further elucidation of the roles of PSCs in pancreatic fibrosis should promote development of rational approaches for the treatment of chronic pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan.
| | | | | | | |
Collapse
|
27
|
PANDOL STEPHEN, EDDERKAOUI MOUAD, GUKOVSKY ILYA, LUGEA AURELIA, GUKOVSKAYA ANNA. Desmoplasia of pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol 2009; 7:S44-7. [PMID: 19896098 PMCID: PMC4573641 DOI: 10.1016/j.cgh.2009.07.039] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/15/2009] [Accepted: 07/21/2009] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and is characterized by remarkable desmoplasia. The desmoplasia is composed of extracellular matrix (ECM) proteins, myofibroblastic pancreatic stellate cells, and immune cells associated with a multitude of cytokines, growth factors, and ECM metabolizing enzymes. The mechanisms of participation of this complex matrix process in carcinogenesis are only starting to be appreciated. Recent studies showed key roles for stellate cells in the production of ECM proteins as well as cytokines and growth factors that promote the growth of the cancer cells all present in the desmoplastic parts of PDAC. In addition, interactions of ECM proteins and desmoplastic secreted growth factors with the cancer cells of PDAC activate intracellular signals including reactive oxygen species that act to make the cancer cells resistant to dying. These findings suggest that the desmoplasia of PDAC is a key factor in regulating carcinogenesis of PDAC as well as responses to therapies. A better understanding of the biology of desmoplasia in the mechanism of PDAC will likely provide significant opportunities for better treatments for this devastating cancer.
Collapse
|
28
|
Masamune A, Shimosegawa T. Signal transduction in pancreatic stellate cells. J Gastroenterol 2009; 44:249-60. [PMID: 19271115 DOI: 10.1007/s00535-009-0013-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 02/04/2023]
Abstract
Pancreatic fibrosis is a characteristic feature of chronic pancreatitis and of desmoplastic reaction associated with pancreatic cancer. For over a decade, there has been accumulating evidence that activated pancreatic stellate cells (PSCs) play a pivotal role in the development of pancreatic fibrosis in these pathological settings. In response to pancreatic injury or inflammation, quiescent PSCs undergo morphological and functional changes to become myofibroblast-like cells, which express alpha-smooth muscle actin (alpha-SMA). Activated PSCs actively proliferate, migrate, produce extracellular matrix (ECM) components, such as type I collagen, and express cytokines and chemokines. In addition, PSCs might play roles in local immune functions and angiogenesis in the pancreas. Following the initiation of activation, if the inflammation and injury are sustained or repeated, PSCs activation is perpetuated, leading to the development of pancreatic fibrosis. From this point of view, pancreatic fibrosis can be defined as pathological changes of ECM composition in the pancreas both in quantity and quality, resulting from perpetuated activation of PSCs. Because the activation and cell functions in PSCs are regulated by the dynamic but coordinated activation of intracellular signaling pathways, identification of signaling molecules that play a crucial role in PSCs activation is important for the development of anti-fibrosis therapy. Recent studies have identified key mediators of stimulatory and inhibitory signals. Signaling molecules, such as peroxisome proliferator-activated receptor-gamma (PPAR-gamma), Rho/Rho kinase, nuclear factor-kappaB (NF-kappaB), mitogen-activated protein (MAP) kinases, phosphatidylinositol 3 kinase (PI3K), Sma- and Mad-related proteins, and reactive oxygen species (ROS) might be candidates for the development of anti-fibrosis therapy targeting PSCs.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | | |
Collapse
|
29
|
Farrow B, Rowley D, Dang T, Berger DH. Characterization of tumor-derived pancreatic stellate cells. J Surg Res 2009; 157:96-102. [PMID: 19726060 DOI: 10.1016/j.jss.2009.03.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/19/2009] [Accepted: 03/24/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND Pancreatic stellate cells (PSCs) are key mediators of the desmoplastic reaction that characterizes pancreatic adenocarcinoma. We sought to isolate and characterize tumor-derived pancreatic stellate (TDPS) cells to further understand how these stromal cells influence pancreatic cancer behavior. METHODS We established a stable line of non-immortalized PSCs from a patient with pancreatic adenocarcinoma using a modified prolonged outgrowth method. Cell staining for cytokeratin, vimentin, and alpha smooth muscle actin (alphaSMA) was performed. Total RNA was harvested from TDPS and panc-1 cells and gene expression determined by microarray analysis. RESULTS TDPS cells contain lipid droplets in the cytoplasm, and later stain positive for both vimentin and alphaSMA, indicative of activated myofibroblasts. Microarray analysis revealed a distinct gene expression profile compared with pancreatic cancer cells, including expression of proteases that facilitate cancer cell invasion and growth factors known to activate pancreatic cancer cells. Additionally, TDPS cells expressed many of the key components of the pancreatic tumor stroma, including collagen, fibronectin, and S100A4, confirming their importance in the tumor microenvironment. CONCLUSIONS Characterization of tumor-derived PSCs will facilitate further studies to determine how the tumor microenvironment promotes the aggressive behavior of pancreatic cancer.
Collapse
|
30
|
Farrow B, Berger DH, Rowley D. Tumor-derived pancreatic stellate cells promote pancreatic cancer cell invasion through release of thrombospondin-2. J Surg Res 2009; 156:155-60. [PMID: 19592030 DOI: 10.1016/j.jss.2009.03.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/19/2009] [Accepted: 03/26/2009] [Indexed: 12/25/2022]
Abstract
BACKGROUND Tumor derived pancreatic stellate cells (TDPS) cells are key cellular components of the pancreatic tumor microenvironment. These stellate cells can release growth factors, proteases, and extracellular matrix proteins that may stimulate the spread of pancreatic cancer. We sought to determine whether TDPS cells promote the local invasion of pancreatic cancer cells and mechanisms involved. METHODS TDPS and panc-1 cells were grown in coculture to determine directional migration and panc-1 invasiveness was quantified using Matrigel invasion chambers, comparing TDPS cells to human foreskin fibroblasts (HFFs). ELISA was used to determine the secretion of growth factors, proteases, and extracellular matrix proteins from TDPS cells and HFFs, and then siRNAs used to knockdown expression of factors. RESULTS In coculture panc-1 cells migrate toward TDPS cells, creating nests of cancer cells within the stromal cells. TDPS cells promote the invasion of panc-1 cells and release thrombospondin 2 (TSP-2), whereas HFFs did not. When TSP-2 expression is reduced in TDPS cells using selective siRNAs, pancreatic cancer cell invasion was inhibited. CONCLUSION Tumor-derived pancreatic stellate cells stimulate pancreatic cancer cell invasion, likely through release of TSP-2. Targeting pro-invasive elements, such as TSP-2, within the tumor microenvironment may inhibit local invasion, thus permitting more patients to undergo curative resection of pancreatic cancer.
Collapse
Affiliation(s)
- Buckminster Farrow
- Michael E DeBakey Department of Surgery, Baylor College of Medicine, TX 77030, USA.
| | | | | |
Collapse
|
31
|
Jiang HB, Xu M, Wang XP. Pancreatic stellate cells promote proliferation and invasiveness of human pancreatic cancer cells via galectin-3. World J Gastroenterol 2008; 14:2023-8. [PMID: 18395901 PMCID: PMC2701522 DOI: 10.3748/wjg.14.2023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of pancreatic stellate cells (PSCs) and galectin-3 (GAL-3) in the proliferation and infiltration of pancreatic cancer cell line SW1990.
METHODS: Human pancreatic cancer cell line SW1990 and PSCs were cultured in vitro. Supernatant fluid of cultured PSCs and SW1990 cells was collected. Expression of GAL-3 in SW1990 cells and PSCs was detected by ELISA, RT-PCR and Western blotting. Proliferation of cultured PSCs and SW1990 cells was measured by 3-(4, 5-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Infiltration of SW1990 cells was detected by a cell infiltration kit.
RESULTS: SW1990 cells expressed GAL-3 and this was up-regulated by the supernatant fluid of cultured PSCs. PSCs did not express GAL-3. SW1990 cells stimulated proliferation of PSCs via GAL-3. GAL-3 antibody inhibited SW1990 cell proliferation, while the supernatant fluid of PSCs stimulated proliferation of SW1990 cells through interaction with GAL-3 protein. The supernatant fluid of PSCs enhanced the invasiveness of SW1990 cells through interaction with GAL-3.
CONCLUSION: GAL-3 and PSCs were involved in the proliferation and infiltration process of pancreatic cancer cells.
Collapse
|
32
|
Bachem MG, Zhou S, Buck K, Schneiderhan W, Siech M. Pancreatic stellate cells--role in pancreas cancer. Langenbecks Arch Surg 2008; 393:891-900. [PMID: 18204855 DOI: 10.1007/s00423-008-0279-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 11/20/2007] [Indexed: 01/25/2023]
Abstract
BACKGROUND Adenocarcinomas of the pancreas are characterized by a rapid progression, an early metastasis, a limited response to chemo- and radiotherapy, and an intense fibrotic reaction known as tumor desmoplasia. Carcinoma cells are surrounded by a dense stroma consisting of myofibroblast-like cells, collagens, and fibronectin. MATERIALS AND METHODS This review describes the interaction of activated pancreatic stellate cells (myofibroblast-like cells) with tumor cells in pancreas adenocarcinomas. Our data were obtained in cell culture experiments and in in vivo investigations. RESULTS Carcinoma cells produce soluble mediators and stimulate motility, proliferation, matrix-, and MMP synthesis of stellate cells. Vice versa-activated stellate cells release mitogens, stimulating proliferation of cancer cells. Cancer cell proliferation and resistance to apoptosis might further be induced by the microenvironment (extracellular matrix), which is primarily provided by stellate cells. A very important aspect in the interaction of stellate cells with cancer cells is the expression of EMMPRIN (extracellular matrix metalloproteinase inducer) by cancer cells, the shedding of the extracellular part of EMMPRIN by matrix metalloproteinases (MMPs), and the induction of MMPs in stellate cells by soluble EMMPRIN. In particular, the stellate cells in close proximity to tumor cells therefore express MMPs and degrade connective tissue. CONCLUSION Through complex interactions between stellate cells and carcinoma cells, tumor progression and cancer cell invasion are accelerated. As we gain better understanding of these mechanisms, adequate therapies to reduce tumor cell invasion and cancer progression might be developed.
Collapse
Affiliation(s)
- Max G Bachem
- Department Clinical Chemistry and Central Laboratory, University of Ulm, Ulm, Germany.
| | | | | | | | | |
Collapse
|
33
|
Neesse A, Wagner M, Ellenrieder V, Bachem M, Gress TM, Buchholz M. Pancreatic stellate cells potentiate proinvasive effects of SERPINE2 expression in pancreatic cancer xenograft tumors. Pancreatology 2007; 7:380-5. [PMID: 17703087 DOI: 10.1159/000107400] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 01/30/2007] [Indexed: 12/11/2022]
Abstract
We have previously reported that inducible overexpression of the serine protease inhibitor nexin 2 (SERPINE2) significantly increases local invasiveness of subclones of the pancreatic cancer cell-line SUIT-2 in nude mouse xenografts. This was associated with a striking increase of extracellular matrix deposition in the invasive tumors. Pancreatic stellate cells (PSCs) have recently been identified as the major source of fibrosis in pancreatic adenocarcinomas. Here we report that co-injection of PSCs and tumor cells dramatically enhances the invasive potential of serine protease inhibitor Nexin 2 (SERPINE2)-expressing SUIT-2 cells. 100% (24 of 24) of the SERPINE2-expressing tumors with PSCs grew aggressively invasive, as compared to 39% of SERPINE2-negative tumors with PSCs and 27% of SERPINE2-expressing tumors without PSCs. In contrast to pure cancer cell preparations, SERPINE2 overexpression in the presence of PSCs also resulted in increased tumor growth. Histological evaluation demonstrated the presence of large amounts of ECM deposits co-localizing with cells staining positive for the PSC marker alpha-SMA. We conclude that PSCs actively proliferate in pancreatic cancer xenograft tumors and significantly contribute to the local invasive potential of the tumors. Presence of PSCs enhances the pro-invasive effects of SERPINE2 expression, and SERPINE2 influences tumor growth (as opposed to invasiveness) only in the presence of PSCs. Our data thus suggest that SERPINE2 is an important modulator of tumor cell/host interactions in pancreatic cancer.
Collapse
Affiliation(s)
- Albrecht Neesse
- Department of Internal Medicine I, University Hospital of Ulm, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Omary MB, Lugea A, Lowe AW, Pandol SJ. The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest 2007; 117:50-9. [PMID: 17200706 PMCID: PMC1716214 DOI: 10.1172/jci30082] [Citation(s) in RCA: 542] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic stellate cells (PaSCs) are myofibroblast-like cells found in the areas of the pancreas that have exocrine function. PaSCs are regulated by autocrine and paracrine stimuli and share many features with their hepatic counterparts, studies of which have helped further our understanding of PaSC biology. Activation of PaSCs induces them to proliferate, to migrate to sites of tissue damage, to contract and possibly phagocytose, and to synthesize ECM components to promote tissue repair. Sustained activation of PaSCs has an increasingly appreciated role in the fibrosis that is associated with chronic pancreatitis and with pancreatic cancer. Therefore, understanding the biology of PaSCs offers potential therapeutic targets for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- M. Bishr Omary
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA.
Stanford University School of Medicine, Stanford, California, USA.
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Aurelia Lugea
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA.
Stanford University School of Medicine, Stanford, California, USA.
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Anson W. Lowe
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA.
Stanford University School of Medicine, Stanford, California, USA.
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Stephen J. Pandol
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA.
Stanford University School of Medicine, Stanford, California, USA.
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
35
|
Saleem M, Kweon MH, Johnson JJ, Adhami VM, Elcheva I, Khan N, Bin Hafeez B, Bhat KMR, Sarfaraz S, Reagan-Shaw S, Spiegelman VS, Setaluri V, Mukhtar H. S100A4 accelerates tumorigenesis and invasion of human prostate cancer through the transcriptional regulation of matrix metalloproteinase 9. Proc Natl Acad Sci U S A 2006; 103:14825-30. [PMID: 16990429 PMCID: PMC1595436 DOI: 10.1073/pnas.0606747103] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We previously showed that the calcium-binding protein S100A4 is overexpressed during the progression of prostate cancer (CaP) in humans and in the TRAMP (transgenic adenocarcinoma of the mouse prostate) mouse model. We tested a hypothesis that the S100A4 gene plays a role in the invasiveness of human CaP and may be associated with its metastatic spread. We observed that siRNA-mediated suppression of the S100A4 gene significantly reduced the proliferative and invasive capability of the highly invasive CaP cells PC-3. We evaluated the mechanism through which the S100A4 gene controls invasiveness of cells by using a macroarray containing 96 well characterized metastatic genes. We found that matrix metalloproteinase 9 (MMP-9) and its tissue inhibitor (TIMP-1) were highly responsive to S100A4 gene suppression. Furthermore, S100A4 suppression significantly reduced the expression and proteolytic activity of MMP-9. By employing an MMP-9-promoter reporter, we observed a significant reduction in the transcriptional activation of the MMP-9 gene in S100A4-siRNA-transfected cells. Cells overexpressing the S100A4 gene (when transfected with pcDNA3.1-S100A4 plasmid) also significantly expressed MMP-9 and TIMP-1 genes with increased proteolytic activity of MMP-9 concomitant to increased transcriptional activation of the MMP-9 gene. S100A4-siRNA-transfected cells exhibited a reduced rate of tumor growth under in vivo conditions. Our data demonstrate that the S100A4 gene controls the invasive potential of human CaP cells through regulation of MMP-9 and that this association may contribute to metastasis of CaP cells. We suggest that S100A4 could be used as a biomarker for CaP progression and a novel therapeutic or chemopreventive target for human CaP treatment.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Dermatology, University of Wisconsin, Madison, WI 53706
| | - Mee-Hyang Kweon
- Department of Dermatology, University of Wisconsin, Madison, WI 53706
| | | | | | - Irina Elcheva
- Department of Dermatology, University of Wisconsin, Madison, WI 53706
| | - Naghma Khan
- Department of Dermatology, University of Wisconsin, Madison, WI 53706
| | - Bilal Bin Hafeez
- Department of Dermatology, University of Wisconsin, Madison, WI 53706
| | - Kumar M. R. Bhat
- Department of Dermatology, University of Wisconsin, Madison, WI 53706
| | - Sami Sarfaraz
- Department of Dermatology, University of Wisconsin, Madison, WI 53706
| | | | | | | | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI 53706
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Yoshida S, Ujiki M, Ding XZ, Pelham C, Talamonti MS, Bell RH, Denham W, Adrian TE. Pancreatic stellate cells (PSCs) express cyclooxygenase-2 (COX-2) and pancreatic cancer stimulates COX-2 in PSCs. Mol Cancer 2005; 4:27. [PMID: 16083499 PMCID: PMC1201567 DOI: 10.1186/1476-4598-4-27] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 08/05/2005] [Indexed: 12/15/2022] Open
Abstract
Background Cyclooxygenase 2 (COX-2), the inducible form of prostaglandin G/H synthase, is associated with several human cancers including pancreatic adenocarcinoma. Pancreatic stellate cells (PSCs) play a central role in the intense desmoplasia that surrounds pancreatic adenocarcinoma. The present study examined COX-2 expression in PSCs. PSCs isolated from normal rats, were cultured and exposed to conditioned medium (CM) from the human pancreatic cell line, PANC-1. Methods COX-2 expression was evaluated by immunostaining and western blotting. Proliferation of PSCs was determined by thymidine incorporation and cell counting. Results COX-2 was found to be constitutively expressed in PSCs, and COX-2 protein was up-regulated by PANC-1 CM. Moreover, the induction of COX-2 by PANC-1 CM was prevented by U0126, an extracellular signal-regulated kinase (ERK) 1/2 inhibitor suggesting that activation of ERK 1/2 is needed for stimulation of COX-2. Finally, NS398, a selective COX-2 inhibitor, reduced the growth of PSCs by PANC-1 CM, indicating that activation of COX-2 is required for cancer stimulated PSC proliferation. Conclusion The results suggest that COX-2 may play an important role in the regulation of PSC proliferation in response to pancreatic cancer.
Collapse
Affiliation(s)
- Seiya Yoshida
- Department of Surgery and Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 333 East Superior 4–713, Chicago, IL 60611, USA
| | - Michael Ujiki
- Department of Surgery and Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 333 East Superior 4–713, Chicago, IL 60611, USA
| | - Xian-Zhong Ding
- Department of Surgery and Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 333 East Superior 4–713, Chicago, IL 60611, USA
| | - Carolyn Pelham
- Department of Surgery and Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 333 East Superior 4–713, Chicago, IL 60611, USA
| | - Mark S Talamonti
- Department of Surgery and Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 333 East Superior 4–713, Chicago, IL 60611, USA
| | - Richard H Bell
- Department of Surgery and Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 333 East Superior 4–713, Chicago, IL 60611, USA
| | - Woody Denham
- Department of Surgery and Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 333 East Superior 4–713, Chicago, IL 60611, USA
| | - Thomas E Adrian
- Department of Surgery and Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 333 East Superior 4–713, Chicago, IL 60611, USA
| |
Collapse
|
37
|
Hoshino S, Yoshida M, Inoue K, Yano Y, Yanagita M, Mawatari H, Yamane H, Kijima T, Kumagai T, Osaki T, Tachiba I, Kawase I. Cigarette smoke extract induces endothelial cell injury via JNK pathway. Biochem Biophys Res Commun 2005; 329:58-63. [PMID: 15721273 DOI: 10.1016/j.bbrc.2005.01.095] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Indexed: 12/16/2022]
Abstract
Cigarette smoking is the most crucial factor responsible for chronic obstructive pulmonary disease (COPD). The precise mechanisms of the development of the disease have, however, not been fully understood. Recently, impairment of pulmonary endothelial cells has been increasingly recognized as a critical pathophysiological process in COPD. To verify this hypothesis, we examined how cigarette smoke extract (CSE) damages human umbilical vein endothelial cells (HUVECs). CSE activated c-Jun N-terminal kinase (JNK), and treatment of HUVECs with SP600125, a specific inhibitor of the JNK pathway, significantly suppressed endothelial cell damage by CSE. In contrast, inhibition of the extracellular-regulated kinase or the p38 pathway did not affect the cytotoxicity of CSE. Furthermore, anti-oxidants superoxide dismutase and catalase reduced CSE-induced JNK phosphorylation and endothelial cell injury. These results indicate that CSE damages vascular endothelial cells through the JNK pathway activated, at least partially, by oxidative stress.
Collapse
Affiliation(s)
- Shigenori Hoshino
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|