1
|
Garzon T, Ortega-Tirado D, Lopez-Romero G, Alday E, Robles-Zepeda RE, Garibay-Escobar A, Velazquez C. "Immunoinformatic Identification of T-Cell and B-Cell Epitopes From Giardia lamblia Immunogenic Proteins as Candidates to Develop Peptide-Based Vaccines Against Giardiasis". Front Cell Infect Microbiol 2021; 11:769446. [PMID: 34778111 PMCID: PMC8579046 DOI: 10.3389/fcimb.2021.769446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Giardiasis is one of the most common gastrointestinal infections worldwide, mainly in developing countries. The etiological agent is the Giardia lamblia parasite. Giardiasis mainly affects children and immunocompromised people, causing symptoms such as diarrhea, dehydration, abdominal cramps, nausea, and malnutrition. In order to develop an effective vaccine against giardiasis, it is necessary to understand the host-Giardia interactions, the immunological mechanisms involved in protection against infection, and to characterize the parasite antigens that activate the host immune system. In this study, we identify and characterize potential T-cell and B-cell epitopes of Giardia immunogenic proteins by immunoinformatic approaches, and we discuss the potential role of those epitopes to stimulate the host´s immune system. We selected the main immunogenic and protective proteins of Giardia experimentally investigated. We predicted T-cell and B-cell epitopes using immunoinformatic tools (NetMHCII and BCPREDS). Variable surface proteins (VSPs), structural (giardins), metabolic, and cyst wall proteins were identified as the more relevant immunogens of G. lamblia. We described the protein sequences with the highest affinity to bind MHC class II molecules from mouse (I-Ak and I-Ad) and human (DRB1*03:01 and DRB1*13:01) alleles, as well as we selected promiscuous epitopes, which bind to the most common range of MHC class II molecules in human population. In addition, we identified the presence of conserved epitopes within the main protein families (giardins, VSP, CWP) of Giardia. To our knowledge, this is the first in silico study that analyze immunogenic proteins of G. lamblia by combining bioinformatics strategies to identify potential T-cell and B-cell epitopes, which can be potential candidates in the development of peptide-based vaccines. The bioinformatics analysis demonstrated in this study provides a deeper understanding of the Giardia immunogens that bind to critical molecules of the host immune system, such as MHC class II and antibodies, as well as strategies to rational design of peptide-based vaccine against giardiasis.
Collapse
Affiliation(s)
- Thania Garzon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | | | | | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | | | | | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
2
|
Sun H, Wang S, Zhao X, Yao C, Zhuang H, Huang Y, Chen X, Yang Y, Du A. Targeted overexpression of cyclic AMP-dependent protein kinase subunit in Toxoplasma gondii promotes replication and virulence in host cells. Vet Parasitol 2017; 243:248-255. [PMID: 28807302 DOI: 10.1016/j.vetpar.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/20/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
Abstract
Toxoplasma gondii (T. gondii) is one of the most common parasite that can infect almost any warm-blooded animals including humans. The cyclic nucleotide-dependent protein kinase (PKA) regulates a spectrum of intracellular signal pathways in many organisms. Protein kinase catalytic subunit (PKAC) is the core of the whole protein, and plays an important role in the life cycle of T.gondii. Here, T.gondii PKAC (TgPKAC) overexpression strain (TgPKAC-OE) was constructed. The growth of the TgPKAC-OE, RH△Ku80, and TgPKAC inhibition strains (TgPKAC-H89) were analysed by SYBR-green real-time PCR, and the ultrastructure was observed by transmission electron microscopy. The survival rate in mice was also recorded to analyse the virulence of the parasites. We also investigated the subcellular localization of TgPKAC in Vero cells by laser scanning microscope. We found that TgPKAC-OE strain exhibited obviously increased growth rate in Vero cells in vitro, and infected mice survived for a shorter time compared to wild type strain. Ultrastructural analysis found more autophagosomes-like structures in TgPKAC-H89 parasite compared to RH△Ku80 strain, and the relative expression level of Toxoplasma gondii autophagy-related protein (ATG8) in TgPKAC-H89 parasite was higher than wild type parasite. Laser confocal results showed that TgPKAC was mainly expressed in the cytoplasm of Vero cells. In conclusion, we hypothesized that inhibition of TgPKAC could cause autophagy of Toxoplasma gondii and then influence the replication of the parasite. TgPKAC plays an important role in parasite virulence in vivo, and the subcellular localization was successfully detected in Vero cells. Our data will provide a basis for further study of TgPKAC function and help screen drug targets of T. gondii.
Collapse
Affiliation(s)
- Hongchao Sun
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Suhua Wang
- Wenzhou Entry-exit Inspection and Quarantine Bureau, Wenzhou, Zhejiang 325027, China
| | - Xianfeng Zhao
- Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, Guangdong 518045, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| | - Haohan Zhuang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yechuan Huang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Quintero J, Figueroa DC, Barcelo R, Breci L, Astiazaran-Garcia H, Rascon L, Robles-Zepeda R, Garibay-Escobar A, Velazquez-Contreras E, Avila GL, Hernandez-Hernandez JM, Velazquez C. Identification of an immunogenic protein of Giardia lamblia using monoclonal antibodies generated from infected mice. Mem Inst Oswaldo Cruz 2014; 108:616-22. [PMID: 23903978 PMCID: PMC3970608 DOI: 10.1590/0074-0276108052013013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/01/2013] [Indexed: 11/21/2022] Open
Abstract
The humoral immune response plays an important role in the clearance
of Giardia lamblia. However, our knowledge about the specific
antigens of G. lamblia that induce a protective immune response
is limited. The purpose of this study was to identify and characterise the
immunogenic proteins of G. lamblia in a mouse model. We
generated monoclonal antibodies (moAbs) specific to G. lamblia
(1B10, 2C9.D11, 3C10.E5, 3D10, 5G8.B5, 5F4, 4C7, 3C5 and 3C6) by fusing
splenocytes derived from infected mice. Most of these moAbs recognised a band of
± 71 kDa (5G8 protein) and this protein was also recognised by serum from the
infected mice. We found that the moAbs recognised conformational epitopes of the
5G8 protein and that this antigen is expressed on the cell surface and inside
trophozoites. Additionally, antibodies specific to the 5G8 protein induced
strong agglutination (> 70-90%) of trophozoites. We have thus identified a
highly immunogenic antigen of G. lamblia that is recognised by
the immune system of infected mice. In summary, this study describes the
identification and partial characterisation of an immunogenic protein of
G. lamblia. Additionally, we generated a panel of moAbs
specific for this protein that will be useful for the biochemical and
immunological characterisation of this immunologically interesting
Giardia molecule.
Collapse
Affiliation(s)
- Jael Quintero
- Department of Polymers and Materials, University of Sonora, Hermosillo, Sonora, México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wampfler PB, Tosevski V, Nanni P, Spycher C, Hehl AB. Proteomics of secretory and endocytic organelles in Giardia lamblia. PLoS One 2014; 9:e94089. [PMID: 24732305 PMCID: PMC3986054 DOI: 10.1371/journal.pone.0094089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
Abstract
Giardia lamblia is a flagellated protozoan enteroparasite transmitted as an environmentally resistant cyst. Trophozoites attach to the small intestine of vertebrate hosts and proliferate by binary fission. They access nutrients directly via uptake of bulk fluid phase material into specialized endocytic organelles termed peripheral vesicles (PVs), mainly on the exposed dorsal side. When trophozoites reach the G2/M restriction point in the cell cycle they can begin another round of cell division or encyst if they encounter specific environmental cues. They induce neogenesis of Golgi-like organelles, encystation-specific vesicles (ESVs), for regulated secretion of cyst wall material. PVs and ESVs are highly simplified and thus evolutionary diverged endocytic and exocytic organelle systems with key roles in proliferation and transmission to a new host, respectively. Both organelle systems physically and functionally intersect at the endoplasmic reticulum (ER) which has catabolic as well as anabolic functions. However, the unusually high degree of sequence divergence in Giardia rapidly exhausts phylogenomic strategies to identify and characterize the molecular underpinnings of these streamlined organelles. To define the first proteome of ESVs and PVs we used a novel strategy combining flow cytometry-based organelle sorting with in silico filtration of mass spectrometry data. From the limited size datasets we retrieved many hypothetical but also known organelle-specific factors. In contrast to PVs, ESVs appear to maintain a strong physical and functional link to the ER including recruitment of ribosomes to organelle membranes. Overall the data provide further evidence for the formation of a cyst extracellular matrix with minimal complexity. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000694.
Collapse
Affiliation(s)
- Petra B. Wampfler
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Vinko Tosevski
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Cornelia Spycher
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Institute of Parasitology, University of Bern, Bern, Switzerland
- * E-mail: (ABH); (CS)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (ABH); (CS)
| |
Collapse
|
5
|
Faso C, Hehl AB. Membrane trafficking and organelle biogenesis in Giardia lamblia: use it or lose it. Int J Parasitol 2011; 41:471-80. [PMID: 21296082 DOI: 10.1016/j.ijpara.2010.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/23/2010] [Accepted: 12/24/2010] [Indexed: 01/06/2023]
Abstract
The secretory transport capacity of Giardia trophozoites is perfectly adapted to the changing environment in the small intestine of the host and is able to deploy essential protective surface coats as well as molecules which act on epithelia. These lumen-dwelling parasites take up nutrients by bulk endocytosis through peripheral vesicles or by receptor-mediated transport. The environmentally-resistant cyst form is quiescent but poised for activation following stomach passage. Its versatility and fidelity notwithstanding, the giardial trafficking systems appear to be the product of a general secondary reduction process geared towards minimization of all components and machineries identified to date. Since membrane transport is directly linked to organelle biogenesis and maintenance, less complexity also means loss of organelle structures and functions. A case in point is the Golgi apparatus which is missing as a steady-state organelle system. Only a few basic Golgi functions have been experimentally demonstrated in trophozoites undergoing encystation. Similarly, mitochondrial remnants have reached a terminally minimized state and appear to be functionally restricted to essential iron-sulfur protein maturation processes. Giardia's minimized organization combined with its genetic tractability provides unique opportunities to study basic principles of secretory transport in an uncluttered cellular environment. Not surprisingly, Giardia is gaining increasing attention as a model for the investigation of gene regulation, organelle biogenesis, and export of simple but highly protective cell wall biopolymers, a hallmark of all perorally transmitted protozoan and metazoan parasites.
Collapse
Affiliation(s)
- Carmen Faso
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
| | | |
Collapse
|
6
|
Abdul-Wahid A, Faubert G. Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle. Vaccine 2007; 25:8372-83. [PMID: 17996337 DOI: 10.1016/j.vaccine.2007.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/01/2007] [Accepted: 10/07/2007] [Indexed: 01/26/2023]
Abstract
In this study, we investigated the use of Salmonella typhimurium (STM1 strain) as a bactofection vehicle to deliver a transmission-blocking DNA vaccine (TBDV) plasmid to the intestinal immune system. The gene encoding the full length cyst wall protein-2 (CWP2) from Giardia lamblia was subcloned into the pCDNA3 mammalian expression vector and stably introduced into S. typhimurium STM1. Eight-week-old female BALB/c mice were orally immunized every 2 weeks, for a total of three immunizations. Vaccinated and control mice were sacrificed 1 week following the last injection. Administration of the DNA vaccine led to the production of CWP2-specific cellular immune responses characterized by a mixed Th1/Th2 response. Using ELISA, antigen-specific IgA and IgG antibodies were detected in intestinal secretions. Moreover, analysis of sera demonstrated that the DNA immunization also stimulated the production of CWP2-specific IgG antibodies that were mainly of the IgG2a isotype. Finally, challenge infection with live Giardia muris cysts revealed that mice receiving the CWP2-encoding DNA vaccine were able to reduce cyst shedding by approximately 60% compared to control mice. These results demonstrate, for the first time, the development of parasite transmission-blocking immunity at the intestinal level following the administration of a mucosal DNA vaccine delivered by S. typhimurium STM1.
Collapse
Affiliation(s)
- Aws Abdul-Wahid
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Montréal, Québec, Canada H9X-3V9
| | | |
Collapse
|
7
|
Abdul-Wahid A, Faubert G. Characterization of the local immune response to cyst antigens during the acute and elimination phases of primary murine giardiasis. Int J Parasitol 2007; 38:691-703. [PMID: 18037419 DOI: 10.1016/j.ijpara.2007.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/31/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
During the course of a giardial infection, the host's immune system is presented with a variety of Giardia antigens as trophozoites differentiate, through encysting cells, to form the infective cysts. Previous studies examining the host's immune response during giardial infections have focused on trophozoite-derived antigens (Ags). In this study, we were interested to determine if the host's immune system reacts to cyst Ags during the acute and elimination phases, when there is cyst shedding. For this purpose, we used antigenic extracts from trophozoites (Troph), encysting cells (ENC), and purified giardial cyst walls (PCW), as well as purified recombinant cyst wall protein 2 (rCWP2). Comparative analysis of the parasite extracts using SDS-PAGE analysis and surface-enhanced laser desorption/ionization time of flight mass spectrometry resulted in the detection of 175 protein entities, of which 26 were Troph-specific proteins, 17 ENC-specific proteins, and 31 were PCW-specific proteins. On the other hand, we detected 34 proteins shared between Troph and ENC, 19 proteins that were shared between ENC and PCW, and 29 proteins that were common to Troph and PCW. Finally, we detected 19 proteins that were shared by all three extract samples. BALB/c mice were infected with 10(5)Giardia muris cysts and sacrificed either at the acute or elimination phases of infection (days 12 and 40, respectively), and lymphocytes were isolated from the Peyer's patches (PP). Using flow cytometry, we detected significant increases in the number of PP-derived CD4(+) and CD19(+), but not CD8(+) lymphocytes. Quantification of the number of mucosal IL-4 and IFN-gamma secreting T-lymphocytes by enzyme-linked immunosorbent spot assay showed that these cells reacted by secreting similar levels of IL-4 and IFN-gamma, regardless of the Ag or the phase of infection. Analysis of intestinal humoral immune responses by ELISA resulted in the detection of Ag-specific IgA and IgG intestinal antibodies. Regardless of the Ag tested, a trend was consistently observed where the concentration of local antibodies was found to be slightly increased by the acute phase, where we detected approximately 200microg/mg of specific IgA and approximately 300ng/ml of specific IgG in intestinal lavage of infected mice. By the elimination phase, the amount of specific antibodies was found to increase to approximately 600microg/mg of specific IgA and approximately 1300ng/ml of specific IgG antibodies. Finally, we tested the biological activity of these antibodies and found that they were able to reduce the ability of trophozoites to differentiate into cysts in vitro. Collectively, we believe these results demonstrate for the first time the existence of significant cellular and humoral immune responses against Giardia cyst Ags that may contribute to the reduction of cyst shedding in infected animals.
Collapse
Affiliation(s)
- Aws Abdul-Wahid
- Institute of Parasitology, McGill University, Montréal, Que., Canada H9X-3V9
| | | |
Collapse
|
8
|
Gottig N, Elías EV, Quiroga R, Nores MJ, Solari AJ, Touz MC, Luján HD. Active and passive mechanisms drive secretory granule biogenesis during differentiation of the intestinal parasite Giardia lamblia. J Biol Chem 2006; 281:18156-66. [PMID: 16611634 DOI: 10.1074/jbc.m602081200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The parasitic protozoan Giardia lamblia undergoes important changes to survive outside the intestine of its host by differentiating into infective cysts. During encystation, three cyst wall proteins (CWPs) are specifically expressed and concentrated within encystation-specific secretory vesicles (ESVs). ESVs are electron-dense secretory granules that transport CWPs before exocytosis and extracellular polymerization into a rigid cyst wall. Because secretory granules form at the trans-Golgi in higher eukaryotes and because Giardia lacks an identifiable Golgi apparatus, the aim of this work was to investigate the molecular basis of secretory granule formation in Giardia by examining the role of CWPs in this process. Although CWP1, CWP2, and CWP3 are structurally similar in their 26-kDa leucine-rich overlapping region, CWP2 is distinguished by the presence of a 13-kDa C-terminal basic extension. In non-encysting trophozoites, expression of different CWP chimeras showed that the CWP2 basic extension is necessary for biogenesis of ESVs, which occurs in a compartment derived from the endoplasmic reticulum. Nevertheless, the CWP2 basic extension per se is insufficient to trigger ESV formation, indicating that other domains in CWPs are also required. We found that CWP2 is a key regulator of ESV formation by acting as an aggregation factor for CWP1 and CWP3 through interactions mediated by its conserved region. CWP2 also acts as a ligand for sorting via its C-terminal basic extension. These findings show that granule biogenesis requires complex interactions among granule components and membrane receptors.
Collapse
Affiliation(s)
- Natalia Gottig
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Friuli 2434, CP 5000 Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|