1
|
Biswal DP, Panigrahi KCS. Photoperiodic control of growth and reproduction in non-flowering plants. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:851-872. [PMID: 39575895 DOI: 10.1093/jxb/erae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/21/2024] [Indexed: 04/27/2025]
Abstract
Photoperiodic responses shape plant fitness to the changing environment and are important regulators of growth, development, and productivity. Photoperiod sensing is one of the most important cues to track seasonal variations. It is also a major cue for reproductive success. The photoperiodic information conveyed through the combined action of photoreceptors and the circadian clock orchestrates an output response in plants. Multiple responses such as hypocotyl elongation, induction of dormancy, and flowering are photoperiodically regulated in seed plants (eg. angiosperms). Flowering plants such as Arabidopsis or rice have served as important model systems to understand the molecular players involved in photoperiodic signalling. However, photoperiodic responses in non-angiosperm plants have not been investigated and documented in detail. Genomic and transcriptomic studies have provided evidence on the conserved and distinct molecular mechanisms across the plant kingdom. In this review, we have attempted to compile and compare photoperiodic responses in the plant kingdom with a special focus on non-angiosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Department of Botany, S.K.C.G. (Autonomous) College, Paralakhemundi, Gajapati, 761200, Odisha, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
2
|
Freidinger AG, Woodward LA, Bùi JT, Doty G, Ruiz S, Conant E, Hicks KA. Cycling DOF factor mediated seasonal regulation of sexual reproduction and cold response is not conserved in Physcomitrium patens. PLANT DIRECT 2024; 8:e70020. [PMID: 39600727 PMCID: PMC11588431 DOI: 10.1002/pld3.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
Many land plants have evolved such that the transition from vegetative to reproductive development is synchronized with environmental cues. Examples of reproduction in response to seasonal cues can be found in both vascular and nonvascular species; however, most of our understanding of the molecular events controlling this timing has been worked out in angiosperm model systems. While the organism-level mechanisms of sexual reproduction vary dramatically between vascular and nonvascular plants, phylogenetic and transcriptomic evidence suggest paralogs in nonvascular plants may have conserved function with their vascular counterparts. Given that Physcomitrium patens undergoes sexual reproductive development in response to photoperiodic and cold temperature cues, it is well-suited for studying evolutionarily conserved mechanisms of seasonal control of reproduction. Thus, we used publicly available microarray data to identify genes differentially expressed in response to temperature cues. We identified two CDF-like (CDL) genes in the P. patens genome that are the most like the angiosperm Arabidopsis thaliana CDFs based on conservation of protein motifs and diurnal expression patterns. In angiosperms, DNA-One Finger Transcription Factors (DOFs) play an important role in regulating photoperiodic flowering, regulating physiological changes in response to seasonal temperature changes, and mediating the cold stress response. We created knockout mutations and tested their impact on sexual reproduction and response to cold stress. Unexpectedly, the timing of sexual reproduction in the ppcdl-double mutants did not differ significantly from wild type, suggesting that the PpCDLs are not necessary for seasonal regulation of this developmental transition. We also found that there was no change in expression of downstream cold-regulated genes in response to cold stress and no change in freezing tolerance in the knockout mutant plants. Finally, we observed no interaction between PpCDLs and the partial homologs of FKF1, an A. thaliana repressor of CDFs. This is different from what is observed in angiosperms, which suggests that the functions of CDF proteins in angiosperms are not conserved in P. patens.
Collapse
Affiliation(s)
| | | | | | | | - Shawn Ruiz
- Biology DepartmentKenyon CollegeGambierOhioUSA
| | | | | |
Collapse
|
3
|
Khatun K, Debnath S, Robin AHK, Wai AH, Nath UK, Lee DJ, Kim CK, Chung MY. Genome-wide identification, genomic organization, and expression profiling of the CONSTANS-like (COL) gene family in petunia under multiple stresses. BMC Genomics 2021; 22:727. [PMID: 34620088 PMCID: PMC8499527 DOI: 10.1186/s12864-021-08019-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background CONSTANS-like (CO-like, COL) are putative zinc-finger transcription factors known to play vital role in various plant biological processes such as control of flowering time, regulation of plant growth and development and responses to stresses. However, no systematic analysis of COL family gene regarding the plant development and stress response has been previously performed in any solanaceous crop. In the present study, a comprehensive genome-wide analysis of COL family genes in petunia has been conducted to figure out their roles in development of organs and stress response. Results A total of 33 COL genes, 15 PaCOL genes in P. axillaris and 18 PiCOL genes in P. inflata, were identified in petunia. Subsequently, a genome-wide systematic analysis was performed in 15 PaCOL genes. Considering the domain composition and sequence similarity the 15 PaCOL and 18 PiCOL genes were phylogenetically classified into three groups those are conserved among the flowering plants. Moreover, all of the 15 PaCOL proteins were localized in nucleus. Furthermore, differential expression patterns of PaCOL genes were observed at different developmental stages of petunia. Additionally, transcript expression of 15 PaCOL genes under various abiotic and phytohormone treatments showed their response against stresses. Moreover, several cis-elements related to stress, light-responsive, hormone signaling were also detected in different PaCOL genes. Conclusion The phylogenetic clustering, organ specific expression pattern and stress responsive expression profile of conserved petunia COL genes indicating their involvement in plant growth and development and stress response mechanism. This work provide a significant foundation for understanding the biological roles of petunia COL genes in plant growth, development and in stress response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08019-w.
Collapse
Affiliation(s)
- Khadiza Khatun
- Department of Biotechnology, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Sourav Debnath
- Department of Biochemistry and Food Analysis, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Antt Htet Wai
- Department of Biology, Yangon University of Education, Kamayut Township, 11041, Yangon, Yangon Region, Myanmar
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Do-Jin Lee
- Department of Agricultural Education, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, South Korea.
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
4
|
Nose M, Kurita M, Tamura M, Matsushita M, Hiraoka Y, Iki T, Hanaoka S, Mishima K, Tsubomura M, Watanabe A. Effects of day length- and temperature-regulated genes on annual transcriptome dynamics in Japanese cedar (Cryptomeria japonica D. Don), a gymnosperm indeterminate species. PLoS One 2020; 15:e0229843. [PMID: 32150571 PMCID: PMC7062269 DOI: 10.1371/journal.pone.0229843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/15/2020] [Indexed: 11/29/2022] Open
Abstract
Seasonal phenomena in plants are primarily affected by day length and temperature. The shoot transcriptomes of trees grown in the field and a controlled-environment chamber were compared to characterize genes that control annual rhythms and the effects of day length- and temperature-regulated genes in the gymnosperm Japanese cedar (Cryptomeria japonica D. Don), which exhibits seasonally indeterminate growth. Annual transcriptome dynamics were clearly demonstrated by principal component analysis using microarray data obtained under field-grown conditions. Analysis of microarray data from trees grown in a controlled chamber identified 2,314 targets exhibiting significantly different expression patterns under short-day (SD) and long-day conditions, and 2,045 targets exhibited significantly different expression patterns at 15°C (LT; low temperature) versus 25°C. Interestingly, although growth was suppressed under both SD and LT conditions, approximately 80% of the SD- and LT-regulated targets differed, suggesting that each factor plays a unique role in the annual cycle. The top 1,000 up-regulated targets in the growth/dormant period in the field coincided with more than 50% of the SD- and LT-regulated targets, and gene co-expression network analysis of the annual transcriptome indicated a close relationship between the SD- and LT-regulated targets. These results indicate that the respective effects of day length and temperature interact to control annual transcriptome dynamics. Well-known upstream genes of signaling pathways responsive to environmental conditions, such as the core clock (LHY/CjLHYb and CCA1/CjLHYa) and PEBP family (MFT) genes, exhibited unique expression patterns in Japanese cedar compared with previous reports in other species, suggesting that these genes control differences in seasonal regulation mechanisms between species. The results of this study provide new insights into seasonal regulation of transcription in Japanese cedar.
Collapse
Affiliation(s)
- Mine Nose
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Manabu Kurita
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Miho Tamura
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Michinari Matsushita
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Yuichiro Hiraoka
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Taiichi Iki
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - So Hanaoka
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Kentaro Mishima
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Miyoko Tsubomura
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Atsushi Watanabe
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Steinbach Y. The Arabidopsis thaliana CONSTANS- LIKE 4 ( COL4) - A Modulator of Flowering Time. FRONTIERS IN PLANT SCIENCE 2019; 10:651. [PMID: 31191575 PMCID: PMC6546890 DOI: 10.3389/fpls.2019.00651] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/30/2019] [Indexed: 05/22/2023]
Abstract
Appropriate control of flowering time is crucial for crop yield and the reproductive success of plants. Flowering can be induced by a number of molecular pathways that respond to internal and external signals. In Arabidopsis, expression of the key florigenic signal FLOWERING LOCUS T (FT) is positively regulated by CONSTANS (CO) a BBX protein sharing high sequence similarity with 16 CO-like proteins. Within this study, we investigated the role of the Arabidopsis CONSTANS-LIKE 4 (COL4), whose role in flowering control was unknown. We demonstrate that, unlike CO, COL4 is a flowering repressor in long days (LD) and short days (SD) and acts on the expression of FT and FT-like genes as well as on SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Reduction of COL4 expression level leads to an increase of FT and APETALA 1 (AP1) expression and to accelerated flowering, while the increase of COL4 expression causes a flowering delay. Further, the observed co-localization of COL4 protein and CO in nuclear speckles supports the idea that the two act as an antagonistic pair of transcription factors. This interaction may serve the fine-tuning of flowering time control and other light dependent plant developmental processes.
Collapse
|
6
|
Yan J, Mao D, Liu X, Wang L, Xu F, Wang G, Zhang W, Liao Y. Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba. PLANT CELL REPORTS 2017; 36:1387-1399. [PMID: 28616659 DOI: 10.1007/s00299-017-2162-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
This is the first report to clone and functionally characterize a flowering time gene GbCO in perennial gymnosperm Ginkgo biloba. GbCO complements the co mutant of Arabidopsis, restoring normal early flowering. CONSTANS (CO) is a central regulator of photoperiod pathway, which channels inputs from light, day length, and circadian clock to promote the floral transition. In order to understand the role of CO in gymnosperm Ginkgo biloba, which has a long juvenile phase (15-20 years), a CO homolog (GbCO) was isolated and characterized from G. biloba. GbCO encodes a 1741-bp gene with a predicted protein of 400 amino acids with two zinc finger domains (B-box I and B-box II) and a CCT domain. Phylogenic analysis classified GbCO into the group 1a clade of CO families in accordance with the grouping scheme for Arabidopsis CO (AtCO). Southern blot analysis indicated that GbCO belongs to a multigene family in G. biloba. Real-time PCR analysis showed that GbCO was expressed in aerial parts of Ginkgo, with the highest transcript level of GbCO being observed in shoot apexes. GbCO transcript level exhibited a strong diurnal rhythm under flowering-inductive long days and peaked during early morning, suggesting that GbCO is tightly coupled to the floral inductive long-day signal. In addition, an increasing trend of GbCO transcript level was observed both in shoot tips and leaves as the shoot growth under long-day condition, whereas GbCO transcript level decreased in both tissues under short-day condition prior to growth cessation of shoot in G. biloba. GbCO complemented the Arabidopsis co-2 mutant, restoring normal early flowering. All the evidence being taken together, our findings suggested that GbCO served as a potential inducer of flowering in G. biloba.
Collapse
Affiliation(s)
- Jiaping Yan
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Dun Mao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lanlan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Guiyuan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| |
Collapse
|
7
|
Menon C, Sheerin DJ, Hiltbrunner A. SPA proteins: SPAnning the gap between visible light and gene expression. PLANTA 2016; 244:297-312. [PMID: 27100111 DOI: 10.1007/s00425-016-2509-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/26/2016] [Indexed: 05/23/2023]
Abstract
In this review we focus on the role of SPA proteins in light signalling and discuss different aspects, including molecular mechanisms, specificity, and evolution. The ability of plants to perceive and respond to their environment is key to their survival under ever-changing conditions. The abiotic factor light is of particular importance for plants. Light provides plants energy for carbon fixation through photosynthesis, but also is a source of information for the adaptation of growth and development to the environment. Cryptochromes and phytochromes are major photoreceptors involved in control of developmental decisions in response to light cues, including seed germination, seedling de-etiolation, and induction of flowering. The SPA protein family acts in complex with the E3 ubiquitin ligase COP1 to target positive regulators of light responses for degradation by the 26S proteasome to suppress photomorphogenic development in darkness. Light-activated cryptochromes and phytochromes both repress the function of COP1, allowing accumulation of positive photomorphogenic factors in light. In this review, we highlight the role of the SPA proteins in this process and discuss recent advances in understanding how SPAs link light-activation of photoreceptors and downstream signaling.
Collapse
Affiliation(s)
- Chiara Menon
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - David J Sheerin
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Andreas Hiltbrunner
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
8
|
Ryo M, Matsuo T, Yamashino T, Ichinose M, Sugita M, Aoki S. Diversity of plant circadian clocks: Insights from studies of Chlamydomonas reinhardtii and Physcomitrella patens. PLANT SIGNALING & BEHAVIOR 2016; 11:e1116661. [PMID: 26645746 PMCID: PMC4871632 DOI: 10.1080/15592324.2015.1116661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana has long been the model plant of choice for elucidating the mechanisms of the circadian clock. Recently, relevant results have accumulated in other species of green plant lineages, including green algae. This mini-review describes a comparison of the mechanism of the A. thaliana clock to those of the green alga Chlamydomonas reinhardtii and the moss Physcomitrella patens, focusing on commonalities and divergences of subsystems of the clock. The potential of such an approach from an evolutionary viewpoint is discussed.
Collapse
Affiliation(s)
- Masashi Ryo
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takafumi Yamashino
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Setsuyuki Aoki
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
9
|
Song X, Duan W, Huang Z, Liu G, Wu P, Liu T, Li Y, Hou X. Comprehensive analysis of the flowering genes in Chinese cabbage and examination of evolutionary pattern of CO-like genes in plant kingdom. Sci Rep 2015; 5:14631. [PMID: 26416765 PMCID: PMC4586889 DOI: 10.1038/srep14631] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/02/2015] [Indexed: 11/10/2022] Open
Abstract
In plants, flowering is the most important transition from vegetative to reproductive growth. The flowering patterns of monocots and eudicots are distinctly different, but few studies have described the evolutionary patterns of the flowering genes in them. In this study, we analysed the evolutionary pattern, duplication and expression level of these genes. The main results were as follows: (i) characterization of flowering genes in monocots and eudicots, including the identification of family-specific, orthologous and collinear genes; (ii) full characterization of CONSTANS-like genes in Brassica rapa (BraCOL genes), the key flowering genes; (iii) exploration of the evolution of COL genes in plant kingdom and construction of the evolutionary pattern of COL genes; (iv) comparative analysis of CO and FT genes between Brassicaceae and Grass, which identified several family-specific amino acids, and revealed that CO and FT protein structures were similar in B. rapa and Arabidopsis but different in rice; and (v) expression analysis of photoperiod pathway-related genes in B. rapa under different photoperiod treatments by RT-qPCR. This analysis will provide resources for understanding the flowering mechanisms and evolutionary pattern of COL genes. In addition, this genome-wide comparative study of COL genes may also provide clues for evolution of other flowering genes.
Collapse
Affiliation(s)
- Xiaoming Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.,Center of Genomics and Computational Biology, College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhinan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Gaofeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Zhang R, Ding J, Liu C, Cai C, Zhou B, Zhang T, Guo W. Molecular evolution and phylogenetic analysis of eight COL superfamily genes in group I related to photoperiodic regulation of flowering time in wild and domesticated cotton (Gossypium) species. PLoS One 2015; 10:e0118669. [PMID: 25710777 PMCID: PMC4339614 DOI: 10.1371/journal.pone.0118669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/07/2015] [Indexed: 12/02/2022] Open
Abstract
Flowering time is an important ecological trait that determines the transition from vegetative to reproductive growth. Flowering time in cotton is controlled by short-day photoperiods, with strict photoperiod sensitivity. As the CO-FT (CONSTANS-FLOWER LOCUS T) module regulates photoperiodic flowering in several plants, we selected eight CONSTANS genes (COL) in group I to detect their expression patterns in long-day and short-day conditions. Further, we individually cloned and sequenced their homologs from 25 different cotton accessions and one outgroup. Finally, we studied their structures, phylogenetic relationship, and molecular evolution in both coding region and three characteristic domains. All the eight COLs in group I show diurnal expression. In the orthologous and homeologous loci, each gene structure in different cotton species is highly conserved, while length variation has occurred due to insertions/deletions in intron and/or exon regions. Six genes, COL2 to COL5, COL7 and COL8, exhibit higher nucleotide diversity in the D-subgenome than in the A-subgenome. The Ks values of 98.37% in all allotetraploid cotton species examined were higher in the A-D and At-Dt comparison than in the A-At and D-Dt comparisons, and the Pearson’s correlation coefficient (r) of Ks between A vs. D and At vs. Dt also showed positive, high correlations, with a correlation coefficient of at least 0.797. The nucleotide polymorphism in wild species is significantly higher compared to G. hirsutum and G. barbadense, indicating a genetic bottleneck associated with the domesticated cotton species. Three characteristic domains in eight COLs exhibit different evolutionary rates, with the CCT domain highly conserved, while the B-box and Var domain much more variable in allotetraploid species. Taken together, COL1, COL2 and COL8 endured greater selective pressures during the domestication process. The study improves our understanding of the domestication-related genes/traits during cotton evolutionary process.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
| | - Jian Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
| | - Chunxiao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
| | - Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
11
|
Liew LC, Singh MB, Bhalla PL. Unique and conserved features of floral evocation in legumes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:714-728. [PMID: 24930396 DOI: 10.1111/jipb.12187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
Legumes, with their unique ability to fix atmospheric nitrogen, play a vital role in ensuring future food security and mitigating the effects of climate change because they use less fossil energy and produce less greenhouse gases compared with N-fertilized systems. Grain legumes are second only to cereal crops as a source of human and animal food, and they contribute approximately one third of the protein consumed by the human population. The productivity of seed crops, such as grain legumes, is dependent on flowering. Despite the genetic variation and importance of flowering in legume production, studies of the molecular pathways that control flowering in legumes are limited. Recent advances in genomics have revealed that legume flowering pathways are divergent from those of such model species as Arabidopsis thaliana. Here, we discuss the current understanding of flowering time regulation in legumes and highlight the unique and conserved features of floral evocation in legumes.
Collapse
Affiliation(s)
- Lim Chee Liew
- Plant Molecular Biology and Biotechnology Laboratory, Melbourne School of Land and Environment, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | |
Collapse
|
12
|
Ranjan A, Dickopf S, Ullrich KK, Rensing SA, Hoecker U. Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation. BMC PLANT BIOLOGY 2014; 14:178. [PMID: 24985152 PMCID: PMC4091655 DOI: 10.1186/1471-2229-14-178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/24/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants have evolved light sensing mechanisms to optimally adapt their growth and development to the ambient light environment. The COP1/SPA complex is a key negative regulator of light signaling in the well-studied dicot Arabidopsis thaliana. COP1 and members of the four SPA proteins are part of an E3 ubiquitin ligase that acts in darkness to ubiquitinate several transcription factors involved in light responses, thereby targeting them for degradation by the proteasome. While COP1 is also found in humans, SPA proteins appear specific to plants. Here, we have functionally addressed evolutionary conservation of COP1 and SPA orthologs from the moss Physcomitrella, the monocot rice and the dicot Arabidopsis. RESULTS To this end, we analyzed the activities of COP1- and SPA-like proteins from Physcomitrella patens and rice when expressed in Arabidopsis. Expression of rice COP1 and Physcomitrella COP1 protein sequences predominantly complemented all phenotypic aspects of the viable, hypomorphic cop1-4 mutant and the null, seedling-lethal cop1-5 mutant of Arabidopsis: rice COP1 fully rescued the constitutive-photomorphogenesis phenotype in darkness and the leaf expansion defect of cop1 mutants, while it partially restored normal photoperiodic flowering in cop1. Physcomitrella COP1 partially restored normal seedling growth and flowering time, while it fully restored normal leaf expansion in the cop1 mutants. In contrast, expression of a SPA ortholog from Physcomitrella (PpSPAb) in Arabidopsis spa mutants did not rescue any facet of the spa mutant phenotype, suggesting that the PpSPAb protein is not functionally conserved or that the Arabidopsis function evolved after the split of mosses and seed plants. The SPA1 ortholog from rice (OsSPA1) rescued the spa mutant phenotype in dark-grown seedlings, but did not complement any spa mutant phenotype in light-grown seedlings or in adult plants. CONCLUSION Our results show that COP1 protein sequences from Physcomitrella, rice and Arabidopsis have been functionally conserved during evolution, while the SPA proteins showed considerable functional divergence. This may - at least in part - reflect the fact that COP1 is a single copy gene in seed plants, while SPA proteins are encoded by a small gene family of two to four members with possibly sub- or neofunctionalized tasks.
Collapse
Affiliation(s)
- Aashish Ranjan
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
- Present addresss: Life Sciences Addition #2237, Section of Plant Biology, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - Stephen Dickopf
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
13
|
Fan C, Hu R, Zhang X, Wang X, Zhang W, Zhang Q, Ma J, Fu YF. Conserved CO-FT regulons contribute to the photoperiod flowering control in soybean. BMC PLANT BIOLOGY 2014; 14:9. [PMID: 24397545 PMCID: PMC3890618 DOI: 10.1186/1471-2229-14-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 11/25/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND CO and FT orthologs, belonging to the BBX and PEBP family, respectively, have important and conserved roles in the photoperiod regulation of flowering time in plants. Soybean genome experienced at least three rounds of whole genome duplications (WGDs), which resulted in multiple copies of about 75% of genes. Subsequent subfunctionalization is the main fate for paralogous gene pairs during the evolutionary process. RESULTS The phylogenic relationships revealed that CO orthologs were widespread in the plant kingdom while FT orthologs were present only in angiosperms. Twenty-eight CO homologous genes and twenty-four FT homologous genes were gained in the soybean genome. Based on the collinear relationship, the soybean ancestral CO ortholog experienced three WGD events, but only two paralogous gene pairs (GmCOL1/2 and GmCOL5/13) survived in the modern soybean. The paralogous gene pairs, GmCOL1/2 or GmCOL5/13, showed similar expression patterns in pair but different between pairs, indicating that they functionally diverged. GmFTL1 to 7 were derived from the same ancestor prior to the whole genome triplication (WGT) event, and after the Legume WGD event the ancestor diverged into two branches, GmFTL3/5/7 and GmFTL1/2/4/6. GmFTL7 were truncated in the N-terminus compared to other FT-lineage genes, but ubiquitously expressed. Expressions of GmFTL1 to 6 were higher in leaves at the flowering stage than that at the seedling stage. GmFTL3 was expressed at the highest level in all tissues except roots at the seedling stage, and its circadian pattern was different from the other five ones. The transcript of GmFTL6 was highly accumulated in seedling roots. The circadian rhythms of GmCOL5/13 and GmFT1/2/4/5/6 were synchronized in a day, demonstrating the complicate relationship of CO-FT regulons in soybean leaves. Over-expression of GmCOL2 did not rescue the flowering phenotype of the Arabidopsis co mutant. However, ectopic expression of GmCOL5 did rescue the co mutant phenotype. All GmFTL1 to 6 showed flower-promoting activities in Arabidopsis. CONCLUSIONS After three recent rounds of whole genome duplications in the soybean, the paralogous genes of CO-FT regulons showed subfunctionalization through expression divergence. Then, only GmCOL5/13 kept flowering-promoting activities, while GmFTL1 to 6 contributed to flowering control. Additionally, GmCOL5/13 and GmFT1/2/3/4/5/6 showed similar circadian expression profiles. Therefore, our results suggested that GmCOL5/13 and GmFT1/2/3/4/5/6 formed the complicate CO-FT regulons in the photoperiod regulation of flowering time in soybean.
Collapse
Affiliation(s)
- Chengming Fan
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruibo Hu
- CAS Key Lab of Biofuels, Shandong Provincial Key Lab of Energy Genetics, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiaomei Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Xu Wang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Wenjing Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Qingzhe Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Jinhua Ma
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Yong-Fu Fu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| |
Collapse
|
14
|
Busch H, Boerries M, Bao J, Hanke ST, Hiss M, Tiko T, Rensing SA. Network theory inspired analysis of time-resolved expression data reveals key players guiding P. patens stem cell development. PLoS One 2013; 8:e60494. [PMID: 23637751 PMCID: PMC3630159 DOI: 10.1371/journal.pone.0060494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/27/2013] [Indexed: 01/07/2023] Open
Abstract
Transcription factors (TFs) often trigger developmental decisions, yet, their transcripts are often only moderately regulated and thus not easily detected by conventional statistics on expression data. Here we present a method that allows to determine such genes based on trajectory analysis of time-resolved transcriptome data. As a proof of principle, we have analysed apical stem cells of filamentous moss (P. patens) protonemata that develop from leaflets upon their detachment from the plant. By our novel correlation analysis of the post detachment transcriptome kinetics we predict five out of 1,058 TFs to be involved in the signaling leading to the establishment of pluripotency. Among the predicted regulators is the basic helix loop helix TF PpRSL1, which we show to be involved in the establishment of apical stem cells in P. patens. Our methodology is expected to aid analysis of key players of developmental decisions in complex plant and animal systems.
Collapse
Affiliation(s)
- Hauke Busch
- ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Romero-Campero FJ, Lucas-Reina E, Said FE, Romero JM, Valverde F. A contribution to the study of plant development evolution based on gene co-expression networks. FRONTIERS IN PLANT SCIENCE 2013; 4:291. [PMID: 23935602 PMCID: PMC3732916 DOI: 10.3389/fpls.2013.00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/13/2013] [Indexed: 05/04/2023]
Abstract
Phototrophic eukaryotes are among the most successful organisms on Earth due to their unparalleled efficiency at capturing light energy and fixing carbon dioxide to produce organic molecules. A conserved and efficient network of light-dependent regulatory modules could be at the bases of this success. This regulatory system conferred early advantages to phototrophic eukaryotes that allowed for specialization, complex developmental processes and modern plant characteristics. We have studied light-dependent gene regulatory modules from algae to plants employing integrative-omics approaches based on gene co-expression networks. Our study reveals some remarkably conserved ways in which eukaryotic phototrophs deal with day length and light signaling. Here we describe how a family of Arabidopsis transcription factors involved in photoperiod response has evolved from a single algal gene according to the innovation, amplification and divergence theory of gene evolution by duplication. These modifications of the gene co-expression networks from the ancient unicellular green algae Chlamydomonas reinhardtii to the modern brassica Arabidopsis thaliana may hint on the evolution and specialization of plants and other organisms.
Collapse
Affiliation(s)
| | - Eva Lucas-Reina
- Molecular Plant Development and Metabolism, Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de SevillaSevilla, Spain
| | - Fatima E. Said
- Molecular Plant Development and Metabolism, Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de SevillaSevilla, Spain
| | - José M. Romero
- Molecular Plant Development and Metabolism, Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de SevillaSevilla, Spain
| | - Federico Valverde
- Molecular Plant Development and Metabolism, Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de SevillaSevilla, Spain
- *Correspondence: Federico Valverde, Molecular Plant Development and Metabolism Group, Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicasy Universidad de Sevilla, 49th, Americo Vespucio Avenue, 41092 Sevilla, Spain e-mail:
| |
Collapse
|
16
|
Sugiyama T, Ishida T, Tabei N, Shigyo M, Konishi M, Yoneyama T, Yanagisawa S. Involvement of PpDof1 transcriptional repressor in the nutrient condition-dependent growth control of protonemal filaments in Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3185-97. [PMID: 22345635 PMCID: PMC3350930 DOI: 10.1093/jxb/ers042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/22/2012] [Accepted: 01/26/2012] [Indexed: 05/20/2023]
Abstract
In higher plants, the Dof transcription factors that harbour a conserved plant-specific DNA-binding domain function in the regulation of diverse biological processes that are unique to plants. Although these factors are present in both higher and lower plants, they have not yet been characterized in lower plants. Here six genes encoding Dof transcription factors in the moss Physcomitrella patens are characterized and two of these genes, PpDof1 and PpDof2, are functionally analysed. The targeted disruption of PpDof1 caused delayed or reduced gametophore formation, accompanied by an effect on development of the caulonema from the chloronema. Furthermore, the ppdof1 disruptants were found to form smaller colonies with a reduced frequency of branching of protonemal filaments, depending on the nutrients in the media. Most of these phenotypes were not apparent in the ppdof2 disruptant, although the ppdof2 disruptants also formed smaller colonies on a particular medium. Transcriptional repressor activity of PpDof1 and PpDof2 and modified expression of a number of genes in the ppdof disruptant lines were also shown. These results thus suggest that the PpDof1 transcriptional repressor has a role in controlling nutrient-dependent filament growth.
Collapse
Affiliation(s)
- Takumi Sugiyama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuya Ishida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nobumitsu Tabei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikao Shigyo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mineko Konishi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
González-Schain ND, Díaz-Mendoza M, Zurczak M, Suárez-López P. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:678-90. [PMID: 22260207 DOI: 10.1111/j.1365-313x.2012.04909.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONSTANS (CO) is involved in the photoperiodic control of plant developmental processes, including flowering in several species and seasonal growth cessation and bud set in trees. It has been proposed that CO could also affect the day-length regulation of tuber induction in Solanum tuberosum (potato), a plant of great agricultural relevance. To address this question, we examined the role of CO in potato. A potato CO-like gene, StCO, was identified and found to be highly similar to a previously reported potato gene of unknown function. Potato plants overexpressing StCO tuberized later than wild-type plants under a weakly inductive photoperiod. StCO silencing promoted tuberization under both repressive and weakly inductive photoperiods, but did not have any effect under strongly inductive short days, demonstrating that StCO represses tuberization in a photoperiod-dependent manner. The effect of StCO on tuber induction was transmitted through grafts. In addition, StCO affected the mRNA levels of StBEL5 - a tuberization promoter, the mRNA of which moves long distances in potato plants - and StFT/StSP6A, a protein highly similar to FLOWERING LOCUS T (FT), which is a key component of systemic flowering signals in other species. We also found that StFT/StSP6A transcript levels correlate with the induction of tuber formation in wild-type plants. These results show that StCO plays an important role in photoperiodic tuberization and, together with the recent demonstration that StFT/StSP6A promotes tuberization, indicate that the CO/FT module participates in controlling this process. Moreover, they support the notion that StCO is involved in the expression of long-distance regulatory signals in potato, as CO does in other species.
Collapse
Affiliation(s)
- Nahuel D González-Schain
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | | | | | | |
Collapse
|
18
|
Chen J, Chen JY, Wang JN, Kuang JF, Shan W, Lu WJ. Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit. Gene 2012; 496:110-7. [PMID: 22285923 DOI: 10.1016/j.gene.2012.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/07/2012] [Accepted: 01/10/2012] [Indexed: 01/06/2023]
Abstract
CONSTANS (CO) gene is a key transcription regulator that controls the long-day induction of flowering in Arabidopsis plant. However, CO gene involved in fruit ripening and stress responses is poorly understood. In the present study, a novel cDNA encoding CONSTANS-like gene, designated as MaCOL1 was isolated and characterized from banana fruit. The full length cDNA sequence was 1887bp with an open reading frame (ORF) of 1242bp, encoding 414 amino acids with a molecular weight of 46.20kDa and a theoretical isoelectric point of 5.40. Sequence alignment showed that MaCOL1 contained two B-box zinc finger motifs and a CCT domain. In addition, MaCOL1 showed transcriptional activity in yeast and was a nucleus-localized protein. Real-time PCR analysis showed that MaCOL1 was differentially expressed among various banana plant organs, with higher expression in flower. Expression of MaCOL1 in peel changed slightly, while accumulation of MaCOL1 transcripts in pulp obviously increased during natural or ethylene-induced fruit ripening, suggesting that MaCOL1 might be associated with the pulp ripening of banana fruit. Moreover, accumulation of MaCOL1 transcript was obviously enhanced by abiotic and biotic stresses, such as chilling and pathogen Colletotrichum musae infection. Taken together, our results suggest that MaCOL1 is a transcription activator and may be involved in fruit ripening and stress responses.
Collapse
Affiliation(s)
- Jiao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
19
|
Satbhai SB, Yamashino T, Okada R, Nomoto Y, Mizuno T, Tezuka Y, Itoh T, Tomita M, Otsuki S, Aoki S. Pseudo-response regulator (PRR) homologues of the moss Physcomitrella patens: insights into the evolution of the PRR family in land plants. DNA Res 2010; 18:39-52. [PMID: 21186242 PMCID: PMC3041508 DOI: 10.1093/dnares/dsq033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pseudo-response regulators (PRRs) are the circadian clock component proteins in the model dicot Arabidopsis thaliana. They contain a receiver-like domain (RLD) similar to the receiver domains of the RRs in the His–Asp phosphorelay system, but the RLDs lack the phosphoacceptor aspartic acid residue invariably conserved in the receiver domains. To study the evolution of PRR genes in plants, here we characterize their homologue genes, PpPRR1, PpPRR2, PpPRR3 and PpPRR4, from the moss Physcomitrella patens. In the phylogenetic analysis, PpPRRs cluster together, sister to an angiosperm PRR gene subfamily, illustrating their close relationships with the angiosperm PRRs. However, distinct from the angiosperm sequences, the RLDs of PpPRR2/3/4 exhibit a potential phosphoacceptor aspartic acid–aspartic acid–lysine (DDK) motif. Consistently, the PpPRR2 RLD had phosphotransfer ability in vitro, suggesting that PpPRR2 functions as an RR. The PpPRR1 RLD, on the other hand, shows a partially diverged DDK motif, and it did not show phosphotransfer ability. All PpPRRs were expressed in a circadian and light-dependent manner, with differential regulation between PpPRR2/4 and PpPRR1/3. Altogether, our results illustrate that PRRs originated from an RR(s) and that there are intraspecific divergences among PpPRRs. Finally, we offer scenarios for the evolution of the PRR family in land plants.
Collapse
Affiliation(s)
- Santosh B Satbhai
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Holm K, Källman T, Gyllenstrand N, Hedman H, Lagercrantz U. Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop? BMC PLANT BIOLOGY 2010; 10:109. [PMID: 20550695 PMCID: PMC3017809 DOI: 10.1186/1471-2229-10-109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 06/15/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND The endogenous circadian clock allows the organism to synchronize processes both to daily and seasonal changes. In plants, many metabolic processes such as photosynthesis, as well as photoperiodic responses, are under the control of a circadian clock. Comparative studies with the moss Physcomitrella patens provide the opportunity to study many aspects of land plant evolution. Here we present a comparative overview of clock-associated components and the circadian network in the moss P. patens. RESULTS The moss P. patens has a set of conserved circadian core components that share genetic relationship and gene expression patterns with clock genes of vascular plants. These genes include Myb-like transcription factors PpCCA1a and PpCCA1b, pseudo-response regulators PpPRR1-4, and regulatory elements PpELF3, PpLUX and possibly PpELF4. However, the moss lacks homologs of AtTOC1, AtGI and the AtZTL-family of genes, which can be found in all vascular plants studied here. These three genes constitute essential components of two of the three integrated feed-back loops in the current model of the Arabidopsis circadian clock mechanism. Consequently, our results suggest instead a single loop circadian clock in the moss. Possibly as a result of this, temperature compensation of core clock gene expression appears to be decreased in P. patens. CONCLUSIONS This study is the first comparative overview of the circadian clock mechanism in a basal land plant, the moss P. patens. Our results indicate that the moss clock mechanism may represent an ancestral state in contrast to the more complex and partly duplicated structure of subsequent land plants. These findings may provide insights into the understanding of the evolution of circadian network topology.
Collapse
Affiliation(s)
- Karl Holm
- Program in Evolutionary Functional Genomics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Thomas Källman
- Program in Evolutionary Functional Genomics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Niclas Gyllenstrand
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Harald Hedman
- Program in Evolutionary Functional Genomics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Ulf Lagercrantz
- Program in Evolutionary Functional Genomics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
21
|
Olsen JE. Light and temperature sensing and signaling in induction of bud dormancy in woody plants. PLANT MOLECULAR BIOLOGY 2010; 73:37-47. [PMID: 20213333 DOI: 10.1007/s11103-010-9620-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 02/23/2010] [Indexed: 05/07/2023]
Abstract
In woody species cycling between growth and dormancy must be precisely synchronized with the seasonal climatic variations. Cessation of apical growth, resulting from exposure to short photoperiod (SD) and altered light quality, is gating the chain of events resulting in bud dormancy and cold hardiness. The relative importance of these light parameters, sensed by phytochromes and possibly a blue light receptor, varies with latitude. Early in SD, changes in expression of light signaling components dominate. In Populus active shoot elongation is linked to high expression of FLOWERING LOCUS T (FT) resulting from coincidence of high levels of CONSTANS and light at the end of days longer than a critical one. In Picea, PaFT4 expression increases substantially in response to SD. Thus, in contrast to Populus-FT, PaFT4 appears to function in inhibition of shoot elongation or promotion of growth cessation. Accordingly, different FT-genes appear to have opposite effects in photoperiodic control of shoot elongation. Reduction in gibberellin under SD is involved in control of growth cessation and bud formation, but not further dormancy development. Coinciding with formation of a closed bud, abscisic acid activity increases and cell-proliferation genes are down-regulated. When dormancy is established very few changes in gene expression occur. Thus, maintenance of dormancy is not dependent on comprehensive transcriptional regulation. In some species low temperature induces growth cessation and dormancy, in others temperature affects photoperiod requirement. The temperature under SD affects both the rate of growth cessation, bud formation and depth of dormancy. As yet, information on the molecular basis of these responses to temperature is scarce.
Collapse
Affiliation(s)
- Jorunn E Olsen
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Aas, Norway.
| |
Collapse
|
22
|
King RW, Heide OM. Seasonal flowering and evolution: the heritage from Charles Darwin. FUNCTIONAL PLANT BIOLOGY : FPB 2010; 36:1027-1036. [PMID: 32688714 DOI: 10.1071/fp09170] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/02/2009] [Indexed: 06/11/2023]
Abstract
To survive, plants optimise their seasonal flowering time and set seed to avoid extremes of the environment including frost, heat and drought. Additionally, pollination may need to be tightly regulated in time so that it coincides with flowering of other individuals and/or with the presence of bird or insect pollinators. It is now clear that plants use seasonal changes in natural light intensity, daylight duration and temperature to achieve reproducible timing of flowering year-in-year-out. In more recent studies, genetic and molecular approaches are beginning to provide a basis for understanding heritability, an essential component of Darwin's concept of evolution.
Collapse
Affiliation(s)
- R W King
- CSIRO Plant Industry, P.O. Box 1600, Canberra, ACT 2601, Australia
| | - O M Heide
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
23
|
Okada R, Kondo S, Satbhai SB, Yamaguchi N, Tsukuda M, Aoki S. Functional characterization of CCA1/LHY homolog genes, PpCCA1a and PpCCA1b, in the moss Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:551-63. [PMID: 19624471 DOI: 10.1111/j.1365-313x.2009.03979.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The evolution of circadian clocks in land plants is not understood, because circadian rhythms have received little attention in plants other than angiosperms. We have characterized two genes, PpCCA1a and PpCCA1b, homologs of the Arabidopsis thaliana clock genes CCA1/LHY, from the moss Physcomitrella patens. PpCCA1a and PpCCA1b, together with angiosperm CCA1/LHY homologs, belong to the clock-associated single-myb gene family of green plants (including green algae and land plants). The accumulation of PpCCA1a and PpCCA1b mRNA showed rhythms with a period of approximately 1 day, phased as are those of angiosperm homologs, under 24 h light/dark cycles or in continuous dark. However, in marked contrast to angiosperm homologs, both genes showed arrhythmic profiles in continuous light. The timing of the PpCCA1b peak is determined by the time of the last light to dark transition, suggesting that the arrhythmicity in continuous light is due to dysfunction of the core clock. We generated single and double disruptants for PpCCA1a and PpCCA1b, and found that the double disruptants showed: (i) short periodicity and damped amplitude in the PpCCA1b rhythm, (ii) similar changes in the rhythmically expressed genes PpSIG5 and PpPRRa, and (iii) de-repression of PpCCA1b transcription levels, indicating negative feedback regulation. These observations indicate that the two genes are not merely structural homologs but also functional counterparts of CCA1/LHY. Together, our results illustrate similarities as well as divergence of the clock machineries between P. patens and A. thaliana, two distantly placed species in land plant phylogeny.
Collapse
Affiliation(s)
- Ryo Okada
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Hedman H, Källman T, Lagercrantz U. Early evolution of the MFT-like gene family in plants. PLANT MOLECULAR BIOLOGY 2009; 70:359-69. [PMID: 19288213 DOI: 10.1007/s11103-009-9478-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 03/01/2009] [Indexed: 05/08/2023]
Abstract
Angiosperm genes sharing a conserved phosphatidylethanolamine-binding (PEPB) domain have been shown to be involved in the control of shoot meristem identity and flowering time. The family is divided into three subfamilies, FT-like, TFL1-like and MFT-like. This study is focused on the evolution of the MFT-like clade, suggested to be ancestral to the two other clades. We report that the bryophyte Physcomitrella patens and the lycopod Selaginella moellendorfii contain four and two MFT-like genes respectively. Neither species have any FT or TFL1-like genes. Furthermore, we have identified a new subclade of MFT-like genes in Angiosperms. Quantitative expression analysis of MFT-like genes in Physcomitrella patens reveals that the expression patterns are circadian and reaches maximum in gametangia and sporophytes. Our data suggest that the occurrence FT and TFL1-like genes, is associated with the evolution of seed plants. Expression data for Physcomitrella MFT-like genes implicates an involvement in the development of reproductive tissues in the moss.
Collapse
Affiliation(s)
- Harald Hedman
- Department of Evolutionary Functional Genomics, Uppsala University, Norbyvägen 18D, Uppsala, Sweden.
| | | | | |
Collapse
|
25
|
Holefors A, Opseth L, Ree Rosnes AK, Ripel L, Snipen L, Fossdal CG, Olsen JE. Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:105-15. [PMID: 19097801 DOI: 10.1016/j.plaphy.2008.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Indexed: 05/08/2023]
Abstract
In woody plants of the temperate zone short photoperiod (SD) leads to growth cessation. In angiosperms CONSTANS (CO) or CO-like genes play an important role in the photoperiodic control of flowering, tuberisation and shoot growth. To investigate the role of CO-like genes in photoperiodic control of shoot elongation in gymnosperms, PaCOL1 and PaCOL2 were isolated from Norway spruce. PaCOL1 encodes a 3.9kb gene with a predicted protein of 444 amino acids. PaCOL2 encodes a 1.2kb gene with a predicted protein of 385 amino acids. Both genes consist of two exons and have conserved domains found in other CO-like genes; two zinc finger domains, a CCT and a COOH domain. PaCOL1 and PaCOL2 fall into the group 1c clade of the CO-like genes, and are thus distinct from Arabidopsis CO that belongs to group 1a. Transcript levels of both PaCOL-genes appear to be light regulated, an increasing trend was observed upon transition from darkness to light, and a decreasing trend during darkness. The increasing trend at dawn was observed both in needles and shoot tips, whereas the decreasing trend in darkness was most prominent in shoot tips, and limited to the late part of the dark period in needles. The transcript levels of both genes decreased significantly in both tissues under SD prior to growth cessation and bud formation. This might suggest an involvement in photoperiodic control of shoot elongation or might be a consequence of regulation by light.
Collapse
Affiliation(s)
- Anna Holefors
- Norwegian University of Life Sciences, Department of Plant and Environmental Sciences, P.O. Box 5003, N-1432 As, Norway
| | | | | | | | | | | | | |
Collapse
|
26
|
Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. THE PLANT CELL 2006; 18:2971-84. [PMID: 17138697 PMCID: PMC1693937 DOI: 10.1105/tpc.106.043299] [Citation(s) in RCA: 449] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The CCT (for CONSTANS, CONSTANS-LIKE, TOC1) domain is found in 45 Arabidopsis thaliana proteins involved in processes such as photoperiodic flowering, light signaling, and regulation of circadian rhythms. We show that this domain exhibits similarities to yeast HEME ACTIVATOR PROTEIN2 (HAP2), which is a subunit of the HAP2/HAP3/HAP5 trimeric complex that binds to CCAAT boxes in eukaryotic promoters. Moreover, we demonstrate that CONSTANS (CO), which promotes Arabidopsis flowering, interacts with At HAP3 and At HAP5 in yeast, in vitro, and in planta. Mutations in CO that delay flowering affect residues highly conserved between CCT and the DNA binding domain of HAP2. Taken together, these data suggest that CO might replace At HAP2 in the HAP complex to form a trimeric CO/At HAP3/At HAP5 complex. Flowering was delayed by overexpression of At HAP2 or At HAP3 throughout the plant or in phloem companion cells, where CO is expressed. This phenotype was correlated with reduced abundance of FLOWERING LOCUS T (FT) mRNA and no change in CO mRNA levels. At HAP2 or At HAP3 overexpression may therefore impair formation of a CO/At HAP3/At HAP5 complex leading to reduced expression of FT. During plant evolution, the number of genes encoding HAP proteins was greatly amplified, and these proteins may have acquired novel functions, such as mediating the effect of CCT domain proteins on gene expression.
Collapse
Affiliation(s)
- Stephan Wenkel
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Liu PP, Koizuka N, Martin RC, Nonogaki H. The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:960-71. [PMID: 16359389 DOI: 10.1111/j.1365-313x.2005.02588.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In many plant species, seed dormancy is broken by cold stratification, a pre-chilling treatment of fully imbibed seeds. Although the ecological importance of seed response to cold temperature is well appreciated, the mechanisms underlying the physiological changes during cold stratification is unknown. Here we show that the GATA zinc finger protein expressed in Arabidopsis seeds during cold stratification plays a critical role in germination. Characterization of an enhancer-trap population identified multiple lines that exhibited beta-glucuronidase (GUS) expression in the micropylar end of the seed (named Blue Micropylar End, BME lines). One of these lines, BME3, had a T-DNA insertion site in the 5' upstream region of a GATA-type zinc finger transcription factor gene (termed BME3-ZF). The BME3-ZF mRNA accumulated in seeds during cold stratification. Characterization of the BME3-ZF promoter indicated that this gene was activated specifically in the embryonic axis, which was still enclosed by the endosperm. The zinc finger gene knockout plants produced seeds exhibiting deeper dormancy, which showed reduced response to cold stratification. The ungerminated knockout seeds exhibited testa rupture, but failed to penetrate the endosperm layer. Application of gibberellic acid (GA3) rescued impaired germination of knockout seeds without cold stratification, indicating that the normal GA signal transduction pathway is present in the knockout mutants. Expression of GA20-oxidase and GA3-oxidase genes was greatly reduced in the knockout seeds, suggesting the potential involvement of the zinc finger protein in GA biosynthesis. These results suggest that the GATA zinc finger protein is a positive regulator of seed germination.
Collapse
Affiliation(s)
- Po-Pu Liu
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
28
|
Zobell O, Coupland G, Reiss B. The family of CONSTANS-like genes in Physcomitrella patens. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:266-75. [PMID: 15912446 DOI: 10.1055/s-2005-865621] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The CONSTANS (CO) gene plays a central role in the regulation of flowering time in Arabidopsis, and is a member of a family of 17 CO-like genes. CO and CO-like genes have been found in all flowering plants, but not in yeast and animals. To address the question of the origin of CO, we analysed this gene family in the moss Physcomitrella patens, a phylogenetically distant organism. Database searches in EST libraries that almost completely covered the Physcomitrella transcriptome, and Southern blotting, identified only three genes that had all of the hallmarks of CO. Further analysis demonstrated that these are most similar to CO-like genes AtCOL3/AtCOL4/AtCOL5, a group of Arabidopsis genes closely related to, but distinct from CO, suggesting that the CO branch of the AtCOL phylogeny does not exist in the Physcomitrella genome. Since 17 COL genes occur in Arabidopsis and only three closely related and two distantly related genes were found in Physcomitrella, the family of CO-like proteins appears to be smaller in Physcomitrella than in Arabidopsis, in agreement with observations made with other gene families. The data also indicate that CO-like genes must have existed in the common ancestor of bryophytes and flowering plants, and that CO originated in the group of CO-like genes represented by AtCOL3/AtCOL4/AtCOL5. Furthermore, expression of the three closely related Physcomitrella homologues is regulated by light, suggesting that the role of CO in flowering time control was probably derived from an ancestral function in light signal transduction.
Collapse
Affiliation(s)
- O Zobell
- Max-Planck-Institut für Züchtungsforschung, Department of Plant Developmental Biology, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | | | | |
Collapse
|
29
|
Ichikawa K, Sugita M, Imaizumi T, Wada M, Aoki S. Differential expression on a daily basis of plastid sigma factor genes from the moss Physcomitrella patens. Regulatory interactions among PpSig5, the circadian clock, and blue light signaling mediated by cryptochromes. PLANT PHYSIOLOGY 2004; 136:4285-98. [PMID: 15563615 PMCID: PMC535858 DOI: 10.1104/pp.104.053033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 10/08/2004] [Accepted: 10/11/2004] [Indexed: 05/19/2023]
Abstract
The nuclear-encoded plastid sigma factors are supposed to be a regulatory subunit of the multisubunit bacteria-type plastid RNA polymerase. We studied here whether or not three genes, PpSig1, PpSig2, and PpSig5 encoding plastid sigma factors, are controlled by the circadian clock and/or by blue light signaling in the moss Physcomitrella patens. Among the three PpSig genes, only PpSig5 was clearly controlled by the circadian clock. In contrast to the differential regulation on a daily timescale, a pulse of blue light induced the expression of all the three PpSig genes. This induction was significantly reduced in a knockout mutant that lacked the blue light photoreceptor cryptochromes PpCRY1a and PpCRY1b, indicating that PpCRY1a and/or PpCRY1b mediate the blue light signal that induces the expression of the PpSig genes. In a daily cycle of 12-h blue light/12-h dark, the timing of peak expression of PpSig5 and a chloroplast gene psbD, encoding the D2 subunit of photosystem II, advanced in the cryptochrome mutant relative to those in the wild type, suggesting the presence of regulatory interactions among the expression of PpSig5 and psbD, the circadian clock, and the blue light signaling mediated by the cryptochrome(s).
Collapse
Affiliation(s)
- Kazuhiro Ichikawa
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|