1
|
Sun W, Shahrajabian MH, Ma K, Wang S. Advances in Molecular Function and Recombinant Expression of Human Collagen. Pharmaceuticals (Basel) 2025; 18:430. [PMID: 40143206 PMCID: PMC11945623 DOI: 10.3390/ph18030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Collagen is the main protein found in skin, bone, cartilage, ligaments, tendons and connective tissue, and it can exhibit properties ranging from compliant to rigid or form gradients between these states. The collagen family comprises 28 members, each containing at least one triple-helical domain. These proteins play critical roles in maintaining mechanical characteristics, tissue organization, and structural integrity. Collagens regulate cellular processes such as proliferation, migration, and differentiation through interactions with cell surface receptors. Fibrillar collagens, the most abundant extracellular matrix (ECM) proteins, provide organs and tissues with structural stability and connectivity. In the mammalian myocardial interstitium, types I and III collagens are predominant: collagen I is found in organs, tendons, and bones; collagen II is found in cartilage; collagen III is found in reticular fibers; collagen IV is found in basement membranes; and collagen V is found in nails and hair. Recombinant human collagens, particularly in sponge-like porous formats combined with bone morphogenetic proteins, serve as effective scaffolds for bone repair. Due to their biocompatibility and low immunogenicity, collagens are pivotal in tissue engineering applications for skin, bone, and wound regeneration. Recombinant technology enables the production of triple-helical collagens with amino acid sequences identical to human tissue-derived collagens. This review summarizes recent advances in the molecular functions and recombinant expression of human collagens, with a focus on their biomedical applications.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Kun Ma
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| | - Shubin Wang
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| |
Collapse
|
2
|
De Gregorio V, Barua M, Lennon R. Collagen formation, function and role in kidney disease. Nat Rev Nephrol 2025; 21:200-215. [PMID: 39548215 DOI: 10.1038/s41581-024-00902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Highly abundant in mammals, collagens define the organization of tissues and participate in cell signalling. Most of the 28 vertebrate collagens, with the exception of collagens VI, VII, XXVI and XXVIII, can be categorized into five subgroups: fibrillar collagens, network-forming collagens, fibril-associated collagens with interrupted triple helices, membrane-associated collagens with interrupted triple helices and multiple triple-helix domains with interruptions. Collagen peptides are synthesized from the ribosome and enter the rough endoplasmic reticulum, where they undergo numerous post-translational modifications. The collagen chains form triple helices that can be secreted to form a diverse array of supramolecular structures in the extracellular matrix. Collagens are ubiquitously expressed and have been linked to a broad spectrum of disorders, including genetic disorders with kidney phenotypes. They also have an important role in kidney fibrosis and mass spectrometry-based proteomic studies have improved understanding of the composition of fibrosis in kidney disease. A wide range of therapeutics are in development for collagen and kidney disorders, including genetic approaches, chaperone therapies, protein degradation strategies and anti-fibrotic therapies. Improved understanding of collagens and their role in disease is needed to facilitate the development of more specific treatments for collagen and kidney disorders.
Collapse
Affiliation(s)
- Vanessa De Gregorio
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Moumita Barua
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, UK.
| |
Collapse
|
3
|
Leitinger M, Broggi S, Spendel M, Kalss G, Petrović I, Krainz H, Rossini F, Höfler J, Toma A, Kuchukhidze G, Mauritz M, Poppert K, Crespo‐Pimentel B, Bosque‐Varela P, Pleyers A, Ganger P, Kotzot D, Lessel D, Griessenauer CJ, Trinka E. Multiple intracerebral hematomas during SEEG recording and intradural hemorrhage after spinal tap: A case report prompting more research on collagen IV gene mutation and oral nicotine consumption as risk factors. Epilepsia Open 2025; 10:329-335. [PMID: 39579033 PMCID: PMC11803267 DOI: 10.1002/epi4.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
Intracerebral hemorrhages (ICH) during implantation of stereo-EEG electrodes are rare. The impact of tobacco-free nicotine consumption on periprocedural bleeding is uncertain. We present a 20+ year-old man with drug-resistant epilepsy who underwent stereo-EEG with 17 depth electrodes. Within a few days after insertion, the patient developed multiple ICHs in the electrode trajectories and an intradural hemorrhage after a diagnostic spinal tap. We performed the investigation of the clotting system and whole-exome sequencing (WES). WES identified a heterozygous mutation c.4698G>T, p.(Trp1566Cys) in COL4A2 (NM_001846.4) encoding a collagen type-IV alpha-2 chain inherited from his seemingly healthy mother. As COL4A2 mutations had been identified in four adult patients with ICH we postulated that the identified variant presents a potential risk factor. Notably, mutations encoding other collagens have been linked to cerebral hemorrhages (COL4A1) and increased propensity to trigger ICH upon smoking (COL1A2). Our patient consumed at least 24 oral nicotine pouches (containing 11 mg nicotine each) per day. We consider the patient's COL4A2 mutation in combination with his substantial nicotine consumption as likely predisposition to multiple ICHs precipitated by stereo-EEG. Patients with nicotine consumption and any collagen mutation may have a substantially higher risk for hemorrhagic complications in SEEG and other neurosurgical procedures. PLAIN LANGUAGE SUMMARY: A young man with drug-resistant epilepsy experienced multiple intracerebral hemorrhages after implantation of SEEG electrodes for presurgical evaluation and concomitantly a intradural hemorrhage after a lumbar spinal tap. A collagen IV mutation of unclear significance and heavy use of oral nicotine pouches were the only potential risk factors identified. As collagen mutations were previously described risk factors and smoking in particular worsens the bleeding risk in collagen mutations, further research is warranted to prevent hemorrhages in neurosurgical procedures. Nicotine consumption in any form is a preventable risk factor.
Collapse
Affiliation(s)
- Markus Leitinger
- Department of Neurology, Neurocritical Care, and Neurorehabilitation, Center for Cognitive Neuroscience, European Reference Network EpiCARE, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Center for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Serena Broggi
- Neurology and Stroke UnitASST Sette Laghi HospitalVareseItaly
| | - Mathias Spendel
- Department of Neurosurgery, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Gudrun Kalss
- Department of Neurology, Neurocritical Care, and Neurorehabilitation, Center for Cognitive Neuroscience, European Reference Network EpiCARE, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Center for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Ivan Petrović
- Faculty of MedicineUniversity of Novi SadNovi SadSerbia
| | - Herbert Krainz
- Department of Neurosurgery, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Fabio Rossini
- Department of Neurology, Neurocritical Care, and Neurorehabilitation, Center for Cognitive Neuroscience, European Reference Network EpiCARE, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Center for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Julia Höfler
- Department of Neurology, Neurocritical Care, and Neurorehabilitation, Center for Cognitive Neuroscience, European Reference Network EpiCARE, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Center for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Andreea Toma
- Department of Neurology, Neurocritical Care, and Neurorehabilitation, Center for Cognitive Neuroscience, European Reference Network EpiCARE, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Center for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Giorgi Kuchukhidze
- Department of Neurology, Neurocritical Care, and Neurorehabilitation, Center for Cognitive Neuroscience, European Reference Network EpiCARE, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Center for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Matthias Mauritz
- Department of Neurology, Neurocritical Care, and Neurorehabilitation, Center for Cognitive Neuroscience, European Reference Network EpiCARE, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Center for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Kai‐Nicolas Poppert
- Department of Neurology, Neurocritical Care, and Neurorehabilitation, Center for Cognitive Neuroscience, European Reference Network EpiCARE, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Center for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Bernardo Crespo‐Pimentel
- Department of Neurology, Neurocritical Care, and Neurorehabilitation, Center for Cognitive Neuroscience, European Reference Network EpiCARE, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Center for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Pilar Bosque‐Varela
- Department of Neurology, Neurocritical Care, and Neurorehabilitation, Center for Cognitive Neuroscience, European Reference Network EpiCARE, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Center for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Anna Pleyers
- Department of Human Genetics, Landeskrankenhaus University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Patricia Ganger
- Department of Human Genetics, Landeskrankenhaus University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Dieter Kotzot
- Department of Human Genetics, Landeskrankenhaus University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Davor Lessel
- Department of Human Genetics, Landeskrankenhaus University HospitalParacelsus Medical UniversitySalzburgAustria
- Institute of Human GeneticsUniversity of RegensburgRegensburgGermany
- Institute of Clinical Human GeneticsUniversity Hospital RegensburgRegensburgGermany
| | - Christoph J. Griessenauer
- Department of Neurosurgery, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
| | - Eugen Trinka
- Department of Neurology, Neurocritical Care, and Neurorehabilitation, Center for Cognitive Neuroscience, European Reference Network EpiCARE, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Center for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical UniversitySalzburgAustria
- Medical Informatics, and TechnologyInstitute of Public Health, Medical Decision Making and Health Technology Assessment, University for Health SciencesHall in TyrolAustria
| |
Collapse
|
4
|
Solanki KV, Hu Y, Moore BS, Abedi V, Avula V, Mirshahi T, Strande NT, Bucaloiu ID, Chang AR. The Phenotypic Spectrum of COL4A3 Heterozygotes. Kidney Int Rep 2023; 8:2088-2099. [PMID: 37849993 PMCID: PMC10577321 DOI: 10.1016/j.ekir.2023.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction The penetrance and phenotypic spectrum of autosomal dominant Alport Syndrome (ADAS), affecting 1 in 106, remains understudied. Methods Using data from 174,418 participants in the Geisinger MyCode/DiscovEHR study, an unselected health system-based cohort with whole exome sequencing, we identified 403 participants who were heterozygous for likely pathogenic COL4A3 variants. Phenotypic data was evaluated using International Classification of Diseases (ICD) codes, laboratory data, and chart review. To evaluate the phenotypic spectrum of genetically-determined ADAS, we matched COL4A3 heterozygotes 1:5 to nonheterozygotes using propensity scores by demographics, hypertension, diabetes, and nephrolithiasis. Results COL4A3 heterozygotes were at significantly increased risks of hematuria, decreased estimated glomerular filtration rate (eGFR), albuminuria, and kidney failure (P < 0.05 for all comparisons) but not bilateral sensorineural hearing loss (P = 0.9). Phenotypic severity was more severe for collagenous domain glycine missense variants than protein truncating variants (PTVs). For example, patients with Gly695Arg (n = 161) had markedly increased risk of dipstick hematuria (odds ratio [OR] 9.50; 95% confidence interval [CI]: 6.32, 14.28) and kidney failure (OR 7.02; 95% CI: 3.48, 14.16) whereas those with PTVs (n = 119) had moderately increased risks of dipstick hematuria (OR 1.64; 95% CI: 1.03, 2.59) and kidney failure (OR 3.44; 95% CI: 1.28, 9.22). Less than a third of patients had albuminuria screening completed, and fewer than 1 of 3 were taking inhibitors of the renin-angiotensin-aldosterone system. Conclusion This study demonstrates a wide spectrum of phenotypic severity in ADAS due to COL4A3 with phenotypic variability by genotype. Future studies are needed to evaluate the impact of earlier diagnosis, appropriate evaluation, and treatment of ADAS.
Collapse
Affiliation(s)
- Kaushal V Solanki
- Center for Kidney Health Research, Geisinger, Danville, Pennsylvania, USA
| | - Yirui Hu
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania, USA
| | - Bryn S Moore
- Department of Genomic Health, Geisinger, Danville, Pennsylvania, USA
| | - Vida Abedi
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Road, Tarrytown, New York, USA
| | - Venkatesh Avula
- Department of Genomic Health, Geisinger, Danville, Pennsylvania, USA
| | - Tooraj Mirshahi
- Department of Genomic Health, Geisinger, Danville, Pennsylvania, USA
| | - Natasha T Strande
- Department of Genomic Health, Geisinger, Danville, Pennsylvania, USA
- Autism and Developmental Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Ion D Bucaloiu
- Department of Nephrology, Geisinger, Danville, Pennsylvania, USA
| | - Alexander R Chang
- Center for Kidney Health Research, Geisinger, Danville, Pennsylvania, USA
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania, USA
| |
Collapse
|
5
|
Hirayama R, Toyohara K, Watanabe K, Otsuki T, Araoka T, Mae SI, Horinouchi T, Yamamura T, Okita K, Hotta A, Iijima K, Nozu K, Osafune K. iPSC-derived type IV collagen α5-expressing kidney organoids model Alport syndrome. Commun Biol 2023; 6:854. [PMID: 37770589 PMCID: PMC10539496 DOI: 10.1038/s42003-023-05203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/02/2023] [Indexed: 09/30/2023] Open
Abstract
Alport syndrome (AS) is a hereditary glomerulonephritis caused by COL4A3, COL4A4 or COL4A5 gene mutations and characterized by abnormalities of glomerular basement membranes (GBMs). Due to a lack of curative treatments, the condition proceeds to end-stage renal disease even in adolescents. Hampering drug discovery is the absence of effective in vitro methods for testing the restoration of normal GBMs. Here, we aimed to develop kidney organoid models from AS patient iPSCs for this purpose. We established iPSC-derived collagen α5(IV)-expressing kidney organoids and confirmed that kidney organoids from COL4A5 mutation-corrected iPSCs restore collagen α5(IV) protein expression. Importantly, our model recapitulates the differences in collagen composition between iPSC-derived kidney organoids from mild and severe AS cases. Furthermore, we demonstrate that a chemical chaperone, 4-phenyl butyric acid, has the potential to correct GBM abnormalities in kidney organoids showing mild AS phenotypes. This iPSC-derived kidney organoid model will contribute to drug discovery for AS.
Collapse
Affiliation(s)
- Ryuichiro Hirayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Taisho Pharmaceutical Co., Ltd., Saitama, 331-9530, Japan
| | - Kosuke Toyohara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kei Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Takeya Otsuki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
- Hyogo Prefectural Kobe Children's Hospital, Hyogo, 650-0047, Japan
- Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
6
|
LeBleu VS, Dai J, Tsutakawa S, MacDonald BA, Alge JL, Sund M, Xie L, Sugimoto H, Tainer J, Zon LI, Kalluri R. Identification of unique α4 chain structure and conserved antiangiogenic activity of α3NC1 type IV collagen in zebrafish. Dev Dyn 2023; 252:1046-1060. [PMID: 37002899 PMCID: PMC10524752 DOI: 10.1002/dvdy.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Type IV collagen is an abundant component of basement membranes in all multicellular species and is essential for the extracellular scaffold supporting tissue architecture and function. Lower organisms typically have two type IV collagen genes, encoding α1 and α2 chains, in contrast with the six genes in humans, encoding α1-α6 chains. The α chains assemble into trimeric protomers, the building blocks of the type IV collagen network. The detailed evolutionary conservation of type IV collagen network remains to be studied. RESULTS We report on the molecular evolution of type IV collagen genes. The zebrafish α4 non-collagenous (NC1) domain, in contrast with its human ortholog, contains an additional cysteine residue and lacks the M93 and K211 residues involved in sulfilimine bond formation between adjacent protomers. This may alter α4 chain interactions with other α chains, as supported by temporal and anatomic expression patterns of collagen IV chains during the zebrafish development. Despite the divergence between zebrafish and human α3 NC1 domain (endogenous angiogenesis inhibitor, Tumstatin), the zebrafish α3 NC1 domain exhibits conserved antiangiogenic activity in human endothelial cells. CONCLUSIONS Our work supports type IV collagen is largely conserved between zebrafish and humans, with a possible difference involving the α4 chain.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Feinberg School of Medicine and Kellogg School of Management, Northwestern University, Chicago, Illinois, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jianli Dai
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan Tsutakawa
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California, USA
| | - Brian A MacDonald
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Joseph L Alge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Malin Sund
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Liang Xie
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - John Tainer
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leonard I Zon
- Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Solanki KV, Hu Y, Moore BS, Abedi V, Avula V, Mirshahi T, Strande NT, Bucaloiu ID, Chang AR. The Phenotypic Spectrum of COL4A3 Heterozygotes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.11.23288298. [PMID: 37163122 PMCID: PMC10168410 DOI: 10.1101/2023.04.11.23288298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Most data on Alport Syndrome (AS) due to COL4A3 are limited to families with autosomal recessive AS or severe manifestations such as focal segmental glomerulosclerosis (FSGS). Using data from 174,418 participants in the Geisinger MyCode/DiscovEHR study, an unselected health system-based cohort with whole exome sequencing, we identified 403 participants (0.2%) who were heterozygous for likely pathogenic COL4A3 variants. Phenotypic data was evaluated using International Classification of Diseases (ICD) codes, laboratory data, and chart review. To evaluate the phenotypic spectrum of genetically-determined autosomal dominant AS, we matched COL4A3 heterozygotes 1:5 to non-heterozygotes using propensity scores by demographics, hypertension, diabetes, and nephrolithiasis. COL4A3 heterozygotes were at significantly increased risks of hematuria, decreased estimated glomerular filtration rate (eGFR), albuminuria, and end-stage kidney disease (ESKD) (p<0.05 for all comparisons) but not bilateral sensorineural hearing loss (p=0.9). Phenotypic severity tended to be more severe among patients with glycine missense variants located within the collagenous domain. For example, patients with Gly695Arg (n=161) had markedly increased risk of dipstick hematuria (OR 9.47, 95% CI: 6.30, 14.22) and ESKD diagnosis (OR 7.01, 95% CI: 3.48, 14.12) whereas those with PTVs (n=119) had moderately increased risks of dipstick hematuria (OR 1.63, 95% CI: 1.03, 2.58) and ESKD diagnosis (OR 3.43, 95% CI: 1.28, 9.19). Less than a third of patients had albuminuria screening completed, and fewer than 1/3 were taking inhibitors of the renin-angiotensin-aldosterone system (RAASi). Future studies are needed to evaluate the impact of earlier diagnosis, appropriate evaluation, and treatment of ADAS.
Collapse
Affiliation(s)
| | - Yirui Hu
- Department of Population Health Sciences, Geisinger, Danville, PA
| | - Bryn S Moore
- Department of Genomic Health, Geisinger, Danville, PA
| | - Vida Abedi
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| | | | | | - Natasha T Strande
- Department of Genomic Health, Geisinger, Danville, PA
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA
| | | | - Alexander R Chang
- Center for Kidney Health Research, Geisinger, Danville, PA
- Department of Population Health Sciences, Geisinger, Danville, PA
- Regeneron Genetics Center, Sawmill Road, Tarrytown, NY
| |
Collapse
|
8
|
Remaggi G, Barbaro F, Di Conza G, Trevisi G, Bergonzi C, Toni R, Elviri L. Decellularization Detergents As Methodological Variables in Mass Spectrometry of Stromal Matrices. Tissue Eng Part C Methods 2022; 28:148-157. [PMID: 35357965 DOI: 10.1089/ten.tec.2021.0191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collagens, elastin, fibrillin, decorin, and laminin are key constituents of the extracellular matrix and basement membrane of mammalian organs. Thus, changes in their quantities may influence the mechanochemical regulation of resident cells. Since maintenance of a native stromal composition is a requirement for three-dimensional (3D) matrix-based recellularization techniques in tissue engineering, we studied the influence of the decellularization detergents on these proteins in porcine kidney, liver, pancreas, and skin. Using a quick thawing/quick microwave-assisted decellularization protocol and two different detergents, sodium dodecyl sulfate (SDS) vs Triton X-100 (TX100), at identical concentration, variations in matrix conservation of stromal proteins were detected by liquid chromatography-mass spectrometry coupled to light and scanning electron microscopies, in dependence on each detergent. In all organs tested except pancreas, collagens were retained to a statistically significant level using the TX100-based protocol. In contrast fibrillin, elastin (except in kidney), and decorin (only in liver) were better preserved with the SDS-dependent protocol. Irrespective of the detergent used, laminin always remained at an irrelevant level. Our results prompt attention to the type of detergent in organ decellularization, suggesting that its choice may influence morphoregulatory inputs peculiar to the type of 3D bioartificial mammalian organ to be reconstructed. Impact statement Simple change of the protocol's main detergent leads to a very substantial difference in the panel of the stromal proteins detected by qualitative and semiquantitative mass spectrometry in acellular porcine matrices. This remarkable methodological variable promises to yield proteomic reference panels in a number of different species-specific acellular matrices allowing for selective retainment of peculiar mechanochemical inputs, to differently address the development of the seeded cells in relation to the type of organ to be bioartificially reconstructed.
Collapse
Affiliation(s)
- Giulia Remaggi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Fulvio Barbaro
- Laboratory of Regenerative Morphology and Bioartificial Structures, Unit of Biomedicine, Biotechnology, and Translational Sciences, DIMEC, University of Parma, Parma, Italy
| | - Giusy Di Conza
- Laboratory of Regenerative Morphology and Bioartificial Structures, Unit of Biomedicine, Biotechnology, and Translational Sciences, DIMEC, University of Parma, Parma, Italy
| | - Giovanna Trevisi
- IMEM Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Carlo Bergonzi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Roberto Toni
- Laboratory of Regenerative Morphology and Bioartificial Structures, Unit of Biomedicine, Biotechnology, and Translational Sciences, DIMEC, University of Parma, Parma, Italy.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Lisa Elviri
- Food and Drug Department, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Ivanov SV, Bauer R, Pokidysheva EN, Boudko SP. Collagen IV Exploits a Cl- Step Gradient for Scaffold Assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 21:129-141. [PMID: 32979156 DOI: 10.1007/5584_2020_582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collagen molecules are crucial extracellular players in animal tissue development and in functions ranging from ultrafiltration to organism locomotion. Among the 28 types of collagen found in human, type IV collagen stands out as a primordial type found in all species of the animal kingdom. Collagen IV forms smart scaffolds for basement membranes, sheet-like acellular structures that isolate, coordinate, and direct cells during morphogenesis. Collagen IV is also involved in multiple functions in developed tissues. As part of the basement membrane, collagen IV scaffolds provide mechanical strength, spatially tether extracellular macromolecules and directly signal to cells via receptor binding sites. Proper assembly and structure of the scaffolds are critical for development and function of multiple types of basement membranes. Within last 5 years it was established that Cl- concentration is a key factor for initiating collagen IV scaffold assembly. The biological role of Cl- in multiple physiological processes and detailed mechanisms for its signaling and structural impacts are well established. Cl- gradients are generated across the plasma and intracellular organelle membranes. As collagen IV molecules are secreted outside the cell, they experience a switch from low to high Cl- concentration. This transition works as a trigger for collagen IV scaffold assembly. Within the scaffold, collagen IV remains to be a Cl- sensor as its structural integrity continues to depend on Cl- concentration. Here, we review recent findings and set future directions for studies on the role of Cl- in type IV collagen assembly, function, and disease.
Collapse
Affiliation(s)
- Sergey V Ivanov
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan Bauer
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elena N Pokidysheva
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sergei P Boudko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, USA. .,Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Tan RYY, Traylor M, Megy K, Duarte D, Deevi SVV, Shamardina O, Mapeta RP, Ouwehand WH, Gräf S, Downes K, Markus HS. How common are single gene mutations as a cause for lacunar stroke? A targeted gene panel study. Neurology 2019; 93:e2007-e2020. [PMID: 31719132 PMCID: PMC6913325 DOI: 10.1212/wnl.0000000000008544] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To determine the frequency of rare and pertinent disease-causing variants in small vessel disease (SVD)-associated genes (such as NOTCH3, HTRA1, COL4A1, COL4A2, FOXC1, TREX1, and GLA) in cerebral SVD, we performed targeted gene sequencing in 950 patients with younger-onset apparently sporadic SVD stroke using a targeted sequencing panel. METHODS We designed a high-throughput sequencing panel to identify variants in 15 genes (7 known SVD genes, 8 SVD-related disorder genes). The panel was used to screen a population of 950 patients with younger-onset (≤70 years) MRI-confirmed SVD stroke, recruited from stroke centers across the United Kingdom. Variants were filtered according to their frequency in control databases, predicted effect, presence in curated variant lists, and combined annotation dependent depletion scores. Whole genome sequencing and genotyping were performed on a subset of patients to provide a direct comparison of techniques. The frequency of known disease-causing and pertinent variants of uncertain significance was calculated. RESULTS We identified previously reported variants in 14 patients (8 cysteine-changing NOTCH3 variants in 11 patients, 2 HTRA1 variants in 2 patients, and 1 missense COL4A1 variant in 1 patient). In addition, we identified 29 variants of uncertain significance in 32 patients. CONCLUSION Rare monogenic variants account for about 1.5% of younger onset lacunar stroke. Most are cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy variants, but the second most common gene affected is HTRA1. A high-throughput sequencing technology platform is an efficient, reliable method to screen for such mutations.
Collapse
Affiliation(s)
- Rhea Y Y Tan
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK.
| | - Matthew Traylor
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Karyn Megy
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Daniel Duarte
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Sri V V Deevi
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Olga Shamardina
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Rutendo P Mapeta
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Willem H Ouwehand
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Stefan Gräf
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Kate Downes
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Hugh S Markus
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| |
Collapse
|
11
|
Alfieri M, Barbaro F, Consolini E, Bassi E, Dallatana D, Bergonzi C, Bianchera A, Bettini R, Toni R, Elviri L. A targeted mass spectrometry method to screen collagen types I-V in the decellularized 3D extracellular matrix of the adult male rat thyroid. Talanta 2019; 193:1-8. [DOI: 10.1016/j.talanta.2018.09.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 11/26/2022]
|
12
|
Luan D, Gao X, Kong F, Song X, Zheng A, Liu X, Xu K, Tang B. Cyclic Regulation of the Sulfilimine Bond in Peptides and NC1 Hexamers via the HOBr/H 2Se Conjugated System. Anal Chem 2018; 90:9523-9528. [PMID: 29938494 DOI: 10.1021/acs.analchem.8b02228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sulfilimine bond (-S═N-), found in the collagen IV scaffold, significantly stabilizes the architecture via the formation of sulfilimine cross-links. However, precisely governing the formation and breakup process of the sulfilimine bond in living organisms for better life functions still remains a challenge. Hence, we established a new way to regulate the breaking and formation of the sulfilimine bond through hydrogen selenide (H2Se) and hypobromous acid (HOBr), which can be easily controlled at simulated physiological conditions. This novel strategy provides a circulation regulation system to modulate the sulfilimine bond in peptides and NC1 hexamers, which can offer a substantial system for further study of the physiological function of collagen IV.
Collapse
Affiliation(s)
- Dongrui Luan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Xiaoxiao Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Aishan Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Xiaojun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| |
Collapse
|
13
|
Chovar-Vera O, Valenzuela-Muñoz V, Gallardo-Escárate C. Molecular characterization of collagen IV evidences early transcription expression related to the immune response against bacterial infection in the red abalone (Haliotis rufescens). FISH & SHELLFISH IMMUNOLOGY 2015; 42:241-248. [PMID: 25463284 DOI: 10.1016/j.fsi.2014.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
Collagen IV has been described as a structural protein of the basement membrane, which as a whole forms a specialized extracellular matrix. Recent studies have indicated a possible relationship between collagen IV and the innate immune response of invertebrate organisms. The present study characterized the alpha-1 chain of collagen IV in the red abalone Haliotis rufescens (Hr-ColIV) and evaluated its association with the innate immune response against Vibrio anguillarum. To further evidence the immune response, the matrix metalloproteinase-1 (Hr-MMP-1) and C-type lectin (Hr-CLEC) genes were also assessed. The complete sequence of Hr-ColIV was composed of 6658 bp, with a 5'UTR of 154 bp, a 3'UTR of 1177 bp, and an ORF of 5327 bp that coded for 1776 amino acids. The innate immune response generated against V. anguillarum resulted in a significant increase in the transcript levels of Hr-ColIV between 3 and 6 hpi, whereas Hr-MMP-1 and Hr-CLEC had the highest transcript activity 6 and 12 hpi, respectively. The results obtained in this study propose a putative biological function for collagen IV involved in the early innate immune response of the red abalone H. rufescens.
Collapse
Affiliation(s)
- Ornella Chovar-Vera
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile.
| |
Collapse
|
14
|
Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 2012; 36:1122-80. [PMID: 22537156 DOI: 10.1111/j.1574-6976.2012.00340.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/11/2023] Open
Abstract
Laminin (Ln) and collagen are multifunctional glycoproteins that play an important role in cellular morphogenesis, cell signalling, tissue repair and cell migration. These proteins are ubiquitously present in tissues as a part of the basement membrane (BM), constitute a protective layer around blood capillaries and are included in the extracellular matrix (ECM). As a component of BMs, both Lns and collagen(s), thus function as major mechanical containment molecules that protect tissues from pathogens. Invasive pathogens breach the basal lamina and degrade ECM proteins of interstitial spaces and connective tissues using various ECM-degrading proteases or surface-bound plasminogen and matrix metalloproteinases recruited from the host. Most pathogens associated with the respiratory, gastrointestinal, or urogenital tracts, as well as with the central nervous system or the skin, have the capacity to bind and degrade Lns and collagen(s) in order to adhere to and invade host tissues. In this review, we focus on the adaptability of various pathogens to utilize these ECM proteins as enhancers for adhesion to host tissues or as a targets for degradation in order to breach the cellular barriers. The major pathogens discussed are Streptococcus, Staphylococcus, Pseudomonas, Salmonella, Yersinia, Treponema, Mycobacterium, Clostridium, Listeria, Porphyromonas and Haemophilus; Candida, Aspergillus, Pneumocystis, Cryptococcus and Coccidioides; Acanthamoeba, Trypanosoma and Trichomonas; retrovirus and papilloma virus.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology, Department of Laboratory Medicine Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
15
|
LeBleu V, Sund M, Sugimoto H, Birrane G, Kanasaki K, Finan E, Miller CA, Gattone VH, McLaughlin H, Shield CF, Kalluri R. Identification of the NC1 domain of {alpha}3 chain as critical for {alpha}3{alpha}4{alpha}5 type IV collagen network assembly. J Biol Chem 2010; 285:41874-85. [PMID: 20847057 DOI: 10.1074/jbc.m110.149534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The network organization of type IV collagen consisting of α3, α4, and α5 chains in the glomerular basement membrane (GBM) is speculated to involve interactions of the triple helical and NC1 domain of individual α-chains, but in vivo evidence is lacking. To specifically address the contribution of the NC1 domain in the GBM collagen network organization, we generated a mouse with specific loss of α3NC1 domain while keeping the triple helical α3 chain intact by connecting it to the human α5NC1 domain. The absence of α3NC1 domain leads to the complete loss of the α4 chain. The α3 collagenous domain is incapable of incorporating the α5 chain, resulting in the impaired organization of the α3α4α5 chain-containing network. Although the α5 chain can assemble with the α1, α2, and α6 chains, such assembly is incapable of functionally replacing the α3α4α5 protomer. This novel approach to explore the assembly type IV collagen in vivo offers novel insights in the specific role of the NC1 domain in the assembly and function of GBM during health and disease.
Collapse
Affiliation(s)
- Valerie LeBleu
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School,Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Ito K, Sawamura D, Goto M, Nakamura H, Nishie W, Sakai K, Natsuga K, Shinkuma S, Shibaki A, Uitto J, Denton CP, Nakajima O, Akiyama M, Shimizu H. Keratinocyte-/fibroblast-targeted rescue of Col7a1-disrupted mice and generation of an exact dystrophic epidermolysis bullosa model using a human COL7A1 mutation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2508-17. [PMID: 19893033 DOI: 10.2353/ajpath.2009.090347] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe hereditary bullous disease caused by mutations in COL7A1, which encodes type VII collagen (COL7). Col7a1 knockout mice (COL7(m-/-)) exhibit a severe RDEB phenotype and die within a few days after birth. Toward developing novel approaches for treating patients with RDEB, we attempted to rescue COL7(m-/-) mice by introducing human COL7A1 cDNA. We first generated transgenic mice that express human COL7A1 cDNA specifically in either epidermal keratinocytes or dermal fibroblasts. We then performed transgenic rescue experiments by crossing these transgenic mice with COL7(m+/-) heterozygous mice. Surprisingly, human COL7 expressed by keratinocytes or by fibroblasts was able to rescue all of the abnormal phenotypic manifestations of the COL7(m-/-) mice, indicating that fibroblasts as well as keratinocytes are potential targets for RDEB gene therapy. Furthermore, we generated transgenic mice with a premature termination codon expressing truncated COL7 protein and performed the same rescue experiments. Notably, the COL7(m-/-) mice rescued with the human COL7A1 allele were able to survive despite demonstrating clinical manifestations very similar to those of human RDEB, indicating that we were able to generate surviving animal models of RDEB with a mutated human COL7A1 gene. This model has great potential for future research into the pathomechanisms of dystrophic epidermolysis bullosa and the development of gene therapies for patients with dystrophic epidermolysis bullosa.
Collapse
Affiliation(s)
- Kei Ito
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bailey SR, Boustany S, Burgess JK, Hirst SJ, Sharma HS, Simcock DE, Suravaram PR, Weckmann M. Airway vascular reactivity and vascularisation in human chronic airway disease. Pulm Pharmacol Ther 2009; 22:417-25. [PMID: 19409504 DOI: 10.1016/j.pupt.2009.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 04/01/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
Abstract
Altered bronchial vascular reactivity and remodelling including angiogenesis are documented features of asthma and other chronic inflammatory airway diseases. Expansion of the bronchial vasculature under these conditions involves both functional (vasodilation, hyperperfusion, increased microvascular permeability, oedema formation, and inflammatory cell recruitment) and structural changes (tissue and vascular remodelling) in the airways. These changes in airway vascular reactivity and vascularisation have significant pathophysiological consequences, which are manifest in the clinical symptoms of airway disease. Airway vascular reactivity is regulated by a wide variety of neurotransmitters and inflammatory mediators. Similarly, multiple growth factors are implicated in airway angiogenesis, with vascular endothelial growth factor amongst the most important. Increasing attention is focused on the complex interplay between angiogenic growth factors, airway smooth muscle and the various collagen-derived fragments that exhibit anti-angiogenic properties. The balance of these dynamic influences in airway neovascularisation processes and their therapeutic implications is just beginning to be elucidated. In this review article, we provide an account of recent developments in the areas of vascular reactivity and airway angiogenesis in chronic airway diseases.
Collapse
Affiliation(s)
- Simon R Bailey
- Faculty of Veterinary Science, University of Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kurban G, Duplan E, Ramlal N, Hudon V, Sado Y, Ninomiya Y, Pause A. Collagen matrix assembly is driven by the interaction of von Hippel-Lindau tumor suppressor protein with hydroxylated collagen IV alpha 2. Oncogene 2007; 27:1004-12. [PMID: 17700531 DOI: 10.1038/sj.onc.1210709] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene predisposes to vascular tumor formation in several organs. VHL regulates two evolutionary conserved pathways: the targeting of hydroxylated hypoxia-inducible factor-alpha (HIF-alpha) for proteasomal degradation and the remodeling of extracellular matrix (ECM). The biochemical mechanisms of the ECM assembly pathway remain poorly defined. Here, we provide evidence supporting a biochemical role for VHL in ECM assembly. We show that VHL directly binds to the collagen IV alpha 2 (COL4A2) chain and that this interaction is necessary for its assembly into the ECM. The VHL-COL4A2 interaction is dependent on endoplasmic reticulum (ER)-mediated COL4A2 hydroxylation and independent of cytosolic, hypoxia regulated HIF-alpha-modifying enzymes. We find that the N-terminal tail of COL4A2 protrudes from the ER lumen into the cytosol where it is bound by VHL. Failure of VHL to interact with COL4A2 correlates with loss of collagen IV network formation in vitro and collagen IV remodeling in vivo. Our data suggest a HIF-alpha-independent role for the VHL-COL4A2 interaction in suppression of angiogenic tumor formation through collagen IV network assembly.
Collapse
Affiliation(s)
- G Kurban
- McGill Cancer Center, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Khoshnoodi J, Cartailler JP, Alvares K, Veis A, Hudson BG. Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J Biol Chem 2006; 281:38117-21. [PMID: 17082192 DOI: 10.1074/jbc.r600025200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-chains of the collagen superfamily are encoded with information that specifies self-assembly into fibrils, microfibrils, and networks that have diverse functions in the extracellular matrix. A key self-organizing step, common to all collagen types, is trimerization that selects, binds, and registers cognate alpha-chains for assembly of triple helical protomers that subsequently oligomerize into specific suprastructures. In this article, we review recent findings on the mechanism of chain selection and infer that terminal noncollagenous domains function as recognition modules in trimerization and are therefore key determinants of specificity in the assembly of suprastructures. This mechanism is also illustrated with computer-generated animations.
Collapse
Affiliation(s)
- Jamshid Khoshnoodi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2372, USA
| | | | | | | | | |
Collapse
|
21
|
Khoshnoodi J, Sigmundsson K, Cartailler JP, Bondar O, Sundaramoorthy M, Hudson BG. Mechanism of chain selection in the assembly of collagen IV: a prominent role for the alpha2 chain. J Biol Chem 2005; 281:6058-69. [PMID: 16373348 DOI: 10.1074/jbc.m506555200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagens comprise a large superfamily of extracellular matrix proteins that play diverse roles in tissue function. The mechanism by which newly synthesized collagen chains recognize each other and assemble into specific triple-helical molecules is a fundamental question that remains unanswered. Emerging evidence suggests a role for the non-collagenous domain (NC1) located at the C-terminal end of each chain. In this study, we have investigated the molecular mechanism underlying chain selection in the assembly of collagen IV. Using surface plasmon resonance, we have determined the kinetics of interaction and assembly of the alpha1(IV) and alpha2(IV) NC1 domains. We show that the differential affinity of alpha2(IV) NC1 domain for dimer formation underlies the driving force in the mechanism of chain discrimination. Given its characteristic domain recognition and affinity for the alpha1(IV) NC1 domain, we conclude that the alpha2(IV) chain plays a regulatory role in directing chain composition in the assembly of (alpha1)(2)alpha2 triple-helical molecule. Detailed crystal structure analysis of the [(alpha1)(2)alpha2](2) NC1 hexamer and sequence alignments of the NC1 domains of all six alpha-chains from mammalian species revealed the residues involved in the molecular recognition of NC1 domains. We further identified a hypervariable region of 15 residues and a beta-hairpin structural motif of 13 residues as two prominent regions that mediate chain selection in the assembly of collagen IV. To our knowledge, this report is the first to combine kinetics and structural data to describe molecular basis for chain selection in the assembly of a collagen molecule.
Collapse
Affiliation(s)
- Jamshid Khoshnoodi
- Department of Medicine, Vanderbilt University School of Medicine, Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|