1
|
Kehayova YS, Wilkinson JM, Rice SJ, Loughlin J. Mediation of the Same Epigenetic and Transcriptional Effect by Independent Osteoarthritis Risk-Conferring Alleles on a Shared Target Gene, COLGALT2. Arthritis Rheumatol 2023; 75:910-922. [PMID: 36538011 PMCID: PMC10952352 DOI: 10.1002/art.42427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Over 100 DNA variants have been associated with osteoarthritis (OA), including rs1046934, located within a linkage disequilibrium block encompassing part of COLGALT2 and TSEN15. The present study was undertaken to determine the target gene(s) and the mechanism of action of the OA locus using human fetal cartilage, cartilage from OA and femoral neck fracture arthroplasty patients, and a chondrocyte cell model. METHODS Genotyping and methylation array data of DNA from human OA cartilage samples (n = 87) were used to determine whether the rs1046934 genotype is associated with differential DNA methylation at proximal CpGs. Results were replicated in DNA from human arthroplasty (n = 132) and fetal (n = 77) cartilage samples using pyrosequencing. Allelic expression imbalance (AEI) measured the effects of genotype on COLGALT2 and TSEN15 expression. Reporter gene assays and epigenetic editing determined the functional role of regions harboring differentially methylated CpGs. In silico analyses complemented these experiments. RESULTS Three differentially methylated CpGs residing within regulatory regions were detected in the human OA cartilage array data, and 2 of these were replicated in human arthroplasty and fetal cartilage. AEI was detected for COLGALT2 and TSEN15, with associations between expression and methylation for COLGALT2. Reporter gene assays confirmed that the CpGs are in chondrocyte enhancers, with epigenetic editing results directly linking methylation with COLGALT2 expression. CONCLUSION COLGALT2 is a target of this OA locus. We previously characterized another OA locus, marked by rs11583641, that independently targets COLGALT2. The genotype of rs1046934, like rs11583641, mediates its effect by modulating expression of COLGALT2 via methylation changes to CpGs located in enhancers. Although the single-nucleotide polymorphisms, CpGs, and enhancers are distinct between the 2 independent OA risk loci, their effect on COLGALT2 is the same. COLGALT2 is the target of independent OA risk loci sharing a common mechanism of action.
Collapse
Affiliation(s)
| | - J. Mark Wilkinson
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Sarah J. Rice
- Biosciences Institute, Newcastle UniversityNewcastle upon TyneUK
| | - John Loughlin
- Biosciences Institute, Newcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
2
|
Kehayova YS, Wilkinson JM, Rice SJ, Loughlin J. Osteoarthritis genetic risk acting on the galactosyltransferase gene COLGALT2 has opposing functional effects in articulating joint tissues. Arthritis Res Ther 2023; 25:83. [PMID: 37208701 DOI: 10.1186/s13075-023-03066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Investigation of cartilage and chondrocytes has revealed that the osteoarthritis risk marked by the independent DNA variants rs11583641 and rs1046934 mediate their effects by decreasing the methylation status of CpG dinucleotides in enhancers and increasing the expression of shared target gene COLGALT2. We set out to investigate if these functional effects operate in a non-cartilaginous joint tissue. METHODS Nucleic acids were extracted from the synovium of osteoarthritis patients. Samples were genotyped, and DNA methylation was quantified by pyrosequencing at CpGs within the COLGALT2 enhancers. CpGs were tested for enhancer effects using a synovial cell line and a reporter gene assay. DNA methylation was altered using epigenetic editing, with the impact on gene expression determined using quantitative polymerase chain reaction. In silico analysis complemented laboratory experiments. RESULTS The rs1046934 genotype did not associate with DNA methylation or COLGALT2 expression in the synovium, whereas the rs11583641 genotype did. Surprisingly, the effects for rs11583641 were opposite to those previously observed in cartilage. Epigenetic editing in synovial cells revealed that enhancer methylation is causally linked to COLGALT2 expression. CONCLUSIONS This is the first direct demonstration for osteoarthritis genetic risk of a functional link between DNA methylation and gene expression operating in opposite directions between articular joint tissues. It highlights pleiotropy in the action of osteoarthritis risk and provides a cautionary note in the application of future genetically based osteoarthritis therapies: an intervention that decreases the detrimental effect of a risk allele in one joint tissue may inadvertently increase its detrimental effect in another joint tissue.
Collapse
Affiliation(s)
- Yulia S Kehayova
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Sarah J Rice
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK.
| | - John Loughlin
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
3
|
Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. Biochem Soc Trans 2021; 49:855-866. [PMID: 33704379 DOI: 10.1042/bst20200767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Collagen is a major constituent of the extracellular matrix (ECM) that confers fundamental mechanical properties to tissues. To allow proper folding in triple-helices and organization in quaternary super-structures, collagen molecules require essential post-translational modifications (PTMs), including hydroxylation of proline and lysine residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific hydroxylysine residues on procollagen alpha chains. The resulting galactosyl-hydroxylysine (Gal-Hyl) and less abundant glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl) are amongst the simplest glycosylation patterns found in nature and are essential for collagen and ECM homeostasis. These collagen PTMs depend on the activity of specialized glycosyltransferase enzymes. Although their biochemical reactions have been widely studied, several key biological questions about the possible functions of these essential PTMs are still missing. In addition, the lack of three-dimensional structures of collagen glycosyltransferase enzymes hinders our understanding of the catalytic mechanisms producing this modification, as well as the impact of genetic mutations causing severe connective tissue pathologies. In this mini-review, we summarize the current knowledge on the biochemical features of the enzymes involved in the production of collagen glycosylations and the current state-of-the-art methods for the identification and characterization of this important PTM.
Collapse
|
4
|
Takeyari S, Kubota T, Ohata Y, Fujiwara M, Kitaoka T, Taga Y, Mizuno K, Ozono K. 4-Phenylbutyric acid enhances the mineralization of osteogenesis imperfecta iPSC-derived osteoblasts. J Biol Chem 2021; 296:100027. [PMID: 33154166 PMCID: PMC7948972 DOI: 10.1074/jbc.ra120.014709] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable brittle bone disease mainly caused by mutations in the two type I collagen genes. Collagen synthesis is a complex process including trimer formation, glycosylation, secretion, extracellular matrix (ECM) formation, and mineralization. Using OI patient-derived fibroblasts and induced pluripotent stem cells (iPSCs), we investigated the effect of 4-phenylbutyric acid (4-PBA) on collagen synthesis to test its potential as a new treatment for OI. Endoplasmic reticulum (ER) retention of type I collagen was observed by immunofluorescence staining in OI patient-derived fibroblasts with glycine substitution and exon skipping mutations. Liquid chromatography-mass spectrometry analysis revealed excessive glycosylation of secreted type I collagen at the specific sites in OI cells. The misfolding of the type I collagen triple helix in the ECM was demonstrated by the incorporation of heat-dissociated collagen hybridizing peptide in OI cells. Type I collagen was produced excessively by OI fibroblasts with a glycine mutation, but this excessive production was normalized when OI fibroblasts were cultured on control fibroblast-derived ECM. We also found that mineralization was impaired in osteoblasts differentiated from OI iPSCs. In summary, treatment with 4-PBA normalizes the excessive production of type I collagen, reduces ER retention, partially improves misfolding of the type I collagen helix in ECM, and improves osteoblast mineralization. Thus, 4-PBA may improve not only ER retention, but also type I collagen synthesis and mineralization in human cells from OI patients.
Collapse
Affiliation(s)
- Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
5
|
Maity PP, Dutta D, Ganguly S, Kapat K, Dixit K, Chowdhury AR, Samanta R, Das NC, Datta P, Das AK, Dhara S. Isolation and mass spectrometry based hydroxyproline mapping of type II collagen derived from Capra hircus ear cartilage. Commun Biol 2019; 2:146. [PMID: 31044171 PMCID: PMC6488623 DOI: 10.1038/s42003-019-0394-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/18/2019] [Indexed: 11/19/2022] Open
Abstract
Collagen II (COLII), the most abundant protein in vertebrates, helps maintain the structural and functional integrity of cartilage. Delivery of COLII from animal sources could improve cartilage regeneration therapies. Here we show that COLII can be purified from the Capra ear cartilage, a commonly available bio-waste product, with a high yield. MALDI-MS/MS analysis evidenced post-translational modifications of the signature triplet, Glycine-Proline-Hydroxyproline (G-P-Hyp), in alpha chain of isolated COLII (COLIIA1). Additionally, thirty-two peptides containing 59 Hyp residues and a few G-X-Y triplets with positional alterations of Hyp in COLIIA1 are also identified. Furthermore, we show that an injectable hydrogel formulation containing the isolated COLII facilitates chondrogenic differentiation towards cartilage regeneration. These findings show that COLII can be isolated from Capra ear cartilage and that positional alteration of Hyp in its structural motif, as detected by newly developed mass spectrometric method, might be an early marker of cartilage disorder.
Collapse
Affiliation(s)
- Priti Prasanna Maity
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 India
| | - Debabrata Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Sayan Ganguly
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Kausik Kapat
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Krishna Dixit
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Amit Roy Chowdhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 India
| | - Ramapati Samanta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Narayan Chandra Das
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| |
Collapse
|
6
|
Camozzi V, Betterle C, Frigo AC, Zaccariotto V, Zaninotto M, De Caneva E, Lucato P, Gomiero W, Garelli S, Sabbadin C, Salvà M, Costa MD, Boscaro M, Luisetto G. Vertebral fractures assessed with dual-energy X-ray absorptiometry in patients with Addison's disease on glucocorticoid and mineralocorticoid replacement therapy. Endocrine 2018; 59:319-329. [PMID: 28795340 DOI: 10.1007/s12020-017-1380-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/21/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE to assess bone damage and metabolic abnormalities in patients with Addison's disease given replacement doses of glucocorticoids and mineralocorticoids. METHODS A total of 87 patients and 81 age-matched and sex-matched healthy controls were studied. The following parameters were measured: urinary cortisol, serum calcium, phosphorus, creatinine, 24-h urinary calcium excretion, bone alkaline phosphatase, parathyroid hormone, serum CrossLaps, 25 hydroxyvitamin D, and 1,25 dihydroxyvitamin D. Clear vertebral images were obtained with dual-energy X-ray absorptiometry in 61 Addison's disease patients and 47 controls and assessed using Genant's classification. RESULTS Nineteen Addison's disease patients (31.1%) had at least one morphometric vertebral fracture, as opposed to six controls (12.8%, odds ratio 3.09, 95% confidence interval 1.12-8.52). There were no significant differences in bone mineral density parameters at any site between patients and controls. In Addison's disease patients, there was a positive correlation between urinary cortisol and urinary calcium excretion. Patients with fractures had a longer history of disease than those without fractures. Patients taking fludrocortisone had a higher bone mineral density than untreated patients at all sites except the lumbar spine. CONCLUSIONS Addison's disease patients have more fragile bones irrespective of any decrease in bone mineral density. Supra-physiological doses of glucocorticoids and longer-standing disease (with a consequently higher glucocorticoid intake) might be the main causes behind patients' increased bone fragility. Associated mineralocorticoid treatment seems to have a protective effect on bone mineral density.
Collapse
Affiliation(s)
- Valentina Camozzi
- Department of Medicine, Endocrinology Division, University of Padua, Via Ospedale 105, Padua, 35128, Italy
| | - Corrado Betterle
- Department of Medicine, Endocrinology Division, University of Padua, Via Ospedale 105, Padua, 35128, Italy.
| | - Anna Chiara Frigo
- Department of Cardiac, Thoracic and Vascular Sciences, Biostatistics, Epidemiology and Public Health Unit, University of Padua, Via Loredan 18, Padua, 35131, Italy
| | - Veronica Zaccariotto
- Department of Medicine, Endocrinology Division, University of Padua, Via Ospedale 105, Padua, 35128, Italy
| | - Martina Zaninotto
- Department of Laboratory Medicine, University of Padua, Via Giustiniani 2, Padua, 35128, Italy
| | - Erica De Caneva
- Department of Medicine, Endocrinology Division, University of Padua, Via Ospedale 105, Padua, 35128, Italy
| | - Paola Lucato
- Department of Medicine, Endocrinology Division, University of Padua, Via Ospedale 105, Padua, 35128, Italy
| | - Walter Gomiero
- Department of Medicine, Endocrinology Division, University of Padua, Via Ospedale 105, Padua, 35128, Italy
| | - Silvia Garelli
- Department of Medicine, Endocrinology Division, University of Padua, Via Ospedale 105, Padua, 35128, Italy
| | - Chiara Sabbadin
- Department of Medicine, Endocrinology Division, University of Padua, Via Ospedale 105, Padua, 35128, Italy
| | - Monica Salvà
- Department of Medicine, Endocrinology Division, University of Padua, Via Ospedale 105, Padua, 35128, Italy
| | - Miriam Dalla Costa
- Department of Medicine, Endocrinology Division, University of Padua, Via Ospedale 105, Padua, 35128, Italy
| | - Marco Boscaro
- Department of Medicine, Endocrinology Division, University of Padua, Via Ospedale 105, Padua, 35128, Italy
| | - Giovanni Luisetto
- Department of Medicine, Endocrinology Division, University of Padua, Via Ospedale 105, Padua, 35128, Italy
| |
Collapse
|
7
|
Muthumari K, Anand M, Maruthupandy M. Collagen Extract from Marine Finfish Scales as a Potential Mosquito Larvicide. Protein J 2017; 35:391-400. [PMID: 27804059 DOI: 10.1007/s10930-016-9685-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Collagen is a peptide being utilized in medical, health care, nutrient and decorative industry. Marine fish scales are one of the good sources of collagen, which is extracted using the advanced enzymatic digestion method. Scales of Sardinella longiceps (Oil Sardine) have a high proportion of collagen. This product is well absorbed with broad adaptive values that encourage the inclusion of nutriments. In this paper, we have performed the isolation and characterization of collagen from S. longiceps fish scales. The unnecessary proteins on the surface of fish scales was removed by demineralization process. The fish scale collagen was extracted in two different methods: acid (acetic acid) and enzymatic (pepsin) technique. The molecular mass of the extracted collagen was determined using sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The absorption spectra of the extracted collagen was measured to estimate its amino acid (tyrosine) content. Fourier transform infrared (FTIR) spectrum showed the existence of bands corresponding to the collagen extracted from S. longiceps fish scale and the crystallinity of extracted collagen was obtained using X-ray diffraction (XRD) analysis. The morphological micrograph was also analyzed by scanning electron microscope (SEM). The anti-larval effect of the collagen extract was determined using mosquito larvae of Aedes aegypti (Ae. aegypti) and the activity was statistically significant.
Collapse
Affiliation(s)
- K Muthumari
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - M Anand
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India.
| | - M Maruthupandy
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| |
Collapse
|
8
|
Effects of glycosylated (2S,4R)-hydroxyproline on the stability and assembly of collagen triple helices. Amino Acids 2016; 48:2765-2772. [DOI: 10.1007/s00726-016-2312-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/08/2016] [Indexed: 01/22/2023]
|
9
|
Paschalis EP, Gamsjaeger S, Fratzl-Zelman N, Roschger P, Masic A, Brozek W, Hassler N, Glorieux FH, Rauch F, Klaushofer K, Fratzl P. Evidence for a Role for Nanoporosity and Pyridinoline Content in Human Mild Osteogenesis Imperfecta. J Bone Miner Res 2016; 31:1050-9. [PMID: 26748579 DOI: 10.1002/jbmr.2780] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/21/2015] [Accepted: 01/06/2016] [Indexed: 01/19/2023]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility that arises from decreased bone mass and abnormalities in bone material quality. OI type I represents the milder form of the disease and according to the original Sillence classification is characterized by minimal skeletal deformities and near-normal stature. Raman microspectroscopy is a vibrational spectroscopic technique that allows the determination of bone material properties in bone biopsy blocks with a spatial resolution of ∼1 µm, as a function of tissue age. In the present study, we used Raman microspectroscopy to evaluate bone material quality in transiliac bone biopsies from children with a mild form of OI, either attributable to collagen haploinsufficiency OI type I (OI-Quant; n = 11) or aberrant collagen structure (OI-Qual; n = 5), as a function of tissue age, and compared it against the previously published values established in a cohort of biopsies from healthy children (n = 54, ages 1 to 23 years). The results indicated significant differences in bone material compositional characteristics between OI-Quant patients and healthy controls, whereas fewer were evident in the OI-Qual patients. Differences in both subgroups of OI compared with healthy children were evident for nanoporosity, mineral maturity/crystallinity as determined by maxima of the v1 PO4 Raman band, and pyridinoline (albeit in different direction) content. These alterations in bone material compositional properties most likely contribute to the bone fragility characterizing this disease. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Admir Masic
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Wolfgang Brozek
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Norbert Hassler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Francis H Glorieux
- Genetics Unit, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Frank Rauch
- Genetics Unit, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
10
|
Basak T, Vega-Montoto L, Zimmerman LJ, Tabb DL, Hudson BG, Vanacore RM. Comprehensive Characterization of Glycosylation and Hydroxylation of Basement Membrane Collagen IV by High-Resolution Mass Spectrometry. J Proteome Res 2015; 15:245-58. [PMID: 26593852 DOI: 10.1021/acs.jproteome.5b00767] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Collagen IV is the main structural protein that provides a scaffold for assembly of basement membrane proteins. Posttranslational modifications such as hydroxylation of proline and lysine and glycosylation of lysine are essential for the functioning of collagen IV triple-helical molecules. These modifications are highly abundant posing a difficult challenge for in-depth characterization of collagen IV using conventional proteomics approaches. Herein, we implemented an integrated pipeline combining high-resolution mass spectrometry with different fragmentation techniques and an optimized bioinformatics workflow to study posttranslational modifications in mouse collagen IV. We achieved 82% sequence coverage for the α1 chain, mapping 39 glycosylated hydroxylysine, 148 4-hydroxyproline, and seven 3-hydroxyproline residues. Further, we employed our pipeline to map the modifications on human collagen IV and achieved 85% sequence coverage for the α1 chain, mapping 35 glycosylated hydroxylysine, 163 4-hydroxyproline, and 14 3-hydroxyproline residues. Although lysine glycosylation heterogeneity was observed in both mouse and human, 21 conserved sites were identified. Likewise, five 3-hydroxyproline residues were conserved between mouse and human, suggesting that these modification sites are important for collagen IV function. Collectively, these are the first comprehensive maps of hydroxylation and glycosylation sites in collagen IV, which lay the foundation for dissecting the key role of these modifications in health and disease.
Collapse
Affiliation(s)
- Trayambak Basak
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Lorenzo Vega-Montoto
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Lisa J Zimmerman
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - David L Tabb
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Roberto M Vanacore
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| |
Collapse
|
11
|
Temporal changes of microarchitectural and mechanical parameters of cancellous bone in the osteoporotic rabbit. BIOMED RESEARCH INTERNATIONAL 2015; 2015:263434. [PMID: 25918705 PMCID: PMC4396142 DOI: 10.1155/2015/263434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 12/05/2022]
Abstract
This study was aimed at elucidating the temporal changes of microarchitectural and mechanical parameters of cancellous bone in the osteoporotic rabbit model induced by ovariectomy (OVX) combined with glucocorticoid (GC) administration. Osteoporotic (OP) group received bilateral OVX combined with injections of GC, while sham group only received sham operation. Cancellous bone quality in vertebrae and femoral condyles in each group was assessed by DXA, μCT, nanoindentation, and biomechanical tests at pre-OVX and 4, 6, and 8 weeks after injection. With regard to femoral condyles, nanoindentation test could detect significant decline in tissue modulus and hardness at 4 weeks. However, BMD and microarchitecture of femoral condylar cancellous bone changed significantly at 6 weeks. In vertebrae, BMD, microarchitecture, nanoindentation, and biomechanical tests changed significantly at 4 weeks. Our data demonstrated that temporal changes of microarchitectural and mechanical parameters of cancellous bone in the osteoporotic rabbit were significant. The temporal changes of cancellous bone in different anatomical sites might be different. The nanoindentation method could detect the changes of bone quality at an earlier stage at both femoral condyle and vertebra in the osteoporotic rabbit model than other methods (μCT, BMD).
Collapse
|
12
|
|
13
|
Geissler JR, Bajaj D, Fritton JC. American Society of Biomechanics Journal of Biomechanics Award 2013: cortical bone tissue mechanical quality and biological mechanisms possibly underlying atypical fractures. J Biomech 2015; 48:883-94. [PMID: 25683519 PMCID: PMC4380555 DOI: 10.1016/j.jbiomech.2015.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/20/2015] [Indexed: 01/15/2023]
Abstract
The biomechanics literature contains many well-understood mechanisms behind typical fracture types that have important roles in treatment planning. The recent association of “atypical” fractures with long-term use of drugs designed to prevent osteoporosis has renewed interest in the effects of agents on bone tissue-level quality. While this class of fracture was recognized prior to the introduction of the anti-resorptive bisphosphonate drugs and recently likened to stress fractures, the mechanism(s) that lead to atypical fractures have not been definitively identified. Thus, a causal relationship between these drugs and atypical fracture has not been established. Physicians, bioengineers and others interested in the biomechanics of bone are working to improve fracture-prevention diagnostics, and the design of treatments to avoid this serious side-effect in the future. This review examines the mechanisms behind the bone tissue damage that may produce the atypical fracture pattern observed increasingly with long-term bisphosphonate use. Our recent findings and those of others reviewed support that the mechanisms behind normal, healthy excavation and tunnel filling by bone remodeling units within cortical tissue strengthen mechanical integrity. The ability of cortical bone to resist the damage induced during cyclic loading may be altered by the reduced remodeling and increased tissue age resulting from long-term bisphosphonate treatment. Development of assessments for such potential fractures would restore confidence in pharmaceutical treatments that have the potential to spare millions in our aging population from the morbidity and death that often follow bone fracture.
Collapse
Affiliation(s)
- Joseph R Geissler
- Department of Orthopaedics, New Jersey Medical School, Rutgers University, 205 S. Orange Avenue, Newark, NJ 07103, USA; Joint Program in Biomedical Engineering, Rutgers Biomedical and Health Sciences, and the New Jersey Institute of Technology, Newark, NJ, USA.
| | - Devendra Bajaj
- Department of Orthopaedics, New Jersey Medical School, Rutgers University, 205 S. Orange Avenue, Newark, NJ 07103, USA.
| | - J Christopher Fritton
- Department of Orthopaedics, New Jersey Medical School, Rutgers University, 205 S. Orange Avenue, Newark, NJ 07103, USA; Joint Program in Biomedical Engineering, Rutgers Biomedical and Health Sciences, and the New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
14
|
TOMOAIA GHEORGHE, PASCA ROXANADIANA. On the Collagen Mineralization. A Review. CLUJUL MEDICAL (1957) 2015; 88:15-22. [PMID: 26528042 PMCID: PMC4508610 DOI: 10.15386/cjmed-359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/17/2014] [Indexed: 01/19/2023]
Abstract
Collagen mineralization (CM) is a challenging process that has received a lot of attention in the past years. Among the reasons for this interest, the key role is the importance of collagen and hydroxyapatite in natural bone, as major constituents. Different protocols of mineralization have been developed, specially using simulated body fluid (SBF) and many methods have been used to characterize the systems obtained, starting with methods of determining the mineral content (XRD, FTIR, Raman, High-Resolution Spectral Ultrasound Imaging), continuing with imaging methods (AFM, TEM, SEM, Fluorescence Microscopy), thermal analysis (DSC and TGA), evaluation of the mechanical and biological properties, including statistical methods and molecular modeling. In spite of the great number of studies regarding collagen mineralization, its mechanism, both in vivo and in vitro, is not completely understood. Some of the methods used in vitro and investigation methods are reviewed here.
Collapse
Affiliation(s)
- GHEORGHE TOMOAIA
- Orthopedic Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - ROXANA-DIANA PASCA
- Orthopedic Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, Romania
| |
Collapse
|
15
|
Perdivara I, Yamauchi M, Tomer KB. Molecular Characterization of Collagen Hydroxylysine O-Glycosylation by Mass Spectrometry: Current Status. Aust J Chem 2013; 66:760-769. [PMID: 25414518 PMCID: PMC4235766 DOI: 10.1071/ch13174] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The most abundant proteins in vertebrates - the collagen family proteins - play structural and biological roles in the body. The predominant member, type I collagen, provides tissues and organs with structure and connectivity. This protein has several unique post-translational modifications that take place intra- and extra-cellularly. With growing evidence of the relevance of such post-translational modifications in health and disease, the biological significance of O-linked collagen glycosylation has recently drawn increased attention. However, several aspects of this unique modification - the requirement for prior lysyl hydroxylation as a substrate, involvement of at least two distinct glycosyl transferases, its involvement in intermolecular crosslinking - have made its molecular mapping and quantitative characterization challenging. Such characterization is obviously crucial for understanding its biological significance. Recent progress in mass spectrometry has provided an unprecedented opportunity for this type of analysis. This review summarizes recent advances in the area of O-glycosylation of fibrillar collagens and their characterization using state-of-the-art liquid chromatography-mass spectrometry-based methodologies, and perspectives on future research. The analytical characterization of collagen crosslinking and advanced glycation end-products are not addressed here.
Collapse
Affiliation(s)
- Irina Perdivara
- Mass Spectrometry Group, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, NC 27709, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC 27599, USA
| | - Kenneth B. Tomer
- Mass Spectrometry Group, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, NC 27709, USA
| |
Collapse
|
16
|
Perdivara I, Perera L, Sricholpech M, Terajima M, Pleshko N, Yamauchi M, Tomer KB. Unusual fragmentation pathways in collagen glycopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1072-1081. [PMID: 23633013 PMCID: PMC3679267 DOI: 10.1007/s13361-013-0624-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 05/29/2023]
Abstract
Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids -(X-Y-Gly)n. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical N- and O-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways-amide bond and glycosidic bond cleavage-are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides.
Collapse
Affiliation(s)
- Irina Perdivara
- Mass Spectrometry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Lalith Perera
- Computational Chemistry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | | | - Masahiko Terajima
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Pennsylvania, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Kenneth B. Tomer
- Mass Spectrometry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| |
Collapse
|
17
|
Maïmoun L, Brennan-Speranza TC, Rizzoli R, Ammann P. Effects of ovariectomy on the changes in microarchitecture and material level properties in response to hind leg disuse in female rats. Bone 2012; 51:586-91. [PMID: 22580391 DOI: 10.1016/j.bone.2012.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Ovariectomy (OVX) and immobilization are known to decrease bone mineral density and alter its microarchitecture. Their effects on the material level properties of bone, a determinant of bone strength, are still largely unknown. We investigated the effect of OVX and/or disuse achieved by sciatic neurectomy (NX) in 6-month-old Sprague Dawley female rats. METHODS At baseline, animals underwent OVX or sham operation. At week 16, NX was performed on the left hindlimb while the right hindlimb was sham-operated. All animals were sacrificed at week 40. Proximal tibiae and vertebral bodies (L4) were evaluated by micro-computed tomographic morphometry (μCT). Material level properties (elastic modulus, hardness, and dissipated energy) were evaluated by a nanoindentation test. RESULTS At the proximal tibia, OVX and NX decreased relative bone volume, the former mainly through a reduction in trabecular number, and the latter through a decrease in trabecular thickness. NX decreased modulus (-10%; p<0.001) and dissipated energy (-13.3%, p<0.001) in cortical bone, and modulus (-16.8%, p=0.004), hardness (-29.3%, p=0.004), and dissipated energy (-17.7%, p=0.01) in trabecular bone, while OVX decreased cortical bone dissipated energy (-14.6%, p<0.001) and trabecular bone hardness (-19.4%, p=0.05). In the vertebral body, OVX altered mainly the trabecular microarchitecture and nanoindentation variables. CONCLUSION These results show that NX with and without OVX markedly alter material level properties in addition to an alteration of bone microarchitecture, although not in the same manner.
Collapse
Affiliation(s)
- Laurent Maïmoun
- Division of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
18
|
Sricholpech M, Perdivara I, Yokoyama M, Nagaoka H, Terajima M, Tomer KB, Yamauchi M. Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J Biol Chem 2012; 287:22998-3009. [PMID: 22573318 PMCID: PMC3391079 DOI: 10.1074/jbc.m112.343954] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/29/2012] [Indexed: 12/31/2022] Open
Abstract
Recently, by employing the short hairpin RNA technology, we have generated MC3T3-E1 (MC)-derived clones stably suppressing lysyl hydroxylase 3 (LH3) (short hairpin (Sh) clones) and demonstrated the LH3 function as glucosyltransferase in type I collagen (Sricholpech, M., Perdivara, I., Nagaoka, H., Yokoyama, M., Tomer, K. B., and Yamauchi, M. (2011) Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J. Biol. Chem. 286, 8846-8856). To further elucidate the biological significance of this modification, we characterized and compared type I collagen phenotypes produced by Sh clones and two control groups, MC and those transfected with empty vector. Mass spectrometric analysis identified five glycosylation sites in type I collagen (i.e. α1,2-87, α1,2-174, and α2-219. Of these, the predominant glycosylation site was α1-87, one of the major helical cross-linking sites. In Sh collagen, the abundance of glucosylgalactosylhydroxylysine was significantly decreased at all of the five sites with a concomitant increase in galactosylhydroxylysine at four of these sites. The collagen cross-links were significantly diminished in Sh clones, and, for the major cross-link, dihydroxylysinonorleucine (DHLNL), glucosylgalactosyl-DHLNL was diminished with a concomitant increase in galactosyl-DHLNL. When subjected to in vitro incubation, in Sh clones, the rate of decrease in DHLNL was lower, whereas the rate of increase in its maturational cross-link, pyridinoline, was comparable with controls. Furthermore, in Sh clones, the mean diameters of collagen fibrils were significantly larger, and the onset of mineralized nodule formation was delayed when compared with those of controls. These results indicate that the LH3-mediated glucosylation occurs at the specific molecular loci in the type I collagen molecule and plays critical roles in controlling collagen cross-linking, fibrillogenesis, and mineralization.
Collapse
Affiliation(s)
- Marnisa Sricholpech
- North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Gullekson C, Lucas L, Hewitt K, Kreplak L. Surface-sensitive Raman spectroscopy of collagen I fibrils. Biophys J 2011; 100:1837-45. [PMID: 21463598 PMCID: PMC3072603 DOI: 10.1016/j.bpj.2011.02.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/21/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022] Open
Abstract
Collagen fibrils are the main constituent of the extracellular matrix surrounding eukaryotic cells. Although the assembly and structure of collagen fibrils is well characterized, very little appears to be known about one of the key determinants of their biological function-namely, the physico-chemical properties of their surface. One way to obtain surface-sensitive structural and chemical data is to take advantage of the near-field nature of surface- and tip-enhanced Raman spectroscopy. Using Ag and Au nanoparticles bound to Collagen type-I fibrils, as well as tips coated with a thin layer of Ag, we obtained Raman spectra characteristic to the first layer of collagen molecules at the surface of the fibrils. The most frequent Raman peaks were attributed to aromatic residues such as phenylalanine and tyrosine. In several instances, we also observed Amide I bands with a full width at half-maximum of 10-30 cm(-1). The assignment of these Amide I band positions suggests the presence of 3(10)-helices as well as α- and β-sheets at the fibril's surface.
Collapse
Affiliation(s)
| | | | | | - Laurent Kreplak
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
20
|
Sricholpech M, Perdivara I, Nagaoka H, Yokoyama M, Tomer KB, Yamauchi M. Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J Biol Chem 2011; 286:8846-56. [PMID: 21220425 PMCID: PMC3058983 DOI: 10.1074/jbc.m110.178509] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/17/2010] [Indexed: 01/15/2023] Open
Abstract
Lysyl hydroxylase 3 (LH3), encoded by Plod3, is the multifunctional collagen-modifying enzyme possessing LH, hydroxylysine galactosyltransferase (GT), and galactosylhydroxylysine-glucosyltransferase (GGT) activities. Although an alteration in type I collagen glycosylation has been implicated in several osteogenic disorders, the role of LH3 in bone physiology has never been investigated. To elucidate the function of LH3 in bone type I collagen modifications, we used a short hairpin RNA technology in a mouse osteoblastic cell line, MC3T3-E1; generated single cell-derived clones stably suppressing LH3 (short hairpin (Sh) clones); and characterized the phenotype. Plod3 expression and the LH3 protein levels in the Sh clones were significantly suppressed when compared with the controls, MC3T3-E1, and the clone transfected with an empty vector. In comparison with controls, type I collagen synthesized by Sh clones (Sh collagen) showed a significant decrease in the extent of glucosylgalactosylhydroxylysine with a concomitant increase of galactosylhydroxylysine, whereas the total number of hydroxylysine residues was essentially unchanged. In an in vitro fibrillogenesis assay, Sh collagen showed accelerated fibrillogenesis compared with the controls. In addition, when recombinant LH3-V5/His protein was generated in 293 cells and subjected to GGT/GT activity assay, it showed GGT but not GT activity against denatured type I collagen. The results from this study clearly indicate that the major function of LH3 in osteoblasts is to glucosylate galactosylhydroxylysine residues in type I collagen and that an impairment of this LH3 function significantly affects type I collagen fibrillogenesis.
Collapse
Affiliation(s)
- Marnisa Sricholpech
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599 and
| | - Irina Perdivara
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Hideaki Nagaoka
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599 and
| | - Megumi Yokoyama
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599 and
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Mitsuo Yamauchi
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
21
|
Lotz JC, Hadi T, Bratton C, Reiser KM, Hsieh AH. Anulus fibrosus tension inhibits degenerative structural changes in lamellar collagen. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2008; 17:1149-59. [PMID: 18668268 DOI: 10.1007/s00586-008-0721-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 05/16/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
Abstract
Mechanical stress is one of the risk factors believed to influence intervertebral disc degeneration. Animal models have shown that certain regimes of compressive loading can induce a cascade of biological effects that ultimately results in cellular and structural changes in the disc. It has been proposed that both cell-mediated breakdown of collagen and the compromised stability of collagen with loss of anular tension could result in degradation of lamellae in the anulus fibrosus (AF). To determine whether this may be important in the AF, we subjected entire rings of de-cellularized AF tissue to MMP-1 digestion with or without tension. Biomechanical testing found trends of decreasing strength and stiffness when tissues were digested without tension compared with those with tension. To determine the physiologic significance of tissue level tension in the AF, we used an established in vivo murine model to apply a disc compression insult known to cause degeneration. Afterward, that motion segment was placed in fixed-angle bending to impose tissue level tension on part of the AF and compression on the contralateral side. We found that the AF on the convex side of bending retained a healthy lamellar appearance, while the AF on the concave side resembled tissues that had undergone degeneration by loading alone. Varying the time of onset and duration of bending revealed that even a brief duration applied immediately after cessation of compression was beneficial to AF structure on the convex side of bending. Our results suggest that both cell-mediated events and cell-independent mechanisms may contribute to the protective effect of tissue level tension in the AF.
Collapse
Affiliation(s)
- Jeffrey C Lotz
- Orthopaedic Bioengineering Laboratory, Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
22
|
Xu P, Huang J, Cebe P, Kaplan DL. Osteogenesis Imperfecta Collagen-Like Peptides: Self-Assembly and Mineralization on Surfaces. Biomacromolecules 2008; 9:1551-7. [DOI: 10.1021/bm701365x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Xu
- Departments of Chemical and Biological Engineering and Biomedical Engineering, and Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155
| | - Jia Huang
- Departments of Chemical and Biological Engineering and Biomedical Engineering, and Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155
| | - Peggy Cebe
- Departments of Chemical and Biological Engineering and Biomedical Engineering, and Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155
| | - David L. Kaplan
- Departments of Chemical and Biological Engineering and Biomedical Engineering, and Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
23
|
Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 2008; 93:1013-9. [PMID: 18160470 DOI: 10.1210/jc.2007-1270] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Although type 2 diabetic patients are at increased risk of fractures, bone mineral density (BMD) may not be useful for assessing the risk. Recent studies have reported that increased bone content of pentosidine (PEN) is associated with its plasma concentration and bone fragility. OBJECTIVE AND METHODS To examine the association between serum PEN levels and vertebral fractures (VFs) in Japanese type 2 diabetic patients (77 males older than 50 yr and 76 postmenopausal females), we compared parameters including BMD, PEN, serum bone-specific alkaline phosphatase, and urinary levels of N-telopeptide between those with and without VFs. RESULTS Comparison of diabetic subjects with and without VFs revealed no significant differences in BMD values or bone metabolic markers in either gender. In contrast, PEN levels in women with VFs were significantly higher than in those without VFs (0.0440+/-0.0136 vs. 0.0321+/-0.0118 microg/ml; P<0.001). Multivariate logistic regression analysis adjusted for age, height, weight, hemoglobin A1c, estimated glomerular filtration rate, the presence of diabetic complications, histories of taking insulin or pioglitazone, risk factors for osteoporosis, and lumbar BMD identified PEN levels as a factor associated with the presence of VFs in postmenopausal diabetic women independent of BMD, risk factors for osteoporosis, diabetic status, and renal function (odds ratio 2.50, 95% confidential interval 1.09-5.73 per sd increase; P=0.0302). CONCLUSION PEN levels, but not BMD, may be useful for assessing the risk of prevalent VFs in postmenopausal diabetic women and may reflect bone quality in this group.
Collapse
Affiliation(s)
- Masahiro Yamamoto
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | | | | | | | | |
Collapse
|
24
|
Hasegawa K, Kataoka K, Inoue M, Seino Y, Morishima T, Tanaka H. Impaired pyridinoline cross-link formation in patients with osteogenesis imperfecta. J Bone Miner Metab 2008; 26:394-9. [PMID: 18600407 DOI: 10.1007/s00774-007-0827-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 10/30/2007] [Indexed: 10/21/2022]
Abstract
Patients with osteogenesis imperfecta (OI) show various degrees of bone fragility. Nevertheless, details of the mechanisms causing bone fragility remain unclear. We hypothesized that differences in pyridinoline cross-link formation at the N-and C-termini in type I collagen molecules partly contribute to bone fragility of OI. To verify this hypothesis, urinary N and C terminal telopeptides of type I collagen (uNTx and ubetaCTx, respectively) and urinary hydroxyproline (uHyp) were measured using second morning void urine samples obtained from OI patients and healthy control children. Ratios of uNTx and ubetaTx to uHyp (uNTx/uHyp and ubetaCTx/uHyp, respectively) of OI patients and healthy normal control children were analyzed. Ratios of uNTx to ubetaCTx (uNTx/ubetaCTx) were also analyzed. In OI patients, uNTx and ubetaCTx were lower than in healthy control children. Also, uNTx/uHyp and ubetaCTx/uHyp were significantly lower than in healthy children. Among OI patients, uNTx/uHyp and uNTx/ubetaCTx of type III OI were significantly lower than of either type I or type IV OI. These results show that pyridinoline cross-link formation is lower than in healthy control children and that pyridinoline cross-link formation at the N-and C-termini in type I collagen molecules might be differently disrupted in OI patients according to the severity of OI.
Collapse
Affiliation(s)
- Kosei Hasegawa
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Okayama 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Treatment of primary osteoporosis has advanced dramatically during the past decade, with more therapeutic options being available now than at any other time. Anti-resorptive (anti-catabolic) drugs have been prominent in the treatment of osteoporosis for decades. However, over time, several clinical observations made during use of these agents have challenged the prevailing dogma about mechanisms of drug action, changes in bone density and fracture reduction during treatment. It has become clear that changes in bone density are only a small part of the explanation for the dramatic reduction of fractures with treatment. From this paradox developed the notion of 'bone quality'- an operational term describing a number of characteristics that enable bone to resist fracturing. This article reviews this concept from a clinical perspective. It discusses the historical paradoxes found in clinical practice that have led to this notion, identifies the major areas of bone physiology circumscribed by the concept and focuses on present therapies and their effects on bone quality.
Collapse
Affiliation(s)
- Angelo A Licata
- Department of Endocrinology, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| |
Collapse
|
26
|
Riekkinen O, Hakulinen MA, Lammi MJ, Jurvelin JS, Kallioniemi A, Töyräs J. Acoustic properties of trabecular bone--relationships to tissue composition. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1438-44. [PMID: 17561333 DOI: 10.1016/j.ultrasmedbio.2007.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 03/23/2007] [Accepted: 04/12/2007] [Indexed: 05/10/2023]
Abstract
In osteoporosis, changes in tissue composition and structure reduce bone strength and expose it to fractures. The current primary diagnostic technique, i.e., dual energy X-ray absorptiometry, measures areal bone mineral density (BMD) but provides no direct information on trabecular structure or organic composition. Although still poorly characterized, ultrasound techniques may bring about information on bone composition and structure. In this study, relationships of 2.25-MHz ultrasound speed, attenuation, reflection and backscattering with composition of human trabecular bone (n=26) were characterized experimentally, as well as by using numerical analyses. We also determined composition of the trabecular sample (fat and water content, bone volume fraction) and that of the calcified matrix (mineral, proteoglycan and collagen content of trabeculae). In experimental analyses, bone volume fraction and mineral content of the calcified matrix were the only determinants of BMD. Further, bone volume fraction served as the strongest determinant of ultrasound parameters (r=0.51-0.87). In numerical simulations, density and mechanical properties of the calcified matrix systematically affected ultrasound speed, attenuation, reflection and backscattering. However, partial correlation coefficients revealed only low associations(|r|<or=0.4) between the composition of calcified matrix and ultrasound parameters in experimental measurements. To conclude, the content and structure of calcified matrix, rather than its composition, affect more significantly acoustic properties of healthy trabecular bone.
Collapse
Affiliation(s)
- O Riekkinen
- Department of Physics, University of Kuopio, and Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Finland.
| | | | | | | | | | | |
Collapse
|
27
|
Fernandes RJ, Harkey MA, Weis M, Askew JW, Eyre DR. The post-translational phenotype of collagen synthesized by SAOS-2 osteosarcoma cells. Bone 2007; 40:1343-51. [PMID: 17320498 PMCID: PMC1909750 DOI: 10.1016/j.bone.2007.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/21/2006] [Accepted: 01/15/2007] [Indexed: 11/17/2022]
Abstract
The human osteosarcoma-derived cell line, SAOS-2, exhibits many of the phenotypic characteristics of osteoblasts including the deposition of types I and V collagens in an extracellular matrix. Lesser amounts of collagen XI chains were also detected. The cell layer collagen contains hydroxylysyl pyridinoline cross-links but without the accompanying lysyl pyridinoline typical of human bone collagen. This indicates that the lysine residues at the two helical cross-linking loci are fully hydroxylated. The isoform of lysyl hydroxylase, LH1, known to be required for full hydroxylation at these sites, was shown to be highly expressed by SAOS-2 cells. Our findings provide insight on the mechanism of post-translational overmodification of lysine residues in collagen made by osteosarcoma tumors, and may be relevant for understanding a similar overmodification observed in osteoporotic bone.
Collapse
Affiliation(s)
- Russell J Fernandes
- Department of Orthopaedics and Sports Medicine, Box 356500, University of Washington, Seattle, WA 98195-6500, USA.
| | | | | | | | | |
Collapse
|
28
|
Boot AM, de Coo RFM, Pals G, de Muinck Keizer-Schrama SMPF. Muscle weakness as presenting symptom of osteogenesis imperfecta. Eur J Pediatr 2006; 165:392-4. [PMID: 16534588 DOI: 10.1007/s00431-006-0083-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 12/20/2005] [Indexed: 10/24/2022]
Abstract
A young boy presented with severe muscle weakness of his legs at the age of 2 years. Muscle morphology and computer tomography imaging findings were compatible with a metabolic myopathy. Additional investigation showed an osteopenic skeleton and signs of healing fractures. A skin biopsy showed an abnormal electrophoresis pattern of collagen, consistent with a variant of osteogenesis imperfecta. The patient improved with intravenous treatment with pamidronate.
Collapse
Affiliation(s)
- Annemieke M Boot
- Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int 2006; 17:319-36. [PMID: 16341622 DOI: 10.1007/s00198-005-2035-9] [Citation(s) in RCA: 624] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 09/15/2005] [Indexed: 01/04/2023]
Abstract
Bone is a complex tissue of which the principal function is to resist mechanical forces and fractures. Bone strength depends not only on the quantity of bone tissue but also on the quality, which is characterized by the geometry and the shape of bones, the microarchitecture of the trabecular bones, the turnover, the mineral, and the collagen. Different determinants of bone quality are interrelated, especially the mineral and collagen, and analysis of their specific roles in bone strength is difficult. This review describes the interactions of type I collagen with the mineral and the contribution of the orientations of the collagen fibers when the bone is submitted to mechanical forces. Different processes of maturation of collagen occur in bone, which can result either from enzymatic or nonenzymatic processes. The enzymatic process involves activation of lysyl oxidase, which leads to the formation of immature and mature crosslinks that stabilize the collagen fibrils. Two type of nonenzymatic process are described in type I collagen: the formation of advanced glycation end products due to the accumulation of reducible sugars in bone tissue, and the process of racemization and isomerization in the telopeptide of the collagen. These modifications of collagen are age-related and may impair the mechanical properties of bone. To illustrate the role of the crosslinking process of collagen in bone strength, clinical disorders associated with bone collagen abnormalities and bone fragility, such as osteogenesis imperfecta and osteoporosis, are described.
Collapse
Affiliation(s)
- S Viguet-Carrin
- INSERM Research Unit 403 and Claude Bernard University, Lyon, France
| | | | | |
Collapse
|