1
|
Bolger GB. The RNA-binding protein SERBP1 interacts selectively with the signaling protein RACK1. Cell Signal 2017; 35:256-263. [PMID: 28267599 DOI: 10.1016/j.cellsig.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022]
Abstract
The RACK1 protein interacts with numerous proteins involved in signal transduction, the cytoskeleton, and mRNA splicing and translation. We used the 2-hybrid system to identify additional proteins interacting with RACK1 and isolated the RNA-binding protein SERBP1. SERPB1 shares amino acid sequence homology with HABP4 (also known as Ki-1/57), a component of the RNA spicing machinery that has been shown previously to interact with RACK1. Several different isoforms of SERBP1, generated by alternative mRNA splicing, interacted with RACK1 with indistinguishable interaction strength, as determined by a 2-hybrid beta-galactosidase assay. Analysis of deletion constructs of SERBP1 showed that the C-terminal third of the SERBP1 protein, which contains one of its two substrate sites for protein arginine N-methyltransferase 1 (PRMT1), is necessary and sufficient for it to interact with RACK1. Analysis of single amino acid substitutions in RACK1, identified in a reverse 2-hybrid screen, showed very substantial overlap with those implicated in the interaction of RACK1 with the cAMP-selective phosphodiesterase PDE4D5. These data are consistent with SERBP1 interacting selectively with RACK1, mediated by an extensive interaction surface on both proteins.
Collapse
Affiliation(s)
- Graeme B Bolger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA; Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| |
Collapse
|
2
|
Heaven MR, Flint D, Randall SM, Sosunov AA, Wilson L, Barnes S, Goldman JE, Muddiman DC, Brenner M. Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res 2016; 15:2265-82. [PMID: 27193225 PMCID: PMC5036859 DOI: 10.1021/acs.jproteome.6b00316] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alexander disease (AxD) is a neurodegenerative disorder characterized by astrocytic protein aggregates called Rosenthal fibers (RFs). We used mouse models of AxD to determine the protein composition of RFs to obtain information about disease mechanisms including the hypothesis that sequestration of proteins in RFs contributes to disease. A method was developed for RF enrichment, and analysis of the resulting fraction using isobaric tags for relative and absolute quantitation mass spectrometry identified 77 proteins not previously associated with RFs. Three of five proteins selected for follow-up were confirmed enriched in the RF fraction by immunobloting of both the AxD mouse models and human patients: receptor for activated protein C kinase 1 (RACK1), G1/S-specific cyclin D2, and ATP-dependent RNA helicase DDX3X. Immunohistochemistry validated cyclin D2 as a new RF component, but results for RACK1 and DDX3X were equivocal. None of these was decreased in the non-RF fractions compared to controls. A similar result was obtained for the previously known RF component, alphaB-crystallin, which had been a candidate for sequestration. Thus, no support was obtained for the sequestration hypothesis for AxD. Providing possible insight into disease progression, the association of several of the RF proteins with stress granules suggests a role for stress granules in the origin of RFs.
Collapse
Affiliation(s)
- Michael R. Heaven
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Alabama 35294
| | - Daniel Flint
- Department of Neurobiology and the Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Shan M. Randall
- Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | | | - Landon Wilson
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - James E. Goldman
- Department of Pathology & Cell Biology, Columbia University, New York, New York, 10032
| | - David C. Muddiman
- Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Michael Brenner
- Department of Neurobiology and the Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
3
|
Connor JP, Felder M, Kapur A, Onujiogu N. DcR3 binds to ovarian cancer via heparan sulfate proteoglycans and modulates tumor cells response to platinum with corresponding alteration in the expression of BRCA1. BMC Cancer 2012; 12:176. [PMID: 22583667 PMCID: PMC3462721 DOI: 10.1186/1471-2407-12-176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 04/30/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Overcoming platinum resistance is a major obstacle in the treatment of Epithelial Ovarian Cancer (EOC). In our previous work Decoy Receptor 3 (DcR3) was found to be related to platinum resistance. The major objective of this work was to define the cellular interaction of DcR3 with EOC and to explore its effects on platinum responsiveness. METHODS We studied cell lines and primary cultures for the expression of and the cells ability to bind DcR3. Cells were cultured with DcR3 and then exposed to platinum. Cell viability was determined by MTT assay. Finally, the cells molecular response to DcR3 was studied using real time RT-PCR based differential expression arrays, standard RT-PCR, and Western blot. RESULTS High DcR3 in the peritoneal cavity of women with EOC is associated with significantly shorter time to first recurrence after platinum based therapy (p = 0.02). None-malignant cells contribute DcR3 in the peritoneal cavity. The cell lines studied do not secrete DcR3; however they all bind exogenous DcR3 to their surface implying that they can be effected by DcR3 from other sources. DcR3s protein binding partners are minimally expressed or negative, however, all cells expressed the DcR3 binding Heparan Sulfate Proteoglycans (HSPGs) Syndecans-2, and CD44v3. DcR3 binding was inhibited by heparin and heparinase. After DcR3 exposure both SKOV-3 and OVCAR-3 became more resistant to platinum with 15% more cells surviving at high doses. On the contrary CaOV3 became more sensitive to platinum with 20-25% more cell death. PCR array analysis showed increase expression of BRCA1 mRNA in SKOV-3 and OVCAR-3 and decreased BRCA1 expression in CaOV-3 after exposure to DcR3. This was confirmed by gene specific real time PCR and Western blot analysis. CONCLUSIONS Non-malignant cells contribute to the high levels of DcR3 in ovarian cancer. DcR3 binds readily to EOC cells via HSPGs and alter their responsiveness to platinum chemotherapy. The paradoxical responses seen were related to the expression pattern of HSPGs available on the cells surface to interact with. Although the mechanism behind this is not completely known alterations in DNA repair pathways including the expression of BRCA1 appear to be involved.
Collapse
Affiliation(s)
- Joseph P Connor
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53703, USA.
| | | | | | | |
Collapse
|
4
|
Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype. Mol Cancer 2012; 11:19. [PMID: 22471946 PMCID: PMC3350462 DOI: 10.1186/1476-4598-11-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/03/2012] [Indexed: 12/16/2022] Open
Abstract
Background We have identified syndecan-2 as a protein potentially involved in perineural invasion of pancreatic adenocarcinoma (PDAC) cells. Methods Syndecan-2 (SDC-2) expression was analyzed in human normal pancreas, chronic pancreatitis and PDAC tissues. Functional in vitro assays were carried out to determine its role in invasion, migration and signaling. Results SDC-2 was expressed in the majority of the tested pancreatic cancer cell lines while it was upregulated in nerve-invasive PDAC cell clones. There were 2 distinct expression patterns of SDC-2 in PDAC tissue samples: SDC-2 positivity in the cancer cell cytoplasm and a peritumoral expression. Though SDC-2 silencing (using specific siRNA oligonucleotides) did not affect anchorage-dependent growth, it significantly reduced cell motility and invasiveness in the pancreatic cancer cell lines T3M4 and Su8686. On the transcriptional level, migration-and invasion-associated genes were down-regulated following SDC-2 RNAi. Furthermore, SDC-2 silencing reduced K-ras activity, phosphorylation of Src and - further downstream - phosphorylation of ERK2 while levels of the putative SDC-2 signal transducer p120GAP remained unaltered. Conclusion SDC-2 is a novel (perineural) invasion-associated gene in PDAC which cooperates with K-ras to induce a more invasive phenotype.
Collapse
|
5
|
Myklebust LM, Akslen LA, Varhaug JE, Lillehaug JR. Receptor for activated protein C kinase 1 (RACK1) is overexpressed in papillary thyroid carcinoma. Thyroid 2011; 21:1217-25. [PMID: 22007921 DOI: 10.1089/thy.2010.0186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The receptor for activated C kinase 1 (RACK1) has been shown to be overexpressed in several types of cancers such as breast, colon, melanomas, and lung. RACK1 is linked to Ras-Raf-mediated signal transduction and transformed foci formation of 3T3 cells in vitro, and since this pathway is central in papillary thyroid carcinoma (PTC) oncogenesis, we hypothesized that RACK1 could play a role in the development or maintenance of PTC. No report on RACK1 expression in thyroid tissue is available; the present study was therefore aimed at identifying possible correlation of RACK1 expression at the mRNA or protein level in normal thyroid tissue compared to PTC. METHODS We used TaqMan quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry to study the RACK1 gene and protein expression in matched tumor and nontumor samples from 59 PTC patients. The tumor samples were divided into two main categories, low-risk (group 1-3) and high-risk (group 4-6), in accordance with both histological classification and clinical appearance. RESULTS RACK1 mRNA and protein levels were found highly overexpressed in tumor samples, whereas Ki-Ras mRNA was found to be relatively unchanged. B-Raf mRNA expression was low and detected only in tumor samples. Sequencing analysis detected no mutations in RACK1 or Ki-Ras, but 62.7% of the patients harbored the B-Raf single-nucleotide substitution T1799A (codon V600E). Phosphorylated extracellular signal-regulated kinase (pERK) immunohistochemistry analysis demonstrated activation of the mitogen-activated protein kinase (MAPK) pathway in tumor cells. Poorly differentiated and undifferentiated PTCs expressed significantly higher RACK1 mRNA levels than well-differentiated PTCs (p<0.017). CONCLUSIONS Taken together, our findings point to an important role of RACK1 protein in PTC development and progression. Our data also emphasize the importance of assessing protein expression and not only mRNA levels.
Collapse
Affiliation(s)
- Line M Myklebust
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
6
|
Structure of the RACK1 dimer from Saccharomyces cerevisiae. J Mol Biol 2011; 411:486-98. [PMID: 21704636 DOI: 10.1016/j.jmb.2011.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 11/20/2022]
Abstract
Receptor for activated C-kinase 1 (RACK1) serves as a scaffolding protein in numerous signaling pathways involving kinases and membrane-bound receptors from different cellular compartments. It exists simultaneously as a cytosolic free form and as a ribosome-bound protein. As part of the 40S ribosomal subunit, it triggers translational regulation by establishing a direct link between protein kinase C and the protein synthesis machinery. It has been suggested that RACK1 could recruit other signaling molecules onto the ribosome, providing a signal-specific modulation of the translational process. RACK1 is able to dimerize both in vitro and in vivo. This homodimer formation has been observed in several processes including the regulation of the N-methyl-d-aspartate receptor by the Fyn kinase in the brain and the oxygen-independent degradation of hypoxia-inducible factor 1. The functional relevance of this dimerization is, however, still unclear and the question of a possible dimerization of the ribosome-bound protein is still pending. Here, we report the first structure of a RACK1 homodimer, as determined from two independent crystal forms of the Saccharomyces cerevisiae RACK1 protein (also known as Asc1p) at 2.9 and 3.9 Å resolution. The structure reveals an atypical mode of dimerization where monomers intertwine on blade 4, thus exposing a novel surface of the protein to potential interacting partners. We discuss the significance of the dimer structure for RACK1 function.
Collapse
|
7
|
Liu Q, Wang X, Liu Y, Lu R, Yuan Q, Yang B, Zhou J, Wang Y, Wang Z. RACK1 inhibits morphine re-exposure via inhibition of Src. Neurol Res 2010; 33:56-62. [PMID: 20483033 DOI: 10.1179/016164110x12714125204236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE We previously demonstrated that receptor for activated C kinase 1 (RACK1) inhibited phosphorylated extracellular signal-regulated kinase (p-ERK) during morphine reward in mice. In the present study, we examined the role of Src in regulating the inhibition of p-ERK in the brain following RACK1 over-expression during morphine reward. METHODS Mice were subcutaneously injected with morphine on days 2, 4, 6, and 8 after pre-test (day 1), and saline was delivered the following day. After mice showed place preference, RACK1 over-expression plasmid was administered by intraventricular injection 20 minutes after morphine injection on days 11 and 13. Conditioned place preference (CPP) was measured on days 14, 15, 19, and 20. RESULTS Chronic morphine injection increased Src and p-ERK expression in cortex and hippocampus, and mice exhibited increased place preference. Intraventricular administration of RACK1 reduced Src and p-ERK levels in cortex and hippocampus, as well as morphine reward. At 7 days of final RACK1 administration, the effects of RACK1 on Src and p-ERK disappeared, and morphine place preference was restored. CONCLUSION We demonstrated that RACK1 acts on ERK activation via Src in morphine reward in mice.
Collapse
Affiliation(s)
- Qiaofeng Liu
- Key Laboratory of Chronobiology, School of Huaxi Preclinical Medicine and Forensic Medicine, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Interaction of integrin beta1 with cytokeratin 1 in neuroblastoma NMB7 cells. Biochem Soc Trans 2008; 35:1292-4. [PMID: 17956333 DOI: 10.1042/bst0351292] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytokeratin 1, an intermediate filament keratin, was isolated as a partner of the tyrosine kinase Src from neuroblastoma NMB7 cells. The cytokeratin 1-Src complex was found to be associated with the molecular scaffolder RACK1 (receptor for activated protein kinase C). Interestingly, the cytokeratin 1-Src-RACK1 complex was found to actively bind with membrane receptors such as integrin beta1. We are interested in using this complex to find downstream kinases and phosphatases that bind upon cytokine stimulation, especially during neurogenesis.
Collapse
|
9
|
Huang CC, Liu CH, Chuang NN. An enhanced association of RACK1 with Abl in cells transfected with oncogenic ras. Int J Biochem Cell Biol 2007; 40:423-31. [PMID: 17881279 DOI: 10.1016/j.biocel.2007.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 07/10/2007] [Accepted: 08/07/2007] [Indexed: 11/26/2022]
Abstract
The cellular RACK1 was shown in association with Abl in BALB/3T3 cells transfected with S-ras(Q(61)K) by immunoprecipitation. An identical finding was demonstrated with cells transfected with the embryonic E-ras, but not in cells without transformation. The Abl-RACK1 of transformed cells as resolvable with Triton X-114 was found with little affinity for FAK, PY(397)-FAK and integrin. Of interests, PY(397)-FAK in the membrane skeleton of transformed cells was shown in significant quantities on the Western blot. However the PY(397)-FAK of transformed cells was not functionally able to react with RACK1 and recruit cytokeratin-1, a substrate of Src, indicating that PY(397)-FAK is not operative to transmit integrin signals. In other words, the Abl-RACK1 of transformed cells cannot replace the Src-RACK1 of cells without transformation to bridge PY(397)-FAK and cytokeratin-1 for integrin signals, and the formation of Abl-RACK1 in transformed cells may block the association of PY(397)-FAK-RACK1. We characterized Abl and RACK1 from transformed cells by chromatography on a HiTrap-PEP(Taxol) affinity column, constructed from a beta-tubulin peptide specific for Taxol binding (PEP(Taxol)). However, the Triton X-100 cannot achieve the same resolution of Abl-RACK1 from plasma membrane as is shown with Triton X-114. A significant fraction of Abl was deposited at the membrane skeleton and was therefore not accessible with Triton X-100. Half of Abl resolved with Triton X-100 was demonstrated to have catalytic activity as shown with positive phosphotyrosine staining on the Western blot and competitive elution with a specific phosphate, such as sodium beta-glycerophosphate, from HiTrap-PEP(Taxol), but this was not associated with RACK1. No significant difference of RACK1 was found in Triton X-100 resolvable membrane preparations from cells with and without transformations. Future studies are planned to differentiate the mechanism operative for RACK1 associated and RACK1 freed Abl in cells transformed with oncogenic ras.
Collapse
Affiliation(s)
- Chin-Ching Huang
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
10
|
Bjørndal B, Myklebust LM, Rosendal KR, Myromslien FD, Lorens JB, Nolan G, Bruland O, Lillehaug JR. RACK1 regulates Ki-Ras-mediated signaling and morphological transformation of NIH 3T3 cells. Int J Cancer 2007; 120:961-9. [PMID: 17149700 DOI: 10.1002/ijc.22373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Activating Ras mutations are involved in a significant fraction of human tumors. A suppressor screen using a retroviral mouse fibroblast cDNA library was performed to identify novel factors in Ras-mediated transformation. We identified a novel potent inhibitor of Ras-mediated morphological transformation encoded by a truncated version of the receptor for activated C-kinase (RACK1). The truncated protein, designated RACK1DeltaWD1, lacked the N-terminal 49 amino acids encoding the first of the 7 WD40 repeats in RACK1. RACK1DeltaWD1 expression restored contact inhibition, stress fiber formation and reduced ERK phosphorylation in Ki-Ras transformed NIH 3T3 cells. We demonstrate that truncated RACK1 is involved in complexes consisting of wild-type RACK1 and protein kinase C isoforms alpha, betaI and delta, compromising the transduction of an activated Ras signal to the Raf-MEK-ERK pathway. The cellular localization of RACK1DeltaWD1 differed from wtRACK1, indicating that signaling complexes containing the truncated version of RACK1 are incorrectly localized. Notably, 12-O-tetradecanoyl-13-phorbol acetate (TPA) mediated intracellular translocation of RACK1-interacting PKC alpha and delta was abrogated in RACK1DeltaWD1-expressing cells. Our data support a model where RACK1 acts as a key factor in Ki-Ras-mediated morphological transformation.
Collapse
Affiliation(s)
- Bodil Bjørndal
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kiely PA, O'Gorman D, Luong K, Ron D, O'Connor R. Insulin-like growth factor I controls a mutually exclusive association of RACK1 with protein phosphatase 2A and beta1 integrin to promote cell migration. Mol Cell Biol 2006; 26:4041-51. [PMID: 16705158 PMCID: PMC1489096 DOI: 10.1128/mcb.01868-05] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The WD repeat scaffolding protein RACK1 can mediate integration of the insulin-like growth factor I receptor (IGF-IR) and integrin signaling in transformed cells. To address the mechanism of RACK1 function, we searched for regulatory proteins that associate with RACK1 in an IGF-I-dependent manner. The serine threonine phosphatase protein phosphatase 2A (PP2A) was found associated with RACK1 in serum-starved cells, and it dissociated immediately upon stimulation with IGF-I. This dissociation of PP2A from RACK1 and an IGF-I-mediated decrease in cellular PP2A activity did not occur in cells expressing either the serine 1248 or tyrosine 1250/1251 mutants of the IGF-IR that do not interact with RACK1. Recombinant RACK1 could bind to PP2A in vitro and restore phosphatase activity to PP2A from IGF-I-stimulated cells. Ligation of integrins with fibronectin or Matrigel was sufficient to facilitate IGF-I-mediated dissociation of PP2A from RACK1 and also to recruit beta1 integrin as PP2A dissociated. By using TAT-fused N-terminal and C-terminal deletion mutants of RACK1, we determined that both PP2A and beta1 integrin interact in the C terminus of RACK1 within WD repeats 4 to 7. This suggests that integrin ligation displaces PP2A from RACK1. MCF-7 cells overexpressing RACK1 exhibited enhanced motility, which could be reversed by the PP2A inhibitor okadaic acid. Small interfering RNA-mediated suppression of RACK1 also decreased the migratory capacity of DU145 cells. Taken together, our findings indicate that RACK1 enhances IGF-I-mediated cell migration through its ability to exclusively associate with either beta1 integrin or PP2A in a complex at the IGF-IR.
Collapse
Affiliation(s)
- Patrick A Kiely
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| | | | | | | | | |
Collapse
|