1
|
Turesson A, Koochek A, Nydahl M, Lemaitre JM, Bensadoun P, Martinez LO, Guyonnet S, Rolland Y, Vellas B, De Souto Barreto P. The associations between biological markers of aging and appetite loss across adulthood: retrospective case-control data from the INSPIRE-T study. GeroScience 2025:10.1007/s11357-025-01691-w. [PMID: 40347354 DOI: 10.1007/s11357-025-01691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/30/2025] [Indexed: 05/12/2025] Open
Abstract
Appetite loss is a common clinical condition in older adulthood, but how this condition associates with biological aging remains unknown. The present study aims to examine the associations of biological aging markers with appetite loss in community-dwelling people aged 21 to 102 years. This retrospective case-control study used baseline data from the INSPIRE-T cohort in Toulouse, France. Each of the 49 cases with appetite loss was sex- and age-matched to two controls without appetite loss (n = 147; median age of 79 years, interquartile range: 19.5; 67% women). Appetite loss was assessed using a single yes-no question from the World Health Organization´s Integrated Care for Older People screening tool. Biomarkers (first- and second-generation DNA methylation-based epigenetic clocks [Horvath, Hannum, PhenoAge, and GrimAge], the inflammatory aging clock iAge, and Adenosine triphosphatase inhibitory factor 1-IF1) were derived from blood samples. Logistic regression analyzed the associations of these markers with appetite loss. In fully adjusted models, accelerated aging using GrimAge was the only biomarker associated with appetite loss (Odds Ratio = 1.21, 95% Confidence Interval: 1.03, 1.43). When stratified by age (≤ 65 years vs. > 65 years) and sex, this association remained significant only in individuals over 65 years and men. Future research is needed to explore the potential mechanisms involved, as well as how other biological drivers of aging (e.g., cell senescence, deregulated nutrient sensing) relate to appetite loss.
Collapse
Affiliation(s)
- Annelie Turesson
- Department of Food Studies, Nutrition and Dietetics, Uppsala University, Uppsala, Sweden.
- IHU HealthAge, Toulouse, France.
| | - Afsaneh Koochek
- Department of Food Studies, Nutrition and Dietetics, Uppsala University, Uppsala, Sweden
| | - Margaretha Nydahl
- Department of Food Studies, Nutrition and Dietetics, Uppsala University, Uppsala, Sweden
| | - Jean-Marc Lemaitre
- INSERM IRMB UMR1183, Hôpital Saint Eloi, University of Montpellier, Montpellier, France
| | - Paul Bensadoun
- INSERM IRMB UMR1183, Hôpital Saint Eloi, University of Montpellier, Montpellier, France
| | - Laurent O Martinez
- IHU HealthAge, Toulouse, France
- LiMitAging, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, INSERM, University of Toulouse - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Sophie Guyonnet
- IHU HealthAge, Toulouse, France
- CERPOP UMR 1295, University of Toulouse, INSERM, UPS, Toulouse, France
- Institute On Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
| | - Yves Rolland
- IHU HealthAge, Toulouse, France
- CERPOP UMR 1295, University of Toulouse, INSERM, UPS, Toulouse, France
- Institute On Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
| | - Bruno Vellas
- IHU HealthAge, Toulouse, France
- CERPOP UMR 1295, University of Toulouse, INSERM, UPS, Toulouse, France
- Institute On Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
| | - Philipe De Souto Barreto
- IHU HealthAge, Toulouse, France
- CERPOP UMR 1295, University of Toulouse, INSERM, UPS, Toulouse, France
- Institute On Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
| |
Collapse
|
2
|
Domin R, Pytka M, Niziński J, Żołyński M, Zybek-Kocik A, Wrotkowska E, Zieliński J, Guzik P, Ruchała M. ATPase Inhibitory Factor 1-A Novel Marker of Cellular Fitness and Exercise Capacity? Int J Mol Sci 2022; 23:15303. [PMID: 36499630 PMCID: PMC9741029 DOI: 10.3390/ijms232315303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
ATPase inhibitory factor 1 is a myokine inhibiting the hydrolytic activity of mitochondrial adenosine triphosphate synthase and ecto-F1-ATPase on the surface of many cells. IF1 affects ATP metabolism in mitochondria and the extracellular space and upregulates glucose uptake in myocytes; these processes are essential in physical activity. It is unknown whether the IF1 serum concentration is associated with exercise capacity. This study explored the association between resting IF1 serum concentration and exercise capacity indices in healthy people. IF1 serum concentration was measured in samples collected at rest in 97 healthy amateur cyclists. Exercise capacity was assessed on a bike ergometer at the successive stages of the progressive cardiopulmonary exercise test (CPET). IF1 serum concentration was negatively and significantly correlated with oxygen consumption, oxygen pulse, and load at various CPET stages. A better exercise capacity was associated with lower circulating IF1. IF1 may reflect better cellular/mitochondrial energetic fitness, but there is uncertainty regarding how IF1 is released into the intravascular space. We speculate that lower IF1 concentration may reflect a better cellular/mitochondrial integrity, as this protein is bound more strongly with ATPases in mitochondria and cellular surfaces in people with higher exercise capacity.
Collapse
Affiliation(s)
- Remigiusz Domin
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
| | - Michał Pytka
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
- Department of Cardiology, Intensive Therapy, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Jan Niziński
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
| | - Mikołaj Żołyński
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
| | - Ariadna Zybek-Kocik
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Jacek Zieliński
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland
| | - Przemysław Guzik
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
- Department of Cardiology, Intensive Therapy, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
| |
Collapse
|
3
|
Gatto C, Grandi M, Solaini G, Baracca A, Giorgio V. The F1Fo-ATPase inhibitor protein IF1 in pathophysiology. Front Physiol 2022; 13:917203. [PMID: 35991181 PMCID: PMC9389554 DOI: 10.3389/fphys.2022.917203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
The endogenous inhibitor of ATP synthase is a protein of about 10 kDa, known as IF1 which binds to the catalytic domain of the enzyme during ATP hydrolysis. The main role of IF1 consists of limiting ATP dissipation under condition of severe oxygen deprivation or in the presence of dysfunctions of mitochondrial respiratory complexes, causing a collapse in mitochondrial membrane potential and therefore ATP hydrolysis. New roles of IF1 are emerging in the fields of cancer and neurodegeneration. Its high expression levels in tumor tissues have been associated with different roles favouring tumor formation, progression and evasion. Since discordant mechanisms of action have been proposed for IF1 in tumors, it is of the utmost importance to clarify them in the prospective of defining novel approaches for cancer therapy. Other IF1 functions, including its involvement in mitophagy, may be protective for neurodegenerative and aging-related diseases. In the present review we aim to clarify and discuss the emerging mechanisms in which IF1 is involved, providing a critical view of the discordant findings in the literature.
Collapse
|
4
|
Gore E, Duparc T, Genoux A, Perret B, Najib S, Martinez LO. The Multifaceted ATPase Inhibitory Factor 1 (IF1) in Energy Metabolism Reprogramming and Mitochondrial Dysfunction: A New Player in Age-Associated Disorders? Antioxid Redox Signal 2022; 37:370-393. [PMID: 34605675 PMCID: PMC9398489 DOI: 10.1089/ars.2021.0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The mitochondrial oxidative phosphorylation (OXPHOS) system, comprising the electron transport chain and ATP synthase, generates membrane potential, drives ATP synthesis, governs energy metabolism, and maintains redox balance. OXPHOS dysfunction is associated with a plethora of diseases ranging from rare inherited disorders to common conditions, including diabetes, cancer, neurodegenerative diseases, as well as aging. There has been great interest in studying regulators of OXPHOS. Among these, ATPase inhibitory factor 1 (IF1) is an endogenous inhibitor of ATP synthase that has long been thought to avoid the consumption of cellular ATP when ATP synthase acts as an ATP hydrolysis enzyme. Recent Advances: Recent data indicate that IF1 inhibits ATP synthesis and is involved in a multitude of mitochondrial-related functions, such as mitochondrial quality control, energy metabolism, redox balance, and cell fate. IF1 also inhibits the ATPase activity of cell-surface ATP synthase, and it is used as a cardiovascular disease biomarker. Critical Issues: Although recent data have led to a paradigm shift regarding IF1 functions, these have been poorly studied in entire organisms and in different organs. The understanding of the cellular biology of IF1 is, therefore, still limited. The aim of this review was to provide an overview of the current understanding of the role of IF1 in mitochondrial functions, health, and diseases. Future Directions: Further investigations of IF1 functions at the cell, organ, and whole-organism levels and in different pathophysiological conditions will help decipher the controversies surrounding its involvement in mitochondrial function and could unveil therapeutic strategies in human pathology. Antioxid. Redox Signal. 37, 370-393.
Collapse
Affiliation(s)
- Emilia Gore
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Thibaut Duparc
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Annelise Genoux
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France.,Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Bertrand Perret
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France.,Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Souad Najib
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | | |
Collapse
|
5
|
Gallinat A, Badimon L. DJ-1 interacts with the ectopic ATP-synthase in endothelial cells during acute ischemia and reperfusion. Sci Rep 2022; 12:12753. [PMID: 35882968 PMCID: PMC9325725 DOI: 10.1038/s41598-022-16998-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 01/28/2023] Open
Abstract
Endothelial cells (ECs) play a central role in ischemia. ATP-Synthase is now recognized to be ectopically expressed in the cell surface of many cell types, with putative roles described in angiogenesis, proliferation, and intracellular pH regulation. DJ-1 is a multifunctional protein, involved in cell protection against ischemia, ischemia–reperfusion (I/R), and oxidative stress, that regulates mitochondrial ATP-synthase. Here we focused on the characterization of the endothelial dynamics of DJ-1, and its implication in the regulation of the ectopic ATP-synthase (ecATP-S) activity, during acute ischemia and I/R in ECs. We found that DJ-1 is secreted from ECs, by a mechanism enhanced in ischemia and I/R. A cleaved form of DJ-1 (DJ-1∆C) was found only in the secretome of ischemic cells. The ecATP-S activity increased following acute ischemia in ECs, coinciding with DJ-1 and DJ-1∆C secretion. The inhibition of DJ-1 expression inhibited the ecATP-S response to ischemia by ∼ 50%, and its exogenous administration maximized the effect, together with an enhanced Akt phosphorylation and angiotube-formation potential at reperfusion. Immunoprecipitation studies showed direct interaction between DJ-1 and the ecATP-S. Altogether suggesting that DJ-1 is actively cleaved and released from ischemic ECs and plays an important role in the regulation of the ecATP-S activity during acute ischemia and reperfusion.
Collapse
Affiliation(s)
- Alex Gallinat
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, c/Sant Antoni María Claret, 167, 08025, Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, c/Sant Antoni María Claret, 167, 08025, Barcelona, Spain. .,CIBERCV-Instituto de Salud Carlos III, Madrid, Spain. .,UAB-Chair Cardiovascular Research, Barcelona, Spain.
| |
Collapse
|
6
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Taurino F, Gnoni A. Systematic review of plasma-membrane ecto-ATP synthase: A new player in health and disease. Exp Mol Pathol 2018; 104:59-70. [DOI: 10.1016/j.yexmp.2017.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/15/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
|
8
|
Martinez LO, Genoux A, Ferrières J, Duparc T, Perret B. Serum inhibitory factor 1, high-density lipoprotein and cardiovascular diseases. Curr Opin Lipidol 2017; 28:337-346. [PMID: 28504983 DOI: 10.1097/mol.0000000000000434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The atheroprotective properties of HDL are supported by epidemiological and preclinical research. However, the results of interventional trials paradoxically indicate that drugs increasing HDL-cholesterol (HDL-C) do not reduce coronary artery disease (CAD) risk. Moreover, Mendelian randomization studies have shown no effect of HDL-C-modifying variants on CAD outcome. Thus, the protective effects of HDL particles are more governed by their functional status than their cholesterol content. In this context, any successful clinical exploitation of HDL will depend on the identification of HDL-related biomarkers, better than HDL-C level, for assessing cardiovascular risk and monitoring responses to treatment. RECENT FINDINGS Recent studies have enlightened the role of ecto-F1-ATPase as a cell surface receptor for apoA-I, the major apolipoprotein of HDL, involved in the important metabolic and vascular atheroprotective functions of HDL. In the light of these findings, the clinical relevance of ecto-F1-ATPase in humans has recently been supported by the identification of serum F1-ATPase inhibitor (IF1) as an independent determinant of HDL-C, CAD risk and cardiovascular mortality in CAD patients. SUMMARY Serum IF1 measurement might be used as a novel HDL-related biomarker to better stratify risk in high-risk populations or to determine pharmacotherapy.
Collapse
Affiliation(s)
- Laurent O Martinez
- aInstitut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Institute of Metabolic and Cardiovascular Diseases bUniversity of Toulouse, UMR1048, Paul Sabatier University cService de Biochimie, Pôle biologie, Hôpital de Purpan, CHU de Toulouse dDepartment of Cardiology, Toulouse Rangueil University Hospital eINSERM UMR 1027, Department of Epidemiology, Toulouse University School of Medicine, Toulouse, France
| | | | | | | | | |
Collapse
|
9
|
Genoux A, Lichtenstein L, Ferrières J, Duparc T, Bongard V, Vervueren PL, Combes G, Taraszkiewicz D, Elbaz M, Galinier M, Nassar B, Ruidavets JB, Perret B, Martinez LO. Serum levels of mitochondrial inhibitory factor 1 are independently associated with long-term prognosis in coronary artery disease: the GENES Study. BMC Med 2016; 14:125. [PMID: 27553421 PMCID: PMC4994300 DOI: 10.1186/s12916-016-0672-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/10/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Epidemiological and observational studies have established that high-density lipoprotein cholesterol (HDL-C) is an independent negative cardiovascular risk factor. However, simple measurement of HDL-C levels is no longer sufficient for cardiovascular risk assessment. Therefore, there is a critical need for novel non-invasive biomarkers that would display prognostic superiority over HDL-C. Cell surface ecto-F1-ATPase contributes to several athero-protective properties of HDL, including reverse cholesterol transport and vascular endothelial protection. Serum inhibitory factor 1 (IF1), an endogenous inhibitor of ecto-F1-ATPase, is an independent determinant of HDL-C associated with low risk of coronary artery disease (CAD). This work aimed to examine the predictive value of serum IF1 for long-term mortality in CAD patients. Its informative value was compared to that of HDL-C. METHOD Serum IF1 levels were measured in 577 male participants with stable CAD (age 45-74 years) from the GENES (Genetique et ENvironnement en Europe du Sud) study. Vital status was yearly assessed, with a median follow-up of 11 years and a 29.5 % mortality rate. Cardiovascular mortality accounted for the majority (62.4 %) of deaths. RESULTS IF1 levels were positively correlated with HDL-C (r s = 0.40; P < 0.001) and negatively with triglycerides (r s = -0.21, P < 0.001) and CAD severity documented by the Gensini score (r s = -0.13; P < 0.01). Total and cardiovascular mortality were lower at the highest quartiles of IF1 (HR = 0.55; 95 % CI, 0.38-0.89 and 0.50 (0.28-0.89), respectively) but not according to HDL-C. Inverse associations of IF1 with mortality remained significant, after multivariate adjustments for classical cardiovascular risk factors (age, smoking, physical activity, waist circumference, HDL-C, dyslipidemia, hypertension, and diabetes) and for powerful biological and clinical variables of prognosis, including heart rate, ankle-brachial index and biomarkers of cardiac diseases. The 10-year mortality was 28.5 % in patients with low IF1 (<0.42 mg/L) and 21.4 % in those with high IF1 (≥0.42 mg/L, P < 0.02). CONCLUSIONS We investigated for the first time the relation between IF1 levels and long-term prognosis in CAD patients, and found an independent negative association. IF1 measurement might be used as a novel HDL-related biomarker to better stratify risk in populations at high risk or in the setting of pharmacotherapy.
Collapse
Affiliation(s)
- Annelise Genoux
- Institute of Metabolic and Cardiovascular Diseases, I2MC, Inserm, UMR 1048, Toulouse, France
- Université de Toulouse, UMR1048, Toulouse, France
- CHU Toulouse, Toulouse University Hospital, Service de Biochimie, Pôle biologie, Hôpital de Purpan, Toulouse, France
| | - Laeticia Lichtenstein
- Institute of Metabolic and Cardiovascular Diseases, I2MC, Inserm, UMR 1048, Toulouse, France
- Université de Toulouse, UMR1048, Toulouse, France
| | - Jean Ferrières
- Department of Epidemiology, Health Economics and Public Health, Inserm, Université de Toulouse, CHU Toulouse, UMR1027, Toulouse, France
- CHU Toulouse, Toulouse University Hospital, Fédération de Cardiologie, Toulouse, France
| | - Thibaut Duparc
- Institute of Metabolic and Cardiovascular Diseases, I2MC, Inserm, UMR 1048, Toulouse, France
- Université de Toulouse, UMR1048, Toulouse, France
| | - Vanina Bongard
- Department of Epidemiology, Health Economics and Public Health, Inserm, Université de Toulouse, CHU Toulouse, UMR1027, Toulouse, France
| | - Paul-Louis Vervueren
- Department of Epidemiology, Health Economics and Public Health, Inserm, Université de Toulouse, CHU Toulouse, UMR1027, Toulouse, France
- CHU Toulouse, Toulouse University Hospital, Fédération de Cardiologie, Toulouse, France
| | - Guillaume Combes
- Institute of Metabolic and Cardiovascular Diseases, I2MC, Inserm, UMR 1048, Toulouse, France
- CHU Toulouse, Toulouse University Hospital, Service de Biochimie, Pôle biologie, Hôpital de Purpan, Toulouse, France
| | - Dorota Taraszkiewicz
- CHU Toulouse, Toulouse University Hospital, Fédération de Cardiologie, Toulouse, France
| | - Meyer Elbaz
- CHU Toulouse, Toulouse University Hospital, Fédération de Cardiologie, Toulouse, France
| | - Michel Galinier
- CHU Toulouse, Toulouse University Hospital, Fédération de Cardiologie, Toulouse, France
| | - Bertrand Nassar
- CHU Toulouse, Toulouse University Hospital, Service de Biochimie, Pôle biologie, Hôpital de Purpan, Toulouse, France
| | - Jean-Bernard Ruidavets
- Department of Epidemiology, Health Economics and Public Health, Inserm, Université de Toulouse, CHU Toulouse, UMR1027, Toulouse, France
| | - Bertrand Perret
- Institute of Metabolic and Cardiovascular Diseases, I2MC, Inserm, UMR 1048, Toulouse, France
- Université de Toulouse, UMR1048, Toulouse, France
- CHU Toulouse, Toulouse University Hospital, Service de Biochimie, Pôle biologie, Hôpital de Purpan, Toulouse, France
| | - Laurent O Martinez
- Institute of Metabolic and Cardiovascular Diseases, I2MC, Inserm, UMR 1048, Toulouse, France.
- Université de Toulouse, UMR1048, Toulouse, France.
| |
Collapse
|
10
|
Comelli M, Domenis R, Buso A, Mavelli I. F1FO ATP Synthase Is Expressed at the Surface of Embryonic Rat Heart-Derived H9c2 Cells and Is Affected by Cardiac-Like Differentiation. J Cell Biochem 2016; 117:470-82. [PMID: 26223201 DOI: 10.1002/jcb.25295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/29/2015] [Indexed: 01/17/2023]
Abstract
Taking advantage from the peculiar features of the embryonic rat heart-derived myoblast cell line H9c2, the present study is the first to provide evidence for the expression of F1FO ATP synthase and of ATPase Inhibitory Factor 1 (IF1) on the surface of cells of cardiac origin, together documenting that they were affected through cardiac-like differentiation. Subunits of both the catalytic F1 sector of the complex (ATP synthase-β) and of the peripheral stalk, responsible for the correct F1-FO assembly/coupling, (OSCP, b, F6) were detected by immunofluorescence, together with IF1. The expression of ATP synthase-β, ATP synthase-b and F6 were similar for parental and differentiated H9c2, while the levels of OSCP increased noticeably in differentiated cells, where the results of in situ Proximity Ligation Assay were consistent with OSCP interaction within ecto-F1FO complexes. An opposite trend was shown by IF1 whose ectopic expression appeared greater in the parental H9c2. Here, evidence for the IF1 interaction with ecto-F1FO complexes was provided. Functional analyses corroborate both sets of data. i) An F1FO ATP synthase contribution to the exATP production by differentiated cells suggests an augmented expression of holo-F1FO ATP synthase on plasma membrane, in line with the increase of OSCP expression and interaction considered as a requirement for favoring the F1-FO coupling. ii) The absence of exATP generation by the enzyme, and the finding that exATP hydrolysis was largely oligomycin-insensitive, are in line in parental cells with the deficit of OSCP and suggest the occurrence of sub-assemblies together evoking more regulation by IF1.
Collapse
Affiliation(s)
- Marina Comelli
- Department of Medical and Biological Sciences and MATI Centre of Excellence, University of Udine, p.le Kolbe 4, Udine, 33100, Italy
- INBB Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'oro, Rome, 00136, Italy
| | - Rossana Domenis
- Department of Medical and Biological Sciences and MATI Centre of Excellence, University of Udine, p.le Kolbe 4, Udine, 33100, Italy
| | - Alessia Buso
- Department of Medical and Biological Sciences and MATI Centre of Excellence, University of Udine, p.le Kolbe 4, Udine, 33100, Italy
| | - Irene Mavelli
- Department of Medical and Biological Sciences and MATI Centre of Excellence, University of Udine, p.le Kolbe 4, Udine, 33100, Italy
- INBB Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'oro, Rome, 00136, Italy
| |
Collapse
|
11
|
Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins. Atherosclerosis 2015; 238:89-100. [DOI: 10.1016/j.atherosclerosis.2014.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022]
|
12
|
Loza-Huerta A, Vera-Estrella R, Darszon A, Beltrán C. Certain Strongylocentrotus purpuratus sperm mitochondrial proteins co-purify with low density detergent-insoluble membranes and are PKA or PKC-substrates possibly involved in sperm motility regulation. Biochim Biophys Acta Gen Subj 2013; 1830:5305-15. [DOI: 10.1016/j.bbagen.2013.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 06/24/2013] [Accepted: 07/27/2013] [Indexed: 12/14/2022]
|
13
|
Genoux A, Ruidavets JB, Ferrières J, Combes G, Lichtenstein L, Pons V, Laffargue M, Taraszkiewicz D, Carrié D, Elbaz M, Perret B, Martinez LO. Serum IF1 concentration is independently associated to HDL levels and to coronary heart disease: the GENES study. J Lipid Res 2013; 54:2550-8. [PMID: 23794714 PMCID: PMC3735951 DOI: 10.1194/jlr.p036335] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/21/2013] [Indexed: 11/20/2022] Open
Abstract
HDL is strongly inversely related to cardiovascular risk. Hepatic HDL uptake is controlled by ecto-F1-ATPase activity, and potentially inhibited by mitochondrial inhibitor factor 1 (IF1). We recently found that IF1 is present in serum and correlates with HDL-cholesterol (HDL-C). Here, we have evaluated the relationship between circulating IF1 and plasma lipoproteins, and we determined whether IF1 concentration is associated with the risk of coronary heart disease (CHD). Serum IF1 was measured in 648 coronary patients ages 45-74 and in 669 matched male controls, in the context of a cross-sectional study on CHD. Cardiovascular risk factors were documented for each participant, including life-style habits and biological and clinical markers. In controls, multivariate analysis demonstrated that IF1 was independently positively associated with HDL-C and apoA-I (r = 0.27 and 0.28, respectively, P < 0.001) and negatively with triglycerides (r = -0.23, P < 0.001). Mean IF1 concentration was lower in CHD patients than in controls (0.43 mg/l and 0.53 mg/l, respectively, P < 0.001). In multivariate analyses, following adjustments on cardiovascular risk factors or markers, IF1 was negatively related to CHD (P < 0.001). This relationship was maintained after adjustment for HDL-C or apoA-I. This study identifies IF1 as a new determinant of HDL-C that is inversely associated with CHD.
Collapse
Affiliation(s)
- Annelise Genoux
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, 31000, France
- Université de Toulouse III, UMR1048, Toulouse, 31300, France
- Service de Biochimie, Pôle biologie, hôpital de Purpan, CHU de Toulouse, Toulouse, 31000, France
| | | | - Jean Ferrières
- INSERM, U1027, Faculté de Médecine, Toulouse, 31073, France
- Service de Cardiologie, Pôle cardiovasculaire et métabolique, hôpital de Rangueil, CHU de Toulouse, Toulouse, 31000, France
| | - Guillaume Combes
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, 31000, France
- Université de Toulouse III, UMR1048, Toulouse, 31300, France
| | - Laeticia Lichtenstein
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, 31000, France
- Université de Toulouse III, UMR1048, Toulouse, 31300, France
| | - Véronique Pons
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, 31000, France
- Université de Toulouse III, UMR1048, Toulouse, 31300, France
| | - Muriel Laffargue
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, 31000, France
- Université de Toulouse III, UMR1048, Toulouse, 31300, France
| | | | - Didier Carrié
- Service de Cardiologie, Pôle cardiovasculaire et métabolique, hôpital de Rangueil, CHU de Toulouse, Toulouse, 31000, France
| | - Meyer Elbaz
- Service de Cardiologie, Pôle cardiovasculaire et métabolique, hôpital de Rangueil, CHU de Toulouse, Toulouse, 31000, France
| | - Bertrand Perret
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, 31000, France
- Université de Toulouse III, UMR1048, Toulouse, 31300, France
- Service de Biochimie, Pôle biologie, hôpital de Purpan, CHU de Toulouse, Toulouse, 31000, France
| | - Laurent O. Martinez
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, 31000, France
- Université de Toulouse III, UMR1048, Toulouse, 31300, France
| |
Collapse
|
14
|
Wen-Li Z, Jian W, Yan-Fang T, Xing F, Yan-Hong L, Xue-Ming Z, Min Z, Jian N, Jian P. Inhibition of the ecto-beta subunit of F1F0-ATPase inhibits proliferation and induces apoptosis in acute myeloid leukemia cell lines. J Exp Clin Cancer Res 2012; 31:92. [PMID: 23140181 PMCID: PMC3503881 DOI: 10.1186/1756-9966-31-92] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/05/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leukemia, a heterogeneous clonal disorder of hematopoietic progenitor cells, presents a world-wide health problem, especially in childhood. F1F0 ATPase, an inner mitochondrial enzyme, is expressed on the plasma membrane of tumor cells, and its inhibition induces both anti-angiogenic and anti-tumorigenic activity. METHODS Monoclonal Antibody (McAb) against ATPase was produced by polyethylene glycol-mediated fusions and screened by ELISA. Proliferation, cell cycle and apoptosis of cells were analyzed when the surface ATPase of cells was blockaded with McAb. RESULTS We detected cell-membrane expression of the F1F0 ATPase β subunit on 0.1% to 56% of the 11 cell lines derived from leukemia, including acute myeloid leukemia (AML). We produced a monoclonal antibody, McAb7E10, which recognizes both the native and recombinant ATPase β subunit, with a dissociation constant (KD) of 3.26E-10. We demonstrate that McAb7E10 binds to ATPase at the cell surface, where it is able to inhibit ATP synthesis. McAb7E10 significantly inhibited proliferation of AML cell lines in vitro: the relative inhibitory rates of 50 μg/mL McAb7E10 treated MV4-11and HL-60 cells were 69.6% and 81.9% respectively. Cell cycle analysis indicated that McAb7E10 significantly induced apoptosis in MV4-11 and HL-60 cells: the relative rates of apoptosis in 5, 10 and 50ug/mL McAb7E10 treated MV4-11 cells was 3.6 ± 0.83%, 8.4 ± 1.69% and 17.3 ± 2.56% compared to 1.5% ± 0.85% in mouse IgG treated cells (p < 0.01). The relative rate of apoptosis in 5, 10 and 50ug/mL McAb7E10 treated HL-60 cells was 5.5 ± 2.37%, 11.3 ± 3.62% and 19.9 ± 3.31% compared to 1.56% ± 0.97% in mouse IgG treated cells (p < 0.01). Annexin V staining demonstrated that the relative apoptotic rates in 50 μg/mL McAb7E10 treated MV4-11 and HL-60 cells were 50.5% ± 7.04% and 32.9% ± 4.52%, respectively, significantly higher than IgG control antibody treated cells were 21.9% ± 3.11% and 15.3% ± 3.95%, p < 0.01. CONCLUSIONS These findings indicate that ectopic expression of ATPase β subunit may be a tumor-associated antigen in hematological malignancies. The F1F0 ATPase β subunit provides a potential target for immunotherapy in AML and hematological malignancies.
Collapse
Affiliation(s)
- Zhao Wen-Li
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Wang Jian
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Tao Yan-Fang
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Feng Xing
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Li Yan-Hong
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Zhu Xue-Ming
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Zhang Min
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Ni Jian
- Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing, China
| | - Pan Jian
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Molecular Regulation of the Mitochondrial F(1)F(o)-ATPsynthase: Physiological and Pathological Significance of the Inhibitory Factor 1 (IF(1)). Int J Cell Biol 2012; 2012:367934. [PMID: 22966230 PMCID: PMC3433140 DOI: 10.1155/2012/367934] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/19/2012] [Accepted: 04/19/2012] [Indexed: 12/24/2022] Open
Abstract
In mammals, the mitochondrial F1Fo-ATPsynthase sets out the energy homeostasis by producing the bulk of cellular ATP. As for every enzyme, the laws of thermodynamics command it; however, it is privileged to have a dedicated molecular regulator that controls its rotation. This is the so-called ATPase Inhibitory Factor 1 (IF1) that blocks its reversal to avoid the consumption of cellular ATP when the enzyme acts as an ATP hydrolase. Recent evidence has also demonstrated that IF1 may control the alignment of the enzyme along the mitochondrial inner membrane, thus increasing the interest for the molecule. We conceived this review to outline the fundamental knowledge of the F1Fo-ATPsynthase and link it to the molecular mechanisms by which IF1 regulates its way of function, with the ultimate goal to highlight this as an important and possibly unique means to control this indispensable enzyme in both physiological and pathological settings.
Collapse
|
16
|
Genoux A, Pons V, Radojkovic C, Roux-Dalvai F, Combes G, Rolland C, Malet N, Monsarrat B, Lopez F, Ruidavets JB, Perret B, Martinez LO. Mitochondrial inhibitory factor 1 (IF1) is present in human serum and is positively correlated with HDL-cholesterol. PLoS One 2011; 6:e23949. [PMID: 21935367 PMCID: PMC3173369 DOI: 10.1371/journal.pone.0023949] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mitochondrial ATP synthase is expressed as a plasma membrane receptor for apolipoprotein A-I (apoA-I), the major protein component in High Density Lipoproteins (HDL). On hepatocytes, apoA-I binds to cell surface ATP synthase (namely ecto-F(1)-ATPase) and stimulates its ATPase activity, generating extracellular ADP. This production of extracellular ADP activates a P2Y(13)-mediated HDL endocytosis pathway. Conversely, exogenous IF1, classically known as a natural mitochondrial specific inhibitor of F(1)-ATPase activity, inhibits ecto-F(1)-ATPase activity and decreases HDL endocytosis by both human hepatocytes and perfused rat liver. METHODOLOGY/PRINCIPAL FINDINGS Since recent reports also described the presence of IF1 at the plasma membrane of different cell types, we investigated whether IF1 is present in the systemic circulation in humans. We first unambiguously detected IF1 in human serum by immunoprecipitation and mass spectrometry. We then set up a competitive ELISA assay in order to quantify its level in human serum. Analyses of IF1 levels in 100 normolipemic male subjects evidenced a normal distribution, with a median value of 0.49 µg/mL and a 95% confidence interval of 0.22-0.82 µg/mL. Correlations between IF1 levels and serum lipid levels demonstrated that serum IF1 levels are positively correlated with HDL-cholesterol and negatively with triglycerides (TG). CONCLUSIONS/SIGNIFICANCE Altogether, these data support the view that, in humans, circulating IF1 might affect HDL levels by inhibiting hepatic HDL uptake and also impact TG metabolism.
Collapse
Affiliation(s)
- Annelise Genoux
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Véronique Pons
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Claudia Radojkovic
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Florence Roux-Dalvai
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
| | - Guillaume Combes
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Corinne Rolland
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Nicole Malet
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Bernard Monsarrat
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
| | - Frédéric Lopez
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | | | - Bertrand Perret
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Laurent O. Martinez
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
17
|
Kim BW, Lee CS, Yi JS, Lee JH, Lee JW, Choo HJ, Jung SY, Kim MS, Lee SW, Lee MS, Yoon G, Ko YG. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane. Expert Rev Proteomics 2011; 7:849-66. [PMID: 21142887 DOI: 10.1586/epr.10.87] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.
Collapse
Affiliation(s)
- Bong-Woo Kim
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vantourout P, Radojkovic C, Lichtenstein L, Pons V, Champagne E, Martinez LO. Ecto-F 1-ATPase: A moonlighting protein complex and an unexpected apoA-I receptor. World J Gastroenterol 2010; 16:5925-35. [PMID: 21157968 PMCID: PMC3007107 DOI: 10.3748/wjg.v16.i47.5925] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial ATP synthase has been recently detected at the surface of different cell types, where it is a high affinity receptor for apoA-I, the major protein component in high density lipoproteins (HDL). Cell surface ATP synthase (namely ecto-F1-ATPase) expression is related to different biological effects, such as regulation of HDL uptake by hepatocytes, endothelial cell proliferation or antitumor activity of Vγ9/Vδ2 T lymphocytes. This paper reviews the recently discovered functions and regulations of ecto-F1-ATPase. Particularly, the role of the F1-ATPase pathway(s) in HDL-cholesterol uptake and apoA-I-mediated endothelial protection suggests its potential importance in reverse cholesterol transport and its regulation might represent a potential therapeutic target for HDL-related therapy for cardiovascular diseases. Therefore, it is timely for us to better understand how this ecto-enzyme and downstream pathways are regulated and to develop pharmacologic interventions.
Collapse
|
19
|
Pagnozzi D, Birolo L, Leo G, Contessi S, Lippe G, Pucci P, Mavelli I. Stoichiometry and topology of the complex of the endogenous ATP synthase inhibitor protein IF(1) with calmodulin. Biochemistry 2010; 49:7542-52. [PMID: 20669893 DOI: 10.1021/bi100447t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
IF(1), the natural inhibitor protein of F(O)F(1)ATP synthase able to regulate the ATP hydrolytic activity of both mitochondrial and cell surface enzyme, exists in two oligomeric states depending on pH: an inactive, highly helical, tetrameric form above pH 6.7 and an active, inhibitory, dimeric form below pH 6.7 [ Cabezon , E. , Butler , P. J. , Runswick , M. J. , and Walker , J. E. ( 2000 ) J. Biol. Chem. 275 , 25460 -25464 ]. IF(1) is known to interact in vitro with the archetypal EF-hand calcium sensor calmodulin (CaM), as well to colocalize with CaM on the plasma membrane of cultured cells. Low resolution structural data were herein obtained in order to get insights into the molecular interaction between IF(1) and CaM. A combined structural proteomic strategy was used which integrates limited proteolysis and chemical cross-linking with mass spectrometric analysis. Specifically, chemical cross-linking data clearly indicate that the C-terminal lobe of CaM molecule contacts IF(1) within the inhibitory, flexible N-terminal region that is not involved in the dimeric interface in IF(1). Nevertheless, native mass spectrometry analysis demonstrated that in the micromolar range the stoichiometry of the IF(1)-CaM complex is 1:1, thereby indicating that binding to CaM promotes IF(1) dimer dissociation without directly interfering with the intersubunit contacts of the IF(1) dimer. The relevance of the finding that only the C-terminal lobe of CaM is involved in the interaction is two fold: (i) the IF(1)-CaM complex can be included in the category of noncanonical structures of CaM complexes; (ii) it can be inferred that the N-terminal region of CaM might have the opportunity to bind to a second target.
Collapse
Affiliation(s)
- Daniela Pagnozzi
- Department of Organic Chemistry and Biochemistry, University of Napoli Federico II, viaCynthia 6, 80126 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Giorgio V, Bisetto E, Franca R, Harris DA, Passamonti S, Lippe G. The ectopic F(O)F(1) ATP synthase of rat liver is modulated in acute cholestasis by the inhibitor protein IF1. J Bioenerg Biomembr 2010; 42:117-23. [PMID: 20180002 DOI: 10.1007/s10863-010-9270-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 01/12/2010] [Indexed: 02/07/2023]
Abstract
Rat liver plasma membranes contain F(O)F(1) complexes (ecto-F(O)F(1)) displaying a similar molecular weight to the mitochondrial F(O)F(1) ATP synthase, as evidenced by Blue Native PAGE. Their ATPase activity was stably reduced in short-term extra-hepatic cholestasis. Immunoblotting and immunoprecipitation analyses demonstrated that the reduction in activity was not due to a decreased expression of ecto-F(O)F(1) complexes, but to an increased level of an inhibitory protein, ecto-IF(1), bound to ecto-F(O)F(1). Since cholestasis down regulates the hepatic uptake of HDL-cholesterol, and ecto-F(O)F(1) has been shown to mediate SR-BI-independent hepatic uptake of HDL-cholesterol, these findings provide support to the hypothesis that ecto-F(O)F(1) contributes to the fine control of reverse cholesterol transport, in parallel with SR-BI. No activity change of the mitochondrial F(O)F(1) ATP synthase (m-F(O)F(1)), or any variation of its association with m-IF(1) was observed in cholestasis, indicating that ecto-IF(1) expression level is modulated independently from that of ecto-F(O)F(1), m-IF(1) and m-F(O)F(1).
Collapse
Affiliation(s)
- Valentina Giorgio
- Department of Biomedical Sciences and Technologies, University of Udine, p.le Kolbe 4, I-33100, Udine, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Lippe G, Bisetto E, Comelli M, Contessi S, Di Pancrazio F, Mavelli I. Mitochondrial and cell-surface F0F1ATPsynthase in innate and acquired cardioprotection. J Bioenerg Biomembr 2009; 41:151-7. [PMID: 19387805 DOI: 10.1007/s10863-009-9208-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondria are central to heart function and dysfunction, and the pathways activated by different cardioprotective interventions mostly converge on mitochondria. In a context of perspectives in innate and acquired cardioprotection, we review some recent advances in F(0)F(1)ATPsynthase structure/function and regulation in cardiac cells. We focus on three topics regarding the mitochondrial F(0)F(1)ATPsynthase and the plasma membrane enzyme, i.e.: i) the crucial role of cardiac mitochondrial F(0)F(1)ATPsynthase regulation by the inhibitory protein IF(1) in heart preconditioning strategies; ii) the structure and function of mitochondrial F(0)F(1)ATPsynthase oligomers in mammalian myocardium as possible endogenous factors of mitochondria resistance to ischemic insult; iii) the external location and characterization of plasma membrane F(0)F(1) ATP synthase in search for possible actors of its regulation, such as IF(1) and calmodulin, at cell surface.
Collapse
Affiliation(s)
- Giovanna Lippe
- Department of Biomedical Sciences and Technologies and M.A.T.I. Centre of Excellence, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Mennigen JA, Martyniuk CJ, Crump K, Xiong H, Zhao E, Popesku J, Anisman H, Cossins AR, Xia X, Trudeau VL. Effects of fluoxetine on the reproductive axis of female goldfish (Carassius auratus). Physiol Genomics 2008; 35:273-82. [DOI: 10.1152/physiolgenomics.90263.2008] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We investigated the effects of fluoxetine, a selective serotonin reuptake inhibitor, on neuroendocrine function and the reproductive axis in female goldfish. Fish were given intraperitoneal injections of fluoxetine twice a week for 14 days, resulting in five injections of 5 μg fluoxetine/g body wt. We measured the monoamine neurotransmitters serotonin, dopamine, and norepinephrine in addition to their metabolites with HPLC. Homovanillic acid, a metabolite in the dopaminergic pathway, increased significantly in the hypothalamus. Plasma estradiol levels were measured by radioimmunoassay and were significantly reduced approximately threefold after fluoxetine treatment. We found that fluoxetine also significantly reduced the expression of estrogen receptor (ER)β1 mRNA by 4-fold in both the hypothalamus and the telencephalon and ERα mRNA by 1.7-fold in the telencephalon. Fluoxetine had no effect on the expression of ERβ2 mRNA in the hypothalamus or telencephalon. Microarray analysis identified isotocin, a neuropeptide that stimulates reproductive behavior in fish, as a candidate gene affected by fluoxetine treatment. Real-time RT-PCR verified that isotocin mRNA was downregulated approximately sixfold in the hypothalamus and fivefold in the telencephalon. Intraperitoneal injection of isotocin (1 μg/g) increased plasma estradiol, providing a potential link between changes in isotocin gene expression and decreased circulating estrogen in fluoxetine-injected fish. Our results reveal targets of serotonergic modulation in the neuroendocrine brain and indicate that fluoxetine has the potential to affect sex hormones and modulate genes involved in reproductive function and behavior in the brain of female goldfish. We discuss these findings in the context of endocrine disruption because fluoxetine has been detected in the environment.
Collapse
Affiliation(s)
- Jan A. Mennigen
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Christopher J. Martyniuk
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida
| | - Kate Crump
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Huiling Xiong
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - E. Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jason Popesku
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hymie Anisman
- Institute of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Andrew R. Cossins
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Xuhua Xia
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Vance L. Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Mangiullo R, Gnoni A, Leone A, Gnoni GV, Papa S, Zanotti F. Structural and functional characterization of F(o)F(1)-ATP synthase on the extracellular surface of rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1326-35. [PMID: 18775409 DOI: 10.1016/j.bbabio.2008.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/22/2008] [Accepted: 08/05/2008] [Indexed: 11/25/2022]
Abstract
Extracellular ATP formation from ADP and inorganic phosphate, attributed to the activity of a cell surface ATP synthase, has so far only been reported in cultures of some proliferating and tumoral cell lines. We now provide evidence showing the presence of a functionally active ecto-F(o)F(1)-ATP synthase on the plasma membrane of normal tissue cells, i.e. isolated rat hepatocytes. Both confocal microscopy and flow cytometry analysis show the presence of subunits of F(1) (alpha/beta and gamma) and F(o) (F(o)I-PVP(b) and OSCP) moieties of ATP synthase at the surface of rat hepatocytes. This finding is confirmed by immunoblotting analysis of the hepatocyte plasma membrane fraction. The presence of the inhibitor protein IF(1) is also detected on the hepatocyte surface. Activity assays show that the ectopic-ATP synthase can work both in the direction of ATP synthesis and hydrolysis. A proton translocation assay shows that both these mechanisms are accompanied by a transient flux of H(+) and are inhibited by F(1) and F(o)-targeting inhibitors. We hypothesise that ecto-F(o)F(1)-ATP synthase may control the extracellular ADP/ATP ratio, thus contributing to intracellular pH homeostasis.
Collapse
Affiliation(s)
- Roberto Mangiullo
- Department of Medical Biochemistry, Biology and Physics, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Devenish RJ, Prescott M, Rodgers AJW. The structure and function of mitochondrial F1F0-ATP synthases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:1-58. [PMID: 18544496 DOI: 10.1016/s1937-6448(08)00601-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent advances in understanding of the structure of the F(1)F(0)-ATP synthase of the mitochondrial inner membrane (mtATPase). A significant achievement has been the determination of the structure of the principal peripheral or stator stalk components bringing us closer to achieving the Holy Grail of a complete 3D structure for the complex. A major focus of the field in recent years has been to understand the physiological significance of dimers or other oligomer forms of mtATPase recoverable from membranes and their relationship to the structure of the cristae of the inner mitochondrial membrane. In addition, the association of mtATPase with other membrane proteins has been described and suggests that further levels of functional organization need to be considered. Many reports in recent years have concerned the location and function of ATP synthase complexes or its component subunits on the external surface of the plasma membrane. We consider whether the evidence supports complete complexes being located on the cell surface, the biogenesis of such complexes, and aspects of function especially related to the structure of mtATPase.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, and ARC Centre of Excellence in Microbial Structural and Functional Genomics, Monash University, Clayton Campus, Victoria, 3800, Australia
| | | | | |
Collapse
|
25
|
Contessi S, Comelli M, Cmet S, Lippe G, Mavelli I. IF(1) distribution in HepG2 cells in relation to ecto-F(0)F (1)ATPsynthase and calmodulin. J Bioenerg Biomembr 2007; 39:291-300. [PMID: 17851741 DOI: 10.1007/s10863-007-9091-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 05/09/2007] [Indexed: 12/01/2022]
Abstract
F(0)F(1)ATPsynthase is now known to be expressed as a plasma membrane receptor for several extracellular ligands. On hepatocytes, ecto-F(0)F(1)ATPsynthase binds apoA-I and triggers HDL endocytosis concomitant with ATP hydrolysis. Considering that inhibitor protein IF(1) was shown to regulate the hydrolytic activity of ecto-F(0)F(1)ATPsynthase and to interact with calmodulin (CaM) in vitro, we investigated the subcellular distributions of IF(1), calmodulin (CaM), OSCP and beta subunits of F(0)F(1)ATPsynthase in HepG2 cells. Using immunofluorescence and Western blotting, we found that around 50% of total cellular IF(1) is localized outside mitochondria, a relevant amount of which is associated to the plasma membrane where we also found Ca(2+)-CaM, OSCP and beta. Confocal microscopy showed that IF(1) colocalized with Ca(2+)-CaM on plasma membrane but not in mitochondria, suggesting that Ca(2+)-CaM may modulate the cell surface availability of IF(1) and thus its ability to inhibit ATP hydrolysis by ecto-F(0)F(1)ATPsynthase. These observations support a hypothesis that the IF(1)-Ca(2+)-CaM complex, forming on plasma membrane, functions in the cellular regulation of HDL endocytosis by hepatocytes.
Collapse
Affiliation(s)
- Stefania Contessi
- Department of Biomedical Sciences and Technologies, MATI Centre of Excellence, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | | | | | | | | |
Collapse
|
26
|
Yonally SK, Capaldi RA. The F1F0 ATP synthase and mitochondrial respiratory chain complexes are present on the plasma membrane of an osteosarcoma cell line: An immunocytochemical study. Mitochondrion 2006; 6:305-14. [PMID: 17113362 DOI: 10.1016/j.mito.2006.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 08/28/2006] [Accepted: 10/04/2006] [Indexed: 11/22/2022]
Abstract
F(1)F(0) ATP synthase is ectopically expressed on the surface of several cell types, including endothelium and cancer cells. This study uses immunocytochemical detection methods via highly specific monoclonal antibodies to explore the possibility of plasma membrane localization of other mitochondrial proteins using an osteosarcoma cell line in which the location of the mitochondrial reticulum can be clearly traced by green fluorescent protein tagging of the organelle. We found that subunits of three of the four respiratory chain complexes were present on the surface of these cells. Additionally, we show for the first time that F(0) subunits d and OSCP of the ATP synthase are ectopically expressed. In all cases the OXPHOS proteins show a punctate distribution, consistent with data from proteome analysis of isolated lipid rafts that place the various mitochondrial proteins in plasma membrane microdomains. We also examined the cell surface for marker membrane proteins from several other intracellular organelles including ER, golgi and nuclear envelope. They were not found on the surface of the osteosarcoma cells. We conclude that mitochondrial membrane proteins are ectopically expressed, but not proteins from other cellular organelles. A specific mechanism by which the mitochondrion and plasma membrane fuse to deliver organellar proteins is suggested.
Collapse
Affiliation(s)
- Sarah K Yonally
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, United States
| | | |
Collapse
|
27
|
Champagne E, Martinez LO, Collet X, Barbaras R. Ecto-F1Fo ATP synthase/F1 ATPase: metabolic and immunological functions. Curr Opin Lipidol 2006; 17:279-84. [PMID: 16680033 DOI: 10.1097/01.mol.0000226120.27931.76] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Until recently, F1Fo ATP synthase expression was believed to be strictly confined to mitochondria where it generates most cellular ATP. This paper reviews the recent evidence for an extra-mitochondrial expression of its components by immunofluorescence, biochemistry and proteomics studies. It discusses its possible implications in an ecto-nucleotide metabolism and its pathophysiological role in normal and tumoral cells. RECENT FINDINGS F1Fo ATP synthase components have been identified as cell-surface receptors for apparently unrelated ligands in the course of studies carried out on angiogenesis, lipoprotein metabolism, innate immunity, hypertension, or regulation of food intake. SUMMARY F1Fo ATP synthase is expressed on endothelial cells where it binds angiostatin, regulates surface ATP levels, and modulates endothelial cell proliferation and differentiation. Through binding of apolipoprotein A-I, a similar complex, expressed on hepatocytes, regulates lipoprotein internalization. On tumors, it is recognized in association with apolipoprotein A-I by the antigen receptor of circulating cytotoxic lymphocytes of the gammadelta subtype and thus promotes an innate tumor cell recognition and lysis. It binds enterostatin on brain cells. Biochemistry and proteomics studies indicate an enrichment of F1Fo components in lipid rafts selectively with some other mitochondrial proteins, suggesting intracellular traffic connections between mitochondria and other membrane compartments. Finally, depending on cell type and environment, it can generate ATP or ADP which may transfer a downstream signal to purinergic receptors.
Collapse
|
28
|
Abstract
The mitochondrial F1Fo adenosine triphosphate (ATP) synthase is one of the most thoroughly studied enzyme complexes known. Yet, a number of new observations suggesting that the enzyme is also located on the cell surface necessitate further investigation. While the mitochondrial synthase utilizes the proton gradient generated by oxidative phosphorylation to power ATP synthesis, the cell surface synthase has instead been implicated in numerous activities, including the mediation of intracellular pH, cellular response to antiangiogenic agents, and cholesterol homeostasis. Intriguingly, a common thread uniting these various models of cell surface ATP synthase functions is the apparently caveolar distribution of the enzyme. Recent studies concerning the cell surface ATP synthase manifest applications in the regulation of serum cholesterol levels, cellular proliferation and antitumor strategies. This review addresses the expression, interactions, functions, and consequences of inhibition of cell surface ATP synthase, an enzyme now displaying a shift in paradigm, as well as of location.
Collapse
Affiliation(s)
- Sulene L Chi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
29
|
Contessi S, Haraux F, Mavelli I, Lippe G. Identification of a conserved calmodulin-binding motif in the sequence of F0F1 ATPsynthase inhibitor protein. J Bioenerg Biomembr 2005; 37:317-26. [PMID: 16341776 DOI: 10.1007/s10863-005-8643-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Accepted: 09/25/2005] [Indexed: 10/25/2022]
Abstract
The natural inhibitor proteins IF1 regulate mitochondrial F0F1 ATPsynthase in a wide range of species. We characterized the interaction of CaM with purified bovine IF1, two bovine IF1 synthetic peptides, as well as two homologous proteins from yeast, namely IF1 and STF1. Fluorometric analyses showed that bovine and yeast inhibitors bind CaM with a 1:1 stoichiometry in the pH range between 5 and 8 and that CaM-IF1 interaction is Ca2+-dependent. Bovine and yeast IF1 have intermediate binding affinity for CaM, while the Kd (dissociation constant) of the STF1-CaM interaction is slightly higher. Binding studies of CaM with bovine IF1 synthetic peptides allowed us to identify bovine IF1 sequence 33-42 as the putative CaM-binding region. Sequence alignment revealed that this region contains a hydrophobic motif for CaM binding, highly conserved in both yeast IF1 and STF1 sequences. In addition, the same region in bovine IF1 has an IQ motif for CaM binding, conserved as an IQ-like motif in yeast IF1 but not in STF1. Based on the pH and Ca2+ dependence of IF1 interaction with CaM, we suggest that the complex can be formed outside mitochondria, where CaM could regulate IF1 trafficking or additional IF1 roles not yet clarified.
Collapse
Affiliation(s)
- Stefania Contessi
- Department of Biomedical Sciences and Technologies, MATI Centre of Excellence, CIME Centre, University of Udine, Udine, Italy
| | | | | | | |
Collapse
|