1
|
Arunachalam AK, Aboobacker FN, Sampath E, Devasia AJ, Korula A, George B, Edison ES. Molecular Heterogeneity of Osteopetrosis in India: Report of 17 Novel Variants. Indian J Hematol Blood Transfus 2024; 40:494-503. [PMID: 39011244 PMCID: PMC11246401 DOI: 10.1007/s12288-023-01732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/26/2023] [Indexed: 07/17/2024] Open
Abstract
Osteopetrosis is a clinically and genetically heterogeneous group of inherited bone disorders that is caused by defects in osteoclast formation or function. Treatment options vary with the disease severity and an accurate molecular diagnosis helps in prognostication and treatment decisions. We investigated the genetic causes of osteopetrosis in 31 unrelated patients of Indian origin. Screening for the genetic variants was done by Sanger sequencing or next generation sequencing in 48 samples that included 31 samples from index patients, 16 from parents' and 1 chorionic villus sample. A total of 30 variants, including 29 unique variants, were identified in 26 of the 31 patients in the study. TCIRG1 was the most involved gene (n = 14) followed by TNFRSF11A (n = 4) and CLCN7 (n = 3). A total of 17 novel variants were identified. Prenatal diagnosis was done in one family and the foetus showed homozygous c.807 + 2T > G variant in TCIRG1. Molecular diagnosis of osteopetrosis aids in therapeutic decisions including the need for a stem cell transplantation and gives a possible option of performing prenatal diagnosis in affected families. Further studies would help in understanding the genetic etiology in patients where no variants were identified. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-023-01732-4.
Collapse
Affiliation(s)
| | - Fouzia N. Aboobacker
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Eswari Sampath
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Anup J. Devasia
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | | |
Collapse
|
2
|
Zirngibl RA, Wang A, Yao Y, Manolson MF, Krueger J, Dupuis L, Mendoza-Londono R, Voronov I. Novel c.G630A TCIRG1 mutation causes aberrant splicing resulting in an unusually mild form of autosomal recessive osteopetrosis. J Cell Biochem 2019; 120:17180-17193. [PMID: 31111556 DOI: 10.1002/jcb.28979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Autosomal recessive osteopetrosis (ARO) is a severe genetic bone disease characterized by high bone density due to mutations that affect formation or function of osteoclasts. Mutations in the a3 subunit of the vacuolar-type H+ -ATPase (encoded by T-cell immune regulator 1 [TCIRG1]) are responsible for ~50% of all ARO cases. We identified a novel TCIRG1 (c.G630A) mutation responsible for an unusually mild form of the disease. To characterize this mutation, osteoclasts were differentiated using peripheral blood monocytes from the patient (c.G630A/c.G630A), male sibling (+/+), unaffected female sibling (+/c.G630A), and unaffected parent (+/c.G630A). Osteoclast formation, bone-resorbing function, TCIRG1 protein, and mRNA expression levels were assessed. The c.G630A mutation did not affect osteoclast differentiation; however, bone-resorbing function was decreased. Both TCIRG1 protein and full-length TCIRG1 mRNA expression levels were also diminished in the affected patient's sample. The c.G630A mutation replaces the last nucleotide of exon 6 and may cause splicing defects. We analyzed the TCIRG1 splicing pattern between exons 4 to 8 and detected deletions of exons 5, 6, 7, and 5-6 (ΔE56). These deletions were only observed in c.G630A/c.G630A and +/c.G630A samples, but not in +/+ controls. Among these deletions, only ΔE56 maintained the reading frame and was predicted to generate an 85 kDa protein. Exons 5-6 encode an uncharacterized portion of the cytoplasmic N-terminal domain of a3, a domain not involved in proton translocation. To investigate the effect of ΔE56 on V-ATPase function, we transformed yeast with plasmids carrying full-length or truncated Vph1p, the yeast ortholog of a3. Both proteins were expressed; however, ΔE56-Vph1p transformed yeast failed to grow on Zn2+ -containing plates, a growth assay dependent on V-ATPase-mediated vacuolar acidification. In conclusion, our results show that the ΔE56 truncated protein is not functional, suggesting that the mild ARO phenotype observed in the patient is likely due to the residual full-length protein expression.
Collapse
Affiliation(s)
- Ralph A Zirngibl
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yeqi Yao
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Morris F Manolson
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Joerg Krueger
- Division of Hematology/Oncology and Blood and Marrow Transplant, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Irina Voronov
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Duan X, Yang S, Zhang L, Yang T. V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis. Theranostics 2018; 8:5379-5399. [PMID: 30555553 PMCID: PMC6276090 DOI: 10.7150/thno.28391] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) play a critical role in regulating extracellular acidification of osteoclasts and bone resorption. The deficiencies of subunit a3 and d2 of V-ATPases result in increased bone density in humans and mice. One of the traditional drug design strategies in treating osteoporosis is the use of subunit a3 inhibitor. Recent findings connect subunits H and G1 with decreased bone density. Given the controversial effects of ATPase subunits on bone density, there is a critical need to review the subunits of V-ATPase in osteoclasts and their functions in regulating osteoclasts and bone remodeling. In this review, we comprehensively address the following areas: information about all V-ATPase subunits and their isoforms; summary of V-ATPase subunits associated with human genetic diseases; V-ATPase subunits and osteopetrosis/osteoporosis; screening of all V-ATPase subunits variants in GEFOS data and in-house data; spectrum of V-ATPase subunits during osteoclastogenesis; direct and indirect roles of subunits of V-ATPases in osteoclasts; V-ATPase-associated signaling pathways in osteoclasts; interactions among V-ATPase subunits in osteoclasts; osteoclast-specific V-ATPase inhibitors; perspective of future inhibitors or activators targeting V-ATPase subunits in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, P. R. China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, P. R. China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, P. R. China
| | - Tielin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, People's Republic of China
| |
Collapse
|
4
|
Zhao W, Zhang Y, Yang S, Hao Y, Wang Z, Duan X. Analysis of two transcript isoforms of vacuolar ATPase subunit H in mouse and zebrafish. Gene 2017; 638:66-75. [PMID: 28970149 DOI: 10.1016/j.gene.2017.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022]
Abstract
ATP6V1H encodes the subunit H of vacuolar ATPase (V-ATPase) and has been recently proved to regulate osteoclast function. The alternative splicing of ATP6V1H gene results in two isoforms, and it is not clear whether and how the two isoforms function differently. In this report, we used bioinformatics methods to compare the differences of two isoforms in different species. The distributions and amounts of two isoforms were analyzed in eleven kinds of mouse tissues and mouse osteoclasts using RT-PCR, Q-PCR, western blot and immunohistochemical staining methods, respectively. In order to observe the in vivo biological differences of two isoforms during development, the zebrafish mRNA of two wild type atp6v1h transcripts as well as their mutant forms were also injected into zebrafish embryos, respectively. Bioinformatic analysis revealed that two isoforms were quite different in many ways, especially in protein size, internal space, phosphorylation state and H-bond binding. The amounts of two transcripts and the ratio of long and short transcript varied a lot from tissue to tissue or cell to cell, and osteoclasts were the cells only expressing long isoform among the tissues or cells we detected. The in vivo selective expression of two subunit H splice variants showed their different effects on the craniofacial development of zebrafish. The short isoform reduced the size of zebrafish head and did not play a complete function compared with the long isoform. We propose that long isoform of subunit H is necessary for the normal craniofacial bone development and the lack of short transcript might be necessary for the normal osteoclastic function.
Collapse
Affiliation(s)
- Wanmin Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yanli Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ying Hao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
5
|
Rosenthal EA, Makaryan V, Burt AA, Crosslin DR, Kim DS, Smith JD, Nickerson DA, Reiner AP, Rich SS, Jackson RD, Ganesh SK, Polfus LM, Qi L, Dale DC, Jarvik GP. Association Between Absolute Neutrophil Count and Variation at TCIRG1: The NHLBI Exome Sequencing Project. Genet Epidemiol 2016; 40:470-4. [PMID: 27229898 DOI: 10.1002/gepi.21976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/22/2016] [Accepted: 04/05/2016] [Indexed: 11/11/2022]
Abstract
Neutrophils are a key component of innate immunity. Individuals with low neutrophil count are susceptible to frequent infections. Linkage and association between congenital neutropenia and a single rare missense variant in TCIRG1 have been reported in a single family. Here, we report on nine rare missense variants at evolutionarily conserved sites in TCIRG1 that are associated with lower absolute neutrophil count (ANC; p = 0.005) in 1,058 participants from three cohorts: Atherosclerosis Risk in Communities (ARIC), Coronary Artery Risk Development in Young Adults (CARDIA), and Jackson Heart Study (JHS) of the NHLBI Grand Opportunity Exome Sequencing Project (GO ESP). These results validate the effects of TCIRG1 coding variation on ANC and suggest that this gene may be associated with a spectrum of mild to severe effects on ANC.
Collapse
Affiliation(s)
- Elisabeth A Rosenthal
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Vahagn Makaryan
- Division of General Internal Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Amber A Burt
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - David R Crosslin
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Daniel Seung Kim
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Alex P Reiner
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Stephen S Rich
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Santhi K Ganesh
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Linda M Polfus
- Human Genetics Center, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Lihong Qi
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, California, United States of America
| | - David C Dale
- Division of General Internal Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Gail P Jarvik
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, United States of America.,Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Makaryan V, Rosenthal EA, Bolyard AA, Kelley ML, Below JE, Bamshad MJ, Bofferding KM, Smith JD, Buckingham K, Boxer LA, Skokowa J, Welte K, Nickerson DA, Jarvik GP, Dale DC. TCIRG1-associated congenital neutropenia. Hum Mutat 2014; 35:824-7. [PMID: 24753205 DOI: 10.1002/humu.22563] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/28/2014] [Indexed: 11/12/2022]
Abstract
Severe congenital neutropenia (SCN) is a rare hematopoietic disorder, with estimated incidence of 1 in 200,000 individuals of European descent, many cases of which are inherited in an autosomal dominant pattern. Despite the fact that several causal genes have been identified, the genetic basis for >30% of cases remains unknown. We report a five-generation family segregating a novel single nucleotide variant (SNV) in TCIRG1. There is perfect cosegregation of the SNV with congenital neutropenia in this family; all 11 affected, but none of the unaffected, individuals carry this novel SNV. Western blot analysis show reduced levels of TCIRG1 protein in affected individuals, compared to healthy controls. Two unrelated patients with SCN, identified by independent investigators, are heterozygous for different, rare, highly conserved, coding variants in TCIRG1.
Collapse
Affiliation(s)
- Vahagn Makaryan
- Department of Medicine, Divisions of GIM, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kim J, Zhao K, Jiang P, Lu ZX, Wang J, Murray JC, Xing Y. Transcriptome landscape of the human placenta. BMC Genomics 2012; 13:115. [PMID: 22448651 PMCID: PMC3368734 DOI: 10.1186/1471-2164-13-115] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/27/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The placenta is a key component in understanding the physiological processes involved in pregnancy. Characterizing genes critical for placental function can serve as a basis for identifying mechanisms underlying both normal and pathologic pregnancies. Detailing the placental tissue transcriptome could provide a valuable resource for genomic studies related to placental disease. RESULTS We have conducted a deep RNA sequencing (RNA-Seq) study on three tissue components (amnion, chorion, and decidua) of 5 human placentas from normal term pregnancies. We compared the placental RNA-Seq data to that of 16 other human tissues and observed a wide spectrum of transcriptome differences both between placenta and other human tissues and between distinct compartments of the placenta. Exon-level analysis of the RNA-Seq data revealed a large number of exons with differential splicing activities between placenta and other tissues, and 79% (27 out of 34) of the events selected for RT-PCR test were validated. The master splicing regulator ESRP1 is expressed at a proportionately higher level in amnion compared to all other analyzed human tissues, and there is a significant enrichment of ESRP1-regulated exons with tissue-specific splicing activities in amnion. This suggests an important role of alternative splicing in regulating gene function and activity in specific placental compartments. Importantly, genes with differential expression or splicing in the placenta are significantly enriched for genes implicated in placental abnormalities and preterm birth. In addition, we identified 604-1007 novel transcripts and 494-585 novel exons expressed in each of the three placental compartments. CONCLUSIONS Our data demonstrate unique aspects of gene expression and splicing in placental tissues that provide a basis for disease investigation related to disruption of these mechanisms. These data are publicly available providing the community with a rich resource for placental physiology and disease-related studies.
Collapse
Affiliation(s)
- Jinsil Kim
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA52242, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Smirnova AS, Ferreira-Silva KC, Mine KL, Andrade-Oliveira V, Shulzhenko N, Gerbase-DeLima M, Morgun A. Differential expression of new LTA splice variants upon lymphocyte activation. Mol Immunol 2008; 45:295-300. [PMID: 17521734 DOI: 10.1016/j.molimm.2007.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/05/2007] [Accepted: 04/12/2007] [Indexed: 11/26/2022]
Abstract
Lymphotoxin alpha (LTA) is a member of the TNF cytokine superfamily, produced principally by lymphocytes. It plays an important role in immune and inflammatory responses. Many TNF superfamily members have functionally important isoforms generated by alternative splicing but alternative splicing of LTA has never been studied. The known LTA protein is encoded by a transcript containing four exons. Here we report seven new LTA splice variants, three of them evolutionary conserved. We demonstrate their presence in cytoplasmic RNA suggesting that they could be translated into new LTA isoforms. We observed that their expression is differentially regulated upon activation of peripheral blood mononuclear cells and lymphocyte subpopulations (CD4+, CD8+, and CD19+). Our data suggest that the new LTA splice variants might play a role in the regulation of the immune response.
Collapse
Affiliation(s)
- Anna S Smirnova
- Immunogenetics Division, Pediatrics Department, Universidade Federal de Sao Paulo (UNIFESP-EPM), R. Loefgreen 1235, 04040-031 São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
9
|
Conway RL, Falk RE. A patient with TCIRG1-related infantile osteopetrosis presenting with congenital anomalies: chance association or a case for pleiotropy? Am J Med Genet A 2007; 143A:3140-3. [PMID: 18000986 DOI: 10.1002/ajmg.a.32102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Robert L Conway
- Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, USA.
| | | |
Collapse
|
10
|
Kumamoto Y, Tamura A, Volk HD, Reinke P, Löhler J, Tullius SG, Utku N. TIRC7 is induced in rejected human kidneys and anti-TIRC7 mAb with FK506 prolongs survival of kidney allografts in rats. Transpl Immunol 2006; 16:238-44. [PMID: 17138060 DOI: 10.1016/j.trim.2006.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 08/20/2006] [Accepted: 09/11/2006] [Indexed: 11/21/2022]
Abstract
TIRC7 delivers essential signals during immune activation as antibodies targeting TIRC7 inhibit lymphocyte proliferation and Th1 cytokine expression in vitro and prolonged kidney and heart allograft survival in vivo. Immunohistochemical analysis of biopsy specimens from human renal allografts undergoing rejection despite treatment with Calcineurin inhibitors (CI) showed elevated TIRC7 expression. Accordingly, with a view to clinical application, we evaluated the therapeutic effect of a chimerized anti-TIRC7 mAb in combination with Tacrolimus (FK506) using a rat kidney transplantation model (DA to Lewis). The combination of sub-therapeutic doses of both compounds significantly (p<0.05) prolonged the median graft survival to 19.5 days compared to monotherapy with FK506 (median survival, 7d) or mAb against TIRC7 (7d). These results suggest a potential synergism of anti-TIRC7 mAb and FK506 action, which could be developed into a novel combination therapy in the clinic by lowering side effects of present CI treatment. Moreover, the identification of TIRC7 in graft infiltrating lymphocytes might serve as a diagnostic marker to detect allograft rejection.
Collapse
|