1
|
Bowling FZ, Frohman MA, Airola MV. Structure and regulation of human phospholipase D. Adv Biol Regul 2021; 79:100783. [PMID: 33495125 DOI: 10.1016/j.jbior.2020.100783] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Mammalian phospholipase D (PLD) generates phosphatidic acid, a dynamic lipid secondary messenger involved with a broad spectrum of cellular functions including but not limited to metabolism, migration, and exocytosis. As a promising pharmaceutical target, the biochemical properties of PLD have been well characterized. This has led to the recent crystal structures of human PLD1 and PLD2, the development of PLD specific pharmacological inhibitors, and the identification of cellular regulators of PLD. In this review, we discuss the PLD1 and PLD2 structures, PLD inhibition by small molecules, and the regulation of PLD activity by effector proteins and lipids.
Collapse
Affiliation(s)
- Forrest Z Bowling
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
2
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
3
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2014; 66:1033-79. [PMID: 25244928 PMCID: PMC4180337 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
4
|
Jang JH, Lee CS, Hwang D, Ryu SH. Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog Lipid Res 2011; 51:71-81. [PMID: 22212660 DOI: 10.1016/j.plipres.2011.12.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phospholipase D (PLD) is a phosphatidyl choline (PC)-hydrolyzing enzyme that generates phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling. Through interactions with signaling molecules, both PLD and PA can mediate a variety of cellular functions, such as, growth/proliferation, vesicle trafficking, cytoskeleton modulation, development, and morphogenesis. Therefore, systemic approaches for investigating PLD networks including interrelationship between PLD and PA and theirs binding partners, such as proteins and lipids, can enhance fundamental knowledge of roles of PLD and PA in diverse biological processes. In this review, we summarize previously reported protein-protein and protein-lipid interactions of PLD and PA and their binding partners. In addition, we describe the functional roles played by PLD and PA in these interactions, and provide PLD network that summarizes these interactions. The PLD network suggests that PLD and PA could act as a decision maker and/or as a coordinator of signal dynamics. This viewpoint provides a turning point for understanding the roles of PLD-PA as a dynamic signaling hub.
Collapse
Affiliation(s)
- Jin-Hyeok Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungbook 790-784, South Korea
| | | | | | | |
Collapse
|
5
|
Gomez-Cambronero J. The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF). Cell Signal 2011; 23:1885-95. [PMID: 21740967 PMCID: PMC3204931 DOI: 10.1016/j.cellsig.2011.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022]
Abstract
Phospholipase D (PLD) catalyzes the conversion of the membrane phospholipid phosphatidylcholine to choline and phosphatidic acid (PA). PLD's mission in the cell is two-fold: phospholipid turnover with maintenance of the structural integrity of cellular/intracellular membranes and cell signaling through PA and its metabolites. Precisely, through its product of the reaction, PA, PLD has been implicated in a variety of physiological cellular functions, such as intracellular protein trafficking, cytoskeletal dynamics, chemotaxis of leukocytes and cell proliferation. The catalytic (HKD) and regulatory (PH and PX) domains were studied in detail in the PLD1 isoform, but PLD2 was traditionally studied in lesser detail and much less was known about its regulation. Our laboratory has been focusing on the study of PLD2 regulation in mammalian cells. Over the past few years, we have reported, in regards to the catalytic action of PLD, that PA is a chemoattractant agent that binds to and signals inside the cell through the ribosomal S6 kinases (S6K). Regarding the regulatory domains of PLD2, we have reported the discovery of the PLD2 interaction with Grb2 via Y169 in the PX domain, and further association to Sos, which results in an increase of de novo DNA synthesis and an interaction (also with Grb2) via the adjacent residue Y179, leading to the regulation of cell ruffling, chemotaxis and phagocytosis of leukocytes. We also present the complex regulation by tyrosine phosphorylation by epidermal growth factor receptor (EGF-R), Janus Kinase 3 (JAK3) and Src and the role of phosphatases. Recently, there is evidence supporting a new level of regulation of PLD2 at the PH domain, by the discovery of CRIB domains and a Rac2-PLD2 interaction that leads to a dual (positive and negative) effect on its enzymatic activity. Lastly, we review the surprising finding of PLD2 acting as a GEF. A phospholipase such as PLD that exists already in the cell membrane that acts directly on Rac allows a quick response of the cell without intermediary signaling molecules. This provides only the latest level of PLD2 regulation in a field that promises newer and exciting advances in the next few years.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA.
| |
Collapse
|
6
|
Knapek K, Frondorf K, Post J, Short S, Cox D, Gomez-Cambronero J. The molecular basis of phospholipase D2-induced chemotaxis: elucidation of differential pathways in macrophages and fibroblasts. Mol Cell Biol 2010; 30:4492-506. [PMID: 20647543 PMCID: PMC2937534 DOI: 10.1128/mcb.00229-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/29/2010] [Accepted: 06/28/2010] [Indexed: 12/16/2022] Open
Abstract
We report the molecular mechanisms that underlie chemotaxis of macrophages and cell migration of fibroblasts, cells that are essential during the body's innate immune response and during wound repair, respectively. Silencing of phospholipase D1 (PLD1) and PLD2 reduced cell migration (both chemokinesis and chemotaxis) by approximately 60% and >80%, respectively; this migration was restored by cell transfection with PLD2 constructs refractory to small interfering RNA (siRNA). Cells overexpressing active phospholipase D1 (PLD1) but, mostly, active PLD2 exhibited cell migration capabilities that were elevated over those elicited by chemoattractants alone. The mechanism for this enhancement is complex. It involves two pathways: one that is dependent on the activity of the lipase (and signals through its product, phosphatidic acid [PA]) and another that involves protein-protein interactions. The first is evidenced by partial abrogation of chemotaxis with lipase activity-defective constructs (PLD2-K758R) and by n-butanol treatment of cells. The second is evidenced by PLD association with the growth factor receptor-bound protein 2 (Grb2) through residue Y(169), located within a Src homology 2 (SH2) consensus site. The association Grb2-PLD2 could be visualized by fluorescence microscopy in RAW/LR5 macrophages concentrated in actin-rich membrane ruffles, making possible that Grb2 serves as a docking or intermediary protein. The Grb2/PLD2-mediated chemotaxis process also depends on Grb2's ability to recognize other motility proteins, like the Wiskott-Aldrich syndrome protein (WASP). Cell transfection with WASP, PLD2, and Grb2 constructs yields the highest levels of cell migration response, particularly in a macrophage cell line (RAW/LR5) and only modestly in the fibroblast cell line COS-7. Further, RAW/LR5 macrophages utilize for cell migration an additional pathway that involves S6 kinase (S6K) through PLD2-Y(296), known to be phosphorylated by epidermal growth factor receptor (EGFR) kinase. Thus, both fibroblasts and macrophages use activity-dependent and activity-independent signaling mechanisms. However, highly mobile cells like macrophages use all signaling machinery available to them to accomplish their required function in rapid immune response, which sets them apart from fibroblasts, cells normally nonmobile that are only briefly involved in wound healing.
Collapse
Affiliation(s)
- Katie Knapek
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, Albert Einstein School of Medicine, Yeshiva University, Bronx, New York
| | - Kathleen Frondorf
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, Albert Einstein School of Medicine, Yeshiva University, Bronx, New York
| | - Jennalee Post
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, Albert Einstein School of Medicine, Yeshiva University, Bronx, New York
| | - Stephen Short
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, Albert Einstein School of Medicine, Yeshiva University, Bronx, New York
| | - Dianne Cox
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, Albert Einstein School of Medicine, Yeshiva University, Bronx, New York
| | - Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, Albert Einstein School of Medicine, Yeshiva University, Bronx, New York
| |
Collapse
|
7
|
Gomez-Cambronero J. New concepts in phospholipase D signaling in inflammation and cancer. ScientificWorldJournal 2010; 10:1356-69. [PMID: 20623096 PMCID: PMC3070604 DOI: 10.1100/tsw.2010.116] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/16/2010] [Accepted: 05/18/2010] [Indexed: 01/01/2023] Open
Abstract
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA) and choline. PLD regulation in cells falls into two major signaling categories. One is via growth factors/mitogens, such as EGF, PDGF, insulin, and serum, and implicates tyrosine kinases; the other is via the small GTPase proteins Arf and Rho. We summarize here our lab's and other groups' contributions to those pathways and introduce several novel concepts. For the mitogen-induced signaling, new data indicate that an increase in cell transformation in PLD2-overexpressing cells is due to an increase of de novo DNA synthesis induced by PLD2, with the specific tyrosine residues involved in those functions being Y179 and Y511. Recent research has also implicated Grb2 in tyrosine phosphorylation of PLD2 that also involves Sos and the ERK pathway. The targets of phosphorylation within the PLD2 molecule that are key to its regulation have recently been precisely mapped. They are Y296, Y415, and Y511 and the responsible kinases are, respectively, EGFR, JAK3, and Src. Y296 is an inhibitory site and its phosphorylation explains the low PLD2 activity that exists in low-invasive MCF-7 breast cancer cells. Advances along the small GTPase front have implicated cell migration, as PLD1 and PLD2 cause an increase in chemotaxis of leukocytes and inflammation. PA is necessary for full chemotaxis. PA enriches the localization of the atypical guanine exchange factor (GEF), DOCK2, at the leading edge of polarized neutrophils. Further, extracellular PA serves as a neutrophil chemoattractant; PA enters the cell and activates the mTOR/S6K pathway (specifically, S6K). A clear connection between PLD with the mTOR/S6K pathway has been established, in that PA binds to mTOR and also binds to S6K independently of mTOR. Lastly, there is evidence in the upstream direction of cell signaling that mTOR and S6K keep PLD2 gene expression function down-regulated in basal conditions. In summary, the involvement of PLD2 in cell signaling continues to expand geometrically. It involves gene transcription, mitogenic and cell migration effects as seen in normal growth, tumor development, and inflammation.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, OH, USA.
| |
Collapse
|
8
|
A comprehensive model that explains the regulation of phospholipase D2 activity by phosphorylation-dephosphorylation. Mol Cell Biol 2010; 30:2251-63. [PMID: 20176813 DOI: 10.1128/mcb.01239-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report here that the enzymatic activity of phospholipase D2 (PLD2) is regulated by phosphorylation-dephosphorylation. Phosphatase treatment of PLD2-overexpressing cells showed a biphasic nature of changes in activity that indicated the existence of "activator" and "inhibitory" sites. We identified three kinases capable of phosphorylating PLD2 in vitro-epidermal growth factor receptor (EGFR), JAK3, and Src (with JAK3 reported for the first time in this study)-that phosphorylate an inhibitory, an activator, and an ambivalent (one that can yield either effect) site, respectively. Mass spectrometry analyses indicated the target of each of these kinases as Y(296) for EGFR, Y(415) for JAK3, and Y(511) for Src. The extent to which each site is activated or inhibited depends on the cell type considered. In COS-7, cells that show the highest level of PLD2 activity, the Y(415) is a prominent site, and JAK3 compensates the negative modulation by EGFR on Y(296). In MCF-7, cells that show the lowest level of PLD2 activity, the converse is the case, with Y(296) unable to compensate the positive modulation by Y(415). MTLn3, with medium to low levels of lipase activity, show an intermediate pattern of regulation but closer to MCF-7 than to COS-7 cells. The negative effect of EGFR on the two cancer cell lines MTLn3 and MCF-7 is further proven by RNA silencing experiments that yield COS-7 showing lower PLD2 activity, and MTLn3 and MCF-7 cells showing an elevated activity. MCF-7 is a cancer cell line derived from a low-aggressive/invasive form of breast cancer that has relatively low levels of PLD activity. We propose that PLD2 activity is low in the breast cancer cell line MCF-7 because it is kept downregulated by tyrosyl phosphorylation of Y(296) by EGFR kinase. Thus, phosphorylation of PLD2-Y(296) could be the signal for lowering the level of PLD2 activity in transformed cells with low invasive capabilities.
Collapse
|
9
|
Lee CS, Kim KL, Jang JH, Choi YS, Suh PG, Ryu SH. The roles of phospholipase D in EGFR signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:862-8. [DOI: 10.1016/j.bbalip.2009.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 04/23/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
|
10
|
Henkels KM, Short S, Peng HJ, Di Fulvio M, Gomez-Cambronero J. PLD2 has both enzymatic and cell proliferation-inducing capabilities, that are differentially regulated by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 2009; 389:224-8. [PMID: 19715678 DOI: 10.1016/j.bbrc.2009.08.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 08/20/2009] [Indexed: 11/19/2022]
Abstract
Phospholipase D2 (PLD2) overexpression in mammalian cells results in cell transformation. We have hypothesized that this is due to an increase of de novo DNA synthesis. We show here that overexpression of PLD2-WT leads to an increased DNA synthesis, as measured by the expression levels of the proliferation markers PCNA, p27(KIP1) and phospho-histone-3. The enhancing effect was even higher with phosphorylation-deficient PLD2-Y179F and PLD2-Y511F mutants. The mechanism for this did not involve the enzymatic activity of the lipase, but, rather, the presence of the protein tyrosine phosphatase CD45, as silencing with siRNA for CD45 abrogated the effect. The two Y-->F mutants had in common a YxN consensus site that, in the phosphorylated counterparts, could be recognized by SH2-bearing proteins, such as Grb2. Even though Y179F and Y511F cannot bind Grb2, they could still find other protein partners, one of which, we have reasoned, could be CD45 itself. Affinity purified PLD2 is indeed activated by Grb2 and deactivated by CD45 in vitro. We concluded that phosphorylated PLD2, aided by Grb2, mediates lipase activity, whereas dephosphorylated PLD2 mediates an induction of cell proliferation, and the specific residues involved in this newly discovered regulation of PLD2 are Y(179) and Y(511).
Collapse
Affiliation(s)
- Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
11
|
Di Fulvio M, Frondorf K, Gomez-Cambronero J. Mutation of Y179 on phospholipase D2 (PLD2) upregulates DNA synthesis in a PI3K-and Akt-dependent manner. Cell Signal 2008; 20:176-85. [PMID: 18006275 PMCID: PMC2276604 DOI: 10.1016/j.cellsig.2007.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/13/2007] [Accepted: 10/03/2007] [Indexed: 11/23/2022]
Abstract
Phospholipase D2 (PLD2), one of the two mammalian members of the PLD family, has been implicated in cell proliferation, transformation, tumor progression and survival. However, as precise mechanistic details are still unknown, we investigated here if the PLD2 isoform would signal through the PI3K/AKT pathway. Transient expression of PLD2 in COS7 cells with either the WT or with a Y179F mutant, resulted in an increased basal phosphorylation of AKT in residues T308 and S473, in a PI3K-dependent manner. Transfection of PLD2-Y179F (but not the wild type) caused an increased (>2-fold) DNA synthesis even in the absence of extracellular stimuli. Other signaling mechanisms downstream such PLD/PI3K dependence (that might lead to DNA synthesis regulation) were further studied. PLD2-Y179F caused an increase in phosphorylation of p42/p44 ERK and in the expression of G0/G1 phase transition markers (p21 CIP, PCNA), and these effects, too, were dependent on PI3K. Interestingly, Akt, once activated induced the phosphorylation of PLD2 on residue T175, an effect that was inhibited by LY296004. Lastly, if PLD2-Y179F is further mutated in residue K758 (PLD2 Y179F-K758R), which renders inactive a catalytic site, DNA synthesis is then abrogated, indicating that the activity of the enzyme (i.e. synthesis of PA) is necessary for the observed effects. In conclusion, the unavailability of residue Y179 on PLD2 to become phosphorylated leads to an augmentation of DNA synthesis concomitantly with MEK and AKT phosphorylation, in a process that is dependent on PI3K and independent of any extracellular stimuli. This might be critical for the maintenance of the PLD2-regulated proliferative status.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Cell Biology and Physiology, Wright State University, School of Medicine, Dayton, OH 45435, USA
| | | | | |
Collapse
|
12
|
Di Fulvio M, Henkels KM, Gomez-Cambronero J. Short-hairpin RNA-mediated stable silencing of Grb2 impairs cell growth and DNA synthesis. Biochem Biophys Res Commun 2007; 357:737-42. [PMID: 17445773 PMCID: PMC2247433 DOI: 10.1016/j.bbrc.2007.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 04/03/2007] [Indexed: 12/12/2022]
Abstract
Grb2 is an SH2-SH3 protein adaptor responsible for linking growth factor receptors with intracellular signaling cascades. To study the role of Grb2 in cell growth, we have generated a new COS7 cell line (COS7(shGrb2)), based on RNAi technology, as null mutations in mammalian Grb2 genes are lethal in early development. This novel cell line continuously expresses a short hairpin RNA that targets endogenous Grb2. Stable COS7(shGrb2) cells had the shGrb2 integrated into the genomic DNA and carried on <10% of normal levels of Grb2. Silencing Grb2 expression reduced, but did not eliminate, basal cell growth rate. This could be reversed by either the addition of neomycin to the cell cultures or by rescuing with an Xpress-Grb2(SiL) construct (made refractory to the shRNA-mediated interference), but not with an SH2-deficient mutant (R86K). Thus, a viable knock-down and rescue protocol has demonstrated that Grb2 is crucial for cell proliferation.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Cell Biology and Physiology, Wright State University, School of Medicine, Dayton, OH 45435, USA
| | | | | |
Collapse
|
13
|
Di Fulvio M, Frondorf K, Henkels KM, Lehman N, Gomez-Cambronero J. The Grb2/PLD2 interaction is essential for lipase activity, intracellular localization and signaling in response to EGF. J Mol Biol 2007; 367:814-24. [PMID: 17276458 PMCID: PMC1861842 DOI: 10.1016/j.jmb.2007.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 12/22/2006] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
The adaptor protein Grb2 associates with phospholipase D2 (PLD2), but it is not known if this interaction is necessary for the functionality of the lipase in vivo. We demonstrate that stable short hairpin RNA (shRNA)-based silencing of Grb2, a critical signal transducer of the epidermal growth factor receptor (EGFR) and linker to the Ras/Erk pathway, resulted in the reduction of PLD2 activity in COS7 cells. Transfection of a Grb2 construct refractory to shGrb2 silencing (XGrb2(SiL)) into the Grb2-knockdown cells (COS7(shGrb2)), resulted in the nearly full rescue of PLD2 activity. However, Grb2-R86K, an SH2-deficient mutant of Grb2 that is incapable of binding to PLD2, failed to induce an enhancement of the impaired PLD2 activity in COS7(shGrb2) cells. Grb2 and PLD2 are directly associated and Grb2 is brought down with anti-myc antibodies irrespective of the presence or absence of EGFR activation. Immunofluorescence microscopy showed that co-transfected PLD2 and Grb2 re-localize to Golgi-like structures after EGF stimulation. Since this was not observed in cotransfection experiments with Grb2 and PLD2-Y169/179F, a lipase mutant that does not bind to Grb2, we inferred that Grb2 serves to hijack PLD2 to the perinuclear Golgi region through its SH2 domain. Supporting this is the finding that the primary cell line HUVEC expresses PLD2 diffusely in the cytoplasm and in the perinuclear Golgi region, where PLD2 and Grb2 colocalize. Such colocalization in primary cells increased after stimulation with EGF. These results demonstrate for the first time that the presence of Grb2 and its interaction with localized intracellular structures is essential for PLD2 activity and signaling in vivo.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Cell Biology and Physiology, Wright State University, School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
14
|
Lee JH, Kim YM, Kim NW, Kim JW, Her E, Kim BK, Kim JH, Ryu SH, Park JW, Seo DW, Han JW, Beaven MA, Choi WS. Phospholipase D2 acts as an essential adaptor protein in the activation of Syk in antigen-stimulated mast cells. Blood 2006; 108:956-64. [PMID: 16861349 PMCID: PMC1895856 DOI: 10.1182/blood-2005-10-009159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mast cells are responsible for IgE-mediated allergic reactions. Phospholipase D1 (PLD1) and PLD2 regulate mast cell activation, but the mechanisms remain unclear. Here we show that PLD2 associates with and promotes activation of Syk, a key enzyme in mast cell activation. Antigen stimulation resulted in increased association and colocalization of Syk with PLD2 on the plasma membrane as indicated by coimmunoprecipitation and confocal microscopy. This association was dependent on tyrosine phosphorylation of Syk but not on PLD2 activity. In vitro, PLD2 interacted via its Phox homology (PX) domain with recombinant Syk to induce phosphorylation and activation of Syk. Furthermore, overexpression of PLD2 or catalytically inactive PLD2K758R enhanced antigen-induced phosphorylations of Syk and its downstream targets, the adaptor proteins LAT and SLP-76, while expression of a PLD2 siRNA blocked these phosphorylations. Apparently, the interaction of PLD2 with Syk is an early critical event in the activation of mast cells.
Collapse
Affiliation(s)
- Jun Ho Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 380-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Di Fulvio M, Lehman N, Lin X, Lopez I, Gomez-Cambronero J. The elucidation of novel SH2 binding sites on PLD2. Oncogene 2006; 25:3032-40. [PMID: 16407827 PMCID: PMC3074567 DOI: 10.1038/sj.onc.1209340] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/20/2005] [Accepted: 11/11/2005] [Indexed: 12/12/2022]
Abstract
Our laboratory has recently reported that the enzyme phospholipase D2 (PLD2) exists as a ternary complex with PTP1b and the growth factor receptor bound protein 2 (Grb2). Here, we establish the mechanistic underpinnings of the PLD2/Grb2 association. We have identified residues Y(169) and Y(179) in the PLD2 protein as being essential for the Grb2 interaction. We present evidence indicating that Y(169) and Y(179) are located within two consensus sites in PLD2 that mediate an SH2 interaction with Grb2. This was demonstrated with an SH2-deficient GSTGrb2 R86K mutant that failed to pull-down PLD2 in vitro. In order to elucidate the functions of the two neighboring tyrosines, we created a new class of deletion and point mutants in PLD2. Phenylalanine replacement of Y(169) (PLD2 Y169F) or Y(179) (PLD2 Y179F) reduced Grb2 binding while simultaneous mutation completely abolished it. The role of the two binding sites on PLD2 was found to be functionally nonequivalent: Y(169) serves to modulate the activity of the enzyme, whereas Y(179) regulates total tyrosine phosphorylation of the protein. Interestingly, binding of Grb2 to PLD2 occurs irrespectively of lipase activity, since Grb2 binds to catalytically inactive PLD2 mutants. Finally, PLD2 residues Y(169) and Y(179) are necessary for the recruitment of Sos, but only overexpression of the PLD2 Y179F mutant resulted in increased Ras activity, p44/42(Erk) phosphorylation and enhanced DNA synthesis. Since Y(169) remains able to modulate enzyme activity and is capable of binding to Grb2 in the PLD2 Y179F mutant, we propose that Y(169) is kept under negative regulation by Y(179). When this is released, Y(169) mediates cellular proliferation through the Ras/MAPK pathway.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Dept of Physiology & Biophysics, Wright State University School of Medicine, Dayton, OH, 45435, USA
| | - Nicholas Lehman
- Dept of Physiology & Biophysics, Wright State University School of Medicine, Dayton, OH, 45435, USA
| | - Xiaohong Lin
- Dept of Physiology & Biophysics, Wright State University School of Medicine, Dayton, OH, 45435, USA
| | - Isabel Lopez
- Dept. Pharmacology, University Illinois Chicago, IL 60612, USA
| | - Julian Gomez-Cambronero
- Dept of Physiology & Biophysics, Wright State University School of Medicine, Dayton, OH, 45435, USA
| |
Collapse
|